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Abstract: This study presents Pb(II) recovery/removal from water solutions using two different
commercial ion-exchange resins, i.e., Dowex G-26 with sulfonic functional group and Puromet™
MTS9570 with sulfonic and phosphonic functional groups. Overall, 100% Pb(II) recovery/removal
by both resins was obtained at solution pH 3.5, resin dosage 25 g/L, adsorption time 30 min, room
temperature, and initial Pb(II) concentration 1000 mg/L. Langmuir, Freundlich, and Temkin isotherms
were used to model the experimental data. The mechanism of the adsorption process was investigated
using kinetic and thermodynamic models. The experimental data fitted very well with the pseudo-
second-order kinetic model, and thermodynamic analysis showed that the adsorption of Pb(II) from
acidic solution onto both resins was a spontaneous and endothermic process in nature. Regeneration
of the resins loaded with lead ions was tested for three cycles to evaluate the resin recyclability. Good
stability of G-26 and performance degradation of MTS9570 resin was observed.

Keywords: Pb(II); ion-exchange resins; regeneration; isotherms; kinetics; thermodynamics

1. Introduction

With more demands for modern industrial products, heavy-metals consumption is
widely increased in many fields. Their environmental impacts bring up serious concern
because of their toxicity and non-degradability. Exposure to these pollutants can be harmful
to human and environmental species [1–4]. Lead is one of the toxic metals and is discharged
from different industrial activities such as mining, metals production, battery industry,
and fuels combustion [5–7]. Lead’s existence in water recourses can cause different dis-
eases such as hepatitis and anemia [8–11]. According to the World Health Organization
(WHO) guideline 2017, the maximum acceptable concentration for lead in drinking water
is 0.01 mg/L [12–14]. Therefore, lead removal from wastewaters has become an important
task, which also has the benefit of lead metal recovery.

Several remediation techniques have been used for lead recovery/removal from wastew-
ater, such as chemical precipitation, electrodialysis, electrolysis, reverse osmosis, adsorption,
and ion exchange [15–19]. Among these technologies, resin adsorption is one of the most
suitable methods for the removal of lead and other toxic metals from aqueous solution due to
its low cost, process simplicity, low remnant metal concentration, and high efficiency.

Various resins with different functional groups such as strong acid cation (SAC) resins
with sulfonic acid group (-SO3H), including Amberlite IR-120, Dowex 50W, Purolite C100,
Lewatit SP-112, D-001, 732-CR, Dowex 50WX8, Amberjet 1200 Na, and C 160; weak acid
cation (WAC) resins with carboxylic acid group (-COOH) such as Amberlite IRC-50/IRC-86,
Lewatit CNP 80, and Purolite C-104; weak acid and chelating resins with iminodiacetic
acid groups such as Purolite S-930, Amberlite IRC 718, and Lewatit TP 207; and acid and
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chelating resins with amino-phosphonic groups such as Purolite S-940 and Purolite S-950
were studied for lead removal from aqueous solutions [20–23].

Qian et al. [24] studied the kinetics and thermodynamics of lead removal from aqueous
solution using 732 cation-exchange resin with sulfonic acid group in hydrogen type in
the temperature range of 298–328 K and Pb(II) concentration range of 5–50 mol/m3. The
experimental results show that the adsorption isotherm data agreed closely with the
Langmuir isotherm and the maximum monolayer exchange for Pb(II) was 484.0 mg/g
at 308 K. Thermodynamic studies demonstrate that the adsorption of Pb(II) onto 732-CR
is spontaneous and exothermic in nature. This resin was also tested by Guo et al. for
removing lead from aqueous solutions [25]. The maximum sorption capacity of Pb(II) at
pH 4.0 was 396.8 mg/g resin from their study. Tabatabaei et al. [26] investigated removal of
lead from aqueous system using Amberlite IR-120 with sulfonic acid group and compared
its efficiency with natural zeolite.

Vergili et al. [27] investigated the performance of WAC resin Lewatit CNP80 with
carboxylic (-COOH) functional group for Pb(II) removal from battery industry wastewater.
The Pb(II) removal efficiency in batch experiments was found to be 83.3% at 25 ◦C, with
resin dosage of 2 g/L in 6 h contact time. The Pb(II) removal efficiency could increase
slightly from 83% to 87% with increase in temperature. A similar study was reported by
Xiong and Yao using resin (110-H) with carboxylic group for Pb(II) adsorption in HAc-
NaAc medium, obtaining the maximum lead adsorption capacity of 485 mg/g at pH 6.7
and 298 K [28].

Thu et al. [29] synthesized thiol-functionalized mesoporous silicas by co-condensation
of tetraethoxysilane and varying contents of 3-mercaptopropyltrimethoxysilane in acidic
medium with the block copolymer Pluronic 123 as a structure directing agent. Adsorption of
lead from water by the thiol-functionalized silicas was studied. The maximum adsorption
capacity was 0.19 mmol Pb per gram of adsorbent at 90 min contact time with initial
Pb(II) concentration 200 mg/L and temperature 30 ◦C. The adsorption efficiency of the
lead-reloaded sample can reach 80% after five cycles of adsorption-elution compared with
the fresh ones.

Removal of lead using Purolite S-930 resin with iminodiacetic functional group in
aqueous solution was studied by Merganpour et al. [30]. The column adsorption results
concluded that 91.12% of mean lead removal ratio from drinking water containing up to
22 µg/L Pb can be achieved using Purolite S-930 during 21-day service at pH 6.5, which
demonstrates an economic and technically feasible lead-removal process.

Ren et al. [31] reported a comparison study of Pb(II) adsorption on XC-72 carbon black
and multi-walled carbon nanotubes (MWCNTs). The load of Pb(II) was 125.0 mg/g and
17.5 mg/g on XC-72 and MWCNTs, respectively, at pH 6.0 and 293 K temperature.

The performance of G-26 and MTS9570 resins have been examined by us for removing
Cd(II) ions successfully from acidic solutions. Maximum cadmium-removal rates of 99.2%
and 98.9% were achieved for G-26 and MTS9570, respectively, at 30 min of adsorption,
5.0 of initial solution pH, 1000 mg/L of initial metal concentration, and 0.01 g/mL of
resin dosage for G-26 and 0.025 g/mL of resin dosage for MTS9570 [32,33]. As lead and
cadmium are both persistent bio-accumulative toxic (PBT) metals, and they often coexist in
nature, comparative study of G-26 and MTS9570 for Pb(II) removal from aqueous solution
was conducted in this work for a co-removal process in the future. The research involves
exploratory experiments using twenty-three resins with different functional groups. The
adsorption process using G-26 and MTS9570 was evaluated with adsorption isotherms,
kinetic, and thermodynamic studies at different operation conditions.

2. Experimental Details
2.1. Materials

All the chemicals used to prepare Pb(II) solutions were of analytical reagent grade.
Commercial synthetic resins Dowex G-26 in hydrogen form and Puromet™ MTS9570 were
supplied by DuPont™ and Purolite US, respectively. Lead nitrate Pb(NO3)2 (obtained
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from A&C American Chemicals Ltd., Montreal, Canada) was used to prepare 1000 mg/L
stock standard solution. The working standard solutions were prepared by the dilution of
appropriate volumes of the stock standard solution with deionized water. Solution pH was
adjusted with 0.1 mol/L HCl or 1% NaOH solutions. The properties of the resins are given
in Table 1.

Table 1. Physical and chemical properties of resins [32].

Characteristics G-26 MTS9570

Matrix Styrene-DVB Polystyrene-DVB
Ionic form as shipped H+ form H+ form

Functional group Sulfonic Phosphonic and sulfonic
Appearance Uniform particle size Spherical beads

Structure gel Macroporous
Capacity 2.0 eq/L 18 g/L eq/L
Bed size 0.65 mm ± 0.05 0.315–0.850 mm

Uniformity coefficient 1.1 1.4
Water retention 45%–52% 55%–70%
Specific gravity 1.22 g/mL 1.12 g/mL

2.2. Apparatus

Instruments used in this study were as follows: Inductively coupled plasma (ICP)
spectroscopy was used for metal concentration analysis; an electric shaker (model Promax
2020, Heidolph Instruments GmbH & Co. KG, Schwabach, Germany) was used for adsorp-
tion tests with 20 mL solutions in 125 mL flasks. The solution pH was measured with a pH
meter (model Orion Star A211).

2.3. Experimental Procedure
2.3.1. Activation of Resins

Before experiments, resins were initially washed in DI water at 150 rpm on a recipro-
cating platform shaker for 1 h. Then, they were activated with a solution of 10% (v/v) HCl
and agitated at 150 rpm for 24 h. Subsequently, the resins were washed two times in DI
water at 150 rpm for 1 h and dried at room temperature for 7 days. The dried resins were
stored in dry bottles and were used for future experiments.

2.3.2. Adsorption Tests

A standard solution of lead (1000 ppm) was prepared by dissolving a weighed amount
of lead nitrate salt in distilled water, and the pH was adjusted by adding 0.1 mol/L HCl.
The adsorption performances of G-26 and MTS 9570 for Pb(II) ions were investigated by
batch experiments at different temperatures. Batch adsorption experiments were conducted
at a constant volume of 20 mL metal ions solution and using different doses of dry resins,
i.e., from 0.1 to 0.5 g/L. The adsorption behavior of metal ions by the adsorbents was
studied in the pH range of 1.5–5.5. Samples of metal solution and resins in 125 mL flasks
were shaken in an electric shaker at different contact times ranging from 5 to 180 min and at
the fixed speed of 150 rpm. After reaching the equilibrium stage, the solution was filtered
and analyzed with XRF. The batch adsorption experiments were performed in triplicate
and adopted the average value. The errors of the measurements were within 10%. The
adsorption capacities of G-26 and MTS9570 exchangers and the removal percentage of
Pb(II) were calculated using the following Equations (1) and (2), respectively.

Q =
(Co − Ce)V/1000

M
(1)

and % removal of Pb (II) ions =
(Ci − Co)

Ci
× 100 (2)
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where Q is the adsorption capacity in mg/g at time t; Ci, Co, and Ce are the initial, final,
and equilibrium concentrations of Pb(II) in mg/L, respectively; V is the volume of Pb (II)
solution in mL, and M is the total amount of resin in grams (g).

3. Results and Discussion
3.1. Exploration of Pb Recovery/Removal Using Resins

There are many commercial resins available from different manufacturing companies.
These resins have different chemical and physical properties. To explore the suitable resin
for Pb(II) uptake, twenty-three resins were tested, which have different functional groups.
The exploration process was conducted at resin amounts ranging from 0.1 g to 0.5 g at
20 mL constant volume metal solution, 180 min adsorption time, 150 adsorption speed,
1000 mg/L solution concentration, pH 3.5, and 20 ± 1 ◦C room temperature.

Figure 1 illustrates fourteen resins that have a Pb(II)-removal percentage above or close
to 90%. These resins mainly contain sulfonic, phosphonic/sulfonic, amino/phosphonic,
iminodisatic, bis-picolylamine, or sulfonic/trimethylamine group(s), while the other nine
resins with functional group(s) of iso-thiouronium, carboxylic, N-methylglucamine, di-
ethylhexylphosphate (D2EHPA), thiourea, aminomethylphosphonic, or trimethyl am-
monium have relatively low adsorption performance for lead ions (Figure 2). Among
the twenty-three resins tested, Dowex G-26 resin with sulfonic group and Purolite MTS
9570 resin with phosphonic/sulfonic groups were selected. These two resins have been
tested by the same author, and they had high efficiency for removal of cadmium and
copper as well [32].

3.2. Effect of Adsorption Time

A series of adsorption time tests for lead recovery/removal were carried out with the
initial metal concentration of 1000 mg/L, resin dose 0.5 g, and shaking speed 150 rpm at
pH 3.5 and room temperature. The removal percentage of adsorbed lead (II) ions onto both
resins increased with time, as shown in Figure 3. It can be found that the adsorption time
necessary to reach equilibrium was within 30 min. Further increase in time had no effect
on the adsorption of lead for both exchangers. The uptake percentage for Pb(II) increased
from 49.3% to 100% and from 45.8% to 100% for G-26 and MTS9570, respectively. Further,
30 min adsorption time was adopted for subsequent tests.
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Figure 1. Resins with high removal rate of Pb (II) at 30 min contact time, 150 rpm agitation speed,
20 mL volume, pH 4.5, concentration 1000 mg/L, and temperature 20 ◦C. (a) Purolite S940, Lewatit
monoplus TP207, Amberlite IR-120H, Dowex G-26, Purolite S930 plus, Amberlite IRC7841, and
Purolite S950 plus resin. (b) Lewatit monoplus TP208, SIR 500, Lewatit MDS TP220, Purolite WTS
9570, MBD-15-SC, and Amberlite IRC747 resin.
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Figure 2. Resins with low removal rate of Pb (II) at 30 min contact time, 150 rpm agitation speed,
20 mL volume, pH 4.5, concentration 1000 mg/L, and temperature 20 ◦C.

3.3. Effect of Adsorbent Dosage

Figure 4 presents the removal of Pb(II) by G-26 and MTS9570 as a function of resin
dosage. Resin dosage was varied from 5 to 30 g/L, while other conditions were the same
as in the adsorption time tests. Increasing resin dosage increased the removal percentage of
Pb(II). When the resin dosage increased to 25 g/L, Pb(II)-removal rates were close to 100%
for both resins. This indicates that both resins can be used as adsorbents to remove Pb(II)
ions effectively, and 25 g/L resin dosage was used for subsequent tests.



Minerals 2022, 12, 1312 6 of 16Minerals 2022, 12, x  6 of 17 
 

 

0 30 60 90 120 150 180

0

20

40

60

80

100

R
e
m

o
v
a
l 
o
f 
P

b
 (

%
)

Time (min)

 G-26

 MTS9570

 

Figure 3. Effect of agitation time on adsorption of Pb(II) using G-26 and MTS9570 exchange reins at 

0.5 g of resin dosage, 20 min agitation time, 150 rpm agitation speed, pH 3.5, concentration 1000 

mg/L, and temperature 20 °C. 

3.3. Effect of Adsorbent Dosage 

Figure 4 presents the removal of Pb(II) by G-26 and MTS9570 as a function of resin 

dosage. Resin dosage was varied from 5 to 30 g/L, while other conditions were the same 

as in the adsorption time tests. Increasing resin dosage increased the removal percentage 

of Pb(II). When the resin dosage increased to 25 g/L, Pb(II)-removal rates were close to 

100% for both resins. This indicates that both resins can be used as adsorbents to remove 

Pb(II) ions effectively, and 25 g/L resin dosage was used for subsequent tests. 

0 5 10 15 20 25 30 35

0

20

40

60

80

100

R
e
m

o
v
a
l 
o
f 
P

b
(Ⅱ

) 
(%

)

Resin dosage (g/L)

 G-26

 MTS9570

 

Figure 4. Effect of resin dosage on adsorption of Pb(II) using G-26 and MTS9570 exchange resins at 

20 min agitation time, 150 rpm agitation speed, pH 3.5, concentration 1000 mg/L, and temperature 

20 °C. 

  

Figure 3. Effect of agitation time on adsorption of Pb(II) using G-26 and MTS9570 exchange reins at
0.5 g of resin dosage, 30 min contact time, 150 rpm agitation speed, pH 3.5, concentration 1000 mg/L,
and temperature 20 ◦C.

Minerals 2022, 12, x  6 of 17 
 

 

0 30 60 90 120 150 180

0

20

40

60

80

100

R
e
m

o
v
a
l 
o
f 
P

b
 (

%
)

Time (min)

 G-26

 MTS9570

 

Figure 3. Effect of agitation time on adsorption of Pb(II) using G-26 and MTS9570 exchange reins at 

0.5 g of resin dosage, 20 min agitation time, 150 rpm agitation speed, pH 3.5, concentration 1000 

mg/L, and temperature 20 °C. 

3.3. Effect of Adsorbent Dosage 

Figure 4 presents the removal of Pb(II) by G-26 and MTS9570 as a function of resin 

dosage. Resin dosage was varied from 5 to 30 g/L, while other conditions were the same 

as in the adsorption time tests. Increasing resin dosage increased the removal percentage 

of Pb(II). When the resin dosage increased to 25 g/L, Pb(II)-removal rates were close to 

100% for both resins. This indicates that both resins can be used as adsorbents to remove 

Pb(II) ions effectively, and 25 g/L resin dosage was used for subsequent tests. 

0 5 10 15 20 25 30 35

0

20

40

60

80

100

R
e
m

o
v
a
l 
o
f 
P

b
(Ⅱ

) 
(%

)

Resin dosage (g/L)

 G-26

 MTS9570

 

Figure 4. Effect of resin dosage on adsorption of Pb(II) using G-26 and MTS9570 exchange resins at 

20 min agitation time, 150 rpm agitation speed, pH 3.5, concentration 1000 mg/L, and temperature 

20 °C. 

  

Figure 4. Effect of resin dosage on adsorption of Pb(II) using G-26 and MTS9570 exchange resins at
30 min contact time, 150 rpm agitation speed, pH 3.5, concentration 1000 mg/L, and temperature 20 ◦C.

3.4. Effect of pH

The influence of pH on the removal of Pb(II) was investigated at pH range 1.5–5.5,
while other conditions were the same as in the adsorbent dosage tests. As seen from
Figure 5, pH does not have a significant effect on the adsorption of Pb(II) onto G-26 resin in
the entire explored pH range (1.5–5.5). The removal rate of Pb(II) was slightly low at pH 1.5
for MTS9570. Precipitation of lead was observed at pH > 5.5. Therefore, in the subsequent
experiments, the solution pH was kept at 3.5.
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3.5. Effect of Temperature

Adsorption experiments were conducted at four different temperatures (20, 40, 60,
and 80 ◦C) to study the performance of the selected resins on the adsorption of lead
ions. As shown in Figure 6, the removal percentage of Pb(II) increased with the rising
temperature, which indicates that the adsorption of Pb(II) ions onto G-26 and MTS9570
resins is endothermic in nature.
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3.6. Effect of Initial Metal Ion Concentration

Effect of initial metal concentration on Pb(II) adsorption onto G-26 and MTS9570 resins
was explored at 20 ◦C (shown in Figure 7). The removal percentages of lead on the two
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resins are both close to 100% in the Pb concentration range of 100–1000 mg/L. At the high
metal concentration of 1200 mg/L, the removal percentage of Pb decreased, which is due to
less availability of favorable sites for adsorption on the resin beads. The result obtained in
this work is consistent to the results reported by Al Anber et al. [34] and Elfeghe et al. [32].
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3.7. Adsorption Isotherms

The sorption isotherms play an important role in the design of adsorption systems.
Three popular isotherm models, i.e., Langmuir [35], Freundlich [36], and Temkin [37]
isotherms, were applied for the equilibrium modelling of Pb(II) adsorption on the resins.

The Langmuir isotherm is commonly used to describe monolayer sorption at equilib-
rium, and the linear form is given by the following equation:

Ce

qe
=

1
Q0b

+
C0

Q0 (3)

where qe is the amount of metal adsorbed at equilibrium (mg/g), Ce the equilibrium
concentration of the adsorbate (mg/L), and Q0 (mg/g) and b (L/mg) are the Langmuir
constants related to the adsorption capacity and energy of adsorption, respectively.

The Freundlich model assumes adsorption on heterogeneous surfaces. The linear form
of the Freundlich isotherm equation is represented as follows:

logqe = logKF +
1
n

logCe (4)

where KF is the adsorption equilibrium constant relating to the adsorbent capacity, and
1/n is the parameter relating the adsorption intensity.

The Temkin isotherm is based on the interaction between adsorbate and adsorbent,
which causes heat of adsorption due to repulsions forces. The linear form of the Temkin
equation is given by the following equation:

qe = B ln (KT ) + B ln (Ce )
and B = RT

bT

(5)
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where KT (L/g) and B (J/mol) are the Temkin and heat constants of sorption, respectively.
R = universal gas constant (8.314 J/mol/K), and T = Temperature at 298 K.

The Langmuir, Freundlich, and Temkin isotherm parameters for the adsorption of lead
(II) onto G-26 and MTS9570 resins were calculated by using isotherms and their correlation
coefficients and listed in Table 2. Comparison of the correlation coefficients values shows
that the adsorption of Pb(II) onto G-26 and MTS9570 resins is fitted better by Langmuir
model (R2 = 0.9973–0.9906) and Freundlich than Temkin models (R2 = 0.9806–0.9943 and
R2 = 0.9681–0.9557). The Langmuir, Freundlich, and Temkin isotherms of the adsorption of
Pb (II) on G-26 and MTS9570 are presented in Figures 8–10, respectively.

Table 2. The isotherm parameters for Pb(II) adsorption on G-26 and MTS9570.

G-26 MTS9570

Langmuir isotherm
Q0 (mg/g)
b (L/mg)

R2

45.45
0.082
0.9973

38.46
0.221

0.9906
Freundlich isotherm

KF (mg/g)
n

R2

19.16
5.740
0.9896

20.52
7.450

0.9960
Temkin isotherm

bT
B
R2

294.9
8.40

0.9681

669.6
3.70

0.9557
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The maximum adsorption capacities of G-26 and MTS 9570 resins are excellent com-
pared with some other adsorbents for the adsorption of Pb(II) ( Table 3).
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Table 3. Comparison of maximum adsorption capacity of G-26 and MTS 9570 resins with some other
adsorbents for adsorption of Pb(II).

Adsorbent Sorption Capacity
for Cu (II) (mg/g) Conditions References

SBA-15 41.50 pH = 2.5–4, 30 ◦C [29]
MWCNT 17.54 pH = 6.5, 20 ◦C [31]

APTS-SBA-15-AB 43.50 pH = 6.0, 60 ◦C [38]
MCCM 45.50 pH = 6.0, 30 ◦C [39]

1,8-DAN/XAD-4 29.01 pH = 6.0–7.0, 20 ◦C [40]
Copolymer 2-

hydroxyethyl methacrylate 31.50 pH = 6.0–7.0, 20 ◦C [41]

Crosslinked chitosan with
epichlorohydrin 34.13 pH = 7.0, NA [42]

Purolite C100 9.64 pH = NA, 25 ◦C [43]
Amberlite XAD-2

functionalized with Tiron 12.60 pH = 4.0–5.5, 25 ◦C [44]

Purolite A830 30.61 pH = 7.0–9.0, 50 ◦C [45]
Bentonite 28.00 pH = 6.0–9.0, 25 ◦C [46]

Zeolite 24.40 pH = 9.0, 20 ◦C [47]
G-26 45.45 pH = 3.5, 20 ◦C This work

MTS9570 38.46 pH = 3.5, 20 ◦C This work

3.8. Adsorption Kinetics

The kinetics for the adsorption of Pb(II) onto G-26 and MTS9570 resins were investi-
gated using Lagergren pseudo-first-order and pseudo-second-order models, represented
by Equations (6) and (7), respectively [48,49].

ln (qe − qt ) = ln (qe ) − k1 t
2.303

(6)

where qt and qe are the amounts of metal ions adsorbed (mg/g) at equilibrium and at
contact time t (min), respectively; k1 (min−1) is the first-order rate constant. The plots of
ln (qe − qt ) versus t are presented in Figure 11, and the rate constants ( k1 ) are listed in
Table 4.

t
qe

=
t
qe

+
1

k2 q2
e

(7)

where k2 (g/mg/min) is the rate constant of pseudo-second-order adsorption. The
plots of t

qt
versus t are shown in Figure 12, and the rate constants ( k2 ) are presented

in Table 4. Pseudo-first-order and pseudo-second-order parameters are listed in Table 4.
The results clearly show that R2 values of the second-order kinetic model for both resins
are closer to 1 than the results obtained from the first-order kinetic model. Therefore,
the adsorption behavior of Pb(II) onto the resins fits the second-order kinetics. G-26 and
MTS9570 resins have about the same order of magnitude for the adsorption rates even if
they are characterized by different functional groups.

Table 4. Kinetic parameters for the adsorption of Pb(II) ions onto G-26 and MTS9570.

G-26 MTS9570

Equations
Pseudo-first-order

qe, exp (mg/g) 41.80 42.00
qe, cal (mg/g) 3.49 2.513

k1 (m−1) −0.00017 −0.00020
R2 0.7243 0.9090

Pseudo-second-order
qe, cal (mg/g) 42.50 42.10

k2 (g/mg min) 0.00896 0.0362
R2 0.9994 0.9999
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3.9. Thermodynamic Evaluation of the Process

Thermodynamic parameters such as standard free energy change (∆G◦), standard en-
thalpy change (∆H◦), and standard entropy change (∆S◦) are very important for analyzing
the nature of an ion-exchange process [50]. To estimate these parameters, the influence of
temperature on the adsorption process was studied.

The thermodynamic parameters, including ∆G◦, ∆H◦, and ∆S◦, were determined
using the following equations:

∆G◦ = −RTlnK , K =
qe

Ce
(8)

∆G◦ = ∆H◦ − T ∆S◦ (9)
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or
lnK = −∆H◦

RT
+

∆S◦

R
(10)

where K is the the distribution coefficient calculated from the Langmuir equation, R is the
universal gas constant (8.314 J/mol/K), and T is absolute temperature (K). The values of
∆H◦ and ∆S◦ could be obtained from the slope and intercept of the linear plot between lnK
versus 1/T. The calculated values of thermodynamic parameters are listed in Table 5.

Table 5. Thermodynamic parameters for the adsorption of Pb(II) on G-26 and MTS9570.

Resin
∆G (kJ/mol)

293 K 303 K 313 K 353 K ∆H (kJ/mol) ∆S (kJ/mol) R2

G−26 −38.34 −40.96 −43.58 −46.20 42.30 131.30 0.9642
MTS9570 −27.93 −29.73 −31.60 −33.50 32.07 95.44 0.9266

The negative values for free energy change ∆G◦ confirm the feasibility and sponta-
neous process for Pb (II) adsorption onto both resins, and the positive values of ∆H◦ (42.3
and 32.07 kJ/mol for G-26 and MTS9570, respectively) indicate the endothermic nature
of the adsorption process. The higher value of T∆S than ∆H suggests that the adsorption
process is enthalpy-driven [51].

3.10. Desorption Studies

The recyclability of the sorbent is one of the most important factors in wastewater treat-
ment [52]. In this work, the regeneration and reuse of the ion exchangers were investigated.
For the elution of Pb from G-26 and MTS9570 resins, various electrolytes volumes of HCl,
HNO3, CH3COOH, and C2H2O4 were tested at room temperature. It was observed that the
best elution result was obtained using 40 mL volume of HCl with 15% (v/v) concentration
and 20 min of elution time for the 0.5 g loaded resin, as shown in Figure 13.
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Figure 13. Elution of G-26 and MTS9570 at different HCL concentrations (v/v) at 0.5 g of resin dosage,
20 min agitation time, 40 mL volume, and at room temperature.

The adsorption-desorption cycle was repeated three times using the same resin, and
the results are presented in Table 6.
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Table 6. Adsorption and desorption cycles of Pb(II) on G-26 and MTS9570 resins.

Resin

Pb(II) Removal % Pb(II) Recovery %

Adsorption Cycle Elution Cycle

First Adsorption Second
Adsorption

Third
Adsorption First Elution Second Elution Third Elution

G-26 100 100 100 100 100 100
MTS9570 100 97 96 90 86 76

Table 6 shows excellent stability of G-26 resin in all the three cycles, with 100% for
adsorption and 100% for elution of Pb(II) ions. While, for the MTS9570 resin, the adsorption
percentage was 100, 97, and 96 in the first cycle, second cycle, and third cycle, respectively,
the elution efficiency was 90%, 86%, and 76% in the first cycle, second cycle, and third cycle,
respectively. This result agrees with the earlier results of Volesky [53]. The performance
degradation of MTS9570 resin might be due to its macroporous S-DVB structure (low sur-
face area) and negative swelling factor (−5%) as well. Swelling is an important parameter
for the completion of adsorption reaction [54]. Negative swelling factor means volume
shrink, which leads to specific surface area adsorption-site decrease.

4. Conclusions

This work presents an investigation on the performance of G-26 and MTS9570 resins
for the adsorption of lead ions from synthesized wastewater. The resin dosage, pH of
solution, contact time, initial metal concentration, and temperature were the main operation
parameters that affected the adsorption of Pb(II). For all the systems studied, the pseudo-
second-order chemical reaction kinetics provided the best correlation of the experimental
data for both resins. The Langmuir model better described the adsorption equilibrium.
The maximum adsorption capacities to Pb(II) were 45.45 and 38.46 mg/g for G-26 and
MTS9570, respectively. The negative value of free energy ∆G◦and the positive value
of ∆H◦ obtained indicate that the adsorption process is spontaneous and endothermic
in nature. The resin recycling study shows that the most efficient Pb(II) desorption for
both resins was obtained using 40 mL volume of HCl with 15% (v/v) concentration and
20 min of elution time at room temperature. Results of consecutive adsorption/desorption
studies show that G-26 resin exhibited excellent stability in all the three cycles, with 100%
recovery for adsorption and 100% efficiency for elution of Pb(II) ions. Furthermore for
the MTS9570 resin, its performance degradation might be due to its macroporous S-DVB
structure (low surface area) and negative swelling factor. Gel-structure resin G-26 is more
effective than macroporous-structure resin (MTS9570) for the removal/recovery of lead ions
from wastewater.
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