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Abstract: In this paper, −10 µm rutile and −30 µm garnet particles were selected as samples. The
effects of different reagents on the flotation of rutile and garnet single minerals were studied, and the
mechanism was analyzed by the contact angle, zeta potential, and Fourier transform infrared (FTIR)
measurements. The flotation results show that an optimal recovery is obtained with benzohydroxamic
acid (BHA) as the collector for rutile and sodium silicofluoride (SSF) as the inhibitor for garnet. Even
with BHA having a good collecting performance for both rutile and garnet, there are still some
differences. BHA greatly improves the hydrophobicity of rutile and garnet, and changes the chemical
environment of rutile but not garnet. SSF significantly reduces the hydrophobicity of rutile and
garnet, and slightly affects the environment in which BHA interacts with rutile. However, the above
reagents and combinations have little effect on the surface chemical environment of garnet.

Keywords: flotation; rutile; fine particle; separation; collector selectivity

1. Introduction

Garnet is the main associated gangue mineral of rutile, affecting its efficient recovery.
The specific gravity of the two minerals is similar [1]. The iron isomorphism in the rutile
lattice makes the surface of rutile easily contaminated with iron, and reduces the magnetic
difference between rutile and garnet [2]. Therefore, flotation has become the main research
direction for rutile and garnet separation.

Recently, there was renewed interest in the research on flotation separation of rutile
and garnet, especially with respect to flotation reagents. Huang et al. [3] studied the
flotation separation of rutile and garnet using the cationic surfactant octadecylamine poly-
oxyethylene ether as a collector, proving that the adsorption of AC1815 on rutile surface is
mainly due to the electrostatic interaction and the hydrogen bonding; Richard et al. [2,4]
studied the flotation separation of rutile and garnet using the cationic surfactant octade-
cylamine polyoxyethylene ether as the collector, Na–CMC as the inhibitor, sodium sulfite
as a regulator, and octadecylamine polyoxyethylene ether-styrene phosphonic acid mixed
as a composite collector, discovering that sodium sulfite acting in the form of SO3

2− is
more selectively adsorbed on garnet surface compared to that of rutile, leading to a high
selectivity for the flotation of rutile; Chen et al. [1] investigated the flotation of rutile from
garnet using sodium fluorosilicate as an inhibitor and styrylphosphonic acid as a collector,
finding that there is a strong interaction between sodium fluorosilicate and active Fe sites on
garnet surface, reducing adsorption sites for the collector, thereby strongly depressing the
flotation of garnet. The above studies are mainly aimed at the mechanism of conventional
particle size rutile and garnet flotation reagents, but the studies on the reagents for the
flotation separation of fine particles of the two minerals still needs to improve.

According to all of the above researches, rutile and garnet can be effectively separated
using phosphate, oleate, hydroxamic acid, and benzylarsinic acid as collectors, and sodium
fluorosilicate, sodium hexametaphosphate, and Pb2+ as regulators. While carboxylic acid
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collectors have a strong collection performance, but poor selectivity, phosphonic acid
collectors have a better flotation effect but a high cost; arsonic acid collectors have good
collection performance and selectivity, but are highly toxic [5–8]. It was indicated that the
selection of proper reagent is very important for separation [9,10]. The current research on
flotation separation experiments pays more attention to hydroxamic acid collectors [11]
because of their better selectivity, and lesser toxicity, while due to its low cost, styrene
phosphoric acid is a common collector in industrial applications.

At present, the research on the flotation separation of rutile and garnet mainly focuses
on the reagents [12,13], while there are fewer studies on fine particles and various reagent
combinations. In addition, in actual flotation, due to factors such as disseminated mineral
particle size and hardness, the particle size of target and gangue minerals may be different,
while the research on the flotation separation of two minerals with different particle sizes is
rare. Therefore, it is essential to further research the relation between inhibitor, activator,
and collector, as well as their effects on the separation of rutile and garnet with different
particle sizes.

This paper focuses on the effects of styrene phosphoric acid and hydroxamic acid
collectors, sodium fluorosilicate inhibitor, and activator lead ions on the flotation of rutile
and garnet. Referring to the properties of the Zaoyang rutile deposit in Hubei, China,
−10 µm rutile and −30 µm garnet were selected as the research objects, which provided a
certain basis for the flotation separation of rutile and garnet of different particle sizes in
actual minerals.

2. Experimental Section
2.1. Sample and Reagents

The rutile and garnet samples used in this paper were from Hubei Province, China.
According to the chemical analysis results of rutile in Table 1, the grade of rutile is 96%. The
sample is of high purity from the X-ray diffraction analysis of the garnet sample in Figure 1.
Both rutile and garnet samples meet the pure mineral flotation standard. According to
the dissemination size of the two minerals in the rutile deposit in Zaoyang City, Hubei
Province, the particle size fraction of rutile was selected to be −10 µm, and for garnet
was −30 µm. After crushing with XPC-60 × 100 jaw crusher (Produced by China Henan
Jiufu Machinery Equipment Co., Ltd., Zhengzhou, China), wet screening, and grinding
with MJ-2A stirring mill at 500 rpm for 40 min, the D90 of the final rutile sample is 7 µm
(−10 µm), and the D90 of the garnet sample is 25.38 µm (−30 µm).
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Table 1. Analysis results for the chemical composition of rutile/%.

TiO2 ZrO2 Nb2O5 SiO2 Fe2O3 Al2O3 Cr2O3 CaO ThO2

96.21 0.73 0.61 0.51 0.44 0.31 0.22 0.19 0.19

The reagents used in this paper included benzohydroxamic acid (BHA), salicylic hy-
droxamic acid (SHA), styrene phosphoric acid (SPA), sodium fluorosilicate (SSF), (NaPO3)6,
Pb(NO3)2, NaOH, H2SO4, and terpineol oil. All reagents except SPA were purchased from
Shanghai Aladdin Reagent and all of analytical grade, while SPA was purchased from an
industrial production site, and was technical grade pure. The test water was ultrapure,
with a conductivity of 18.25 MΩ.cm.

2.2. Microflotation Tests

For microflotation tests, a XFGII flotation machine with a 50 mL cell was used at
1902 rpm. BHA, SHA, and SPA were used as collectors, SSF and (NaPO3)6 as inhibitors,
Pb2+ as activator, and terpineol oil as frother. Except for terpineol oil, the reagents used at a
concentration of 1 mg/mL 3 g of sample were examined in each experiment. Following pH
adjustment (pH = 5~9), after each reagent addition (regulator, inhibitor, activator, collector),
the mixture was stirred for three minutes. Afterwards, terpenic oil was added and the pulp
was conditioned for 2 min, followed by 2 min flotation with the air flow rate of 0.1 m3/h.
The detailed flow of the flotation experiment is shown in Figure 2. The effects of collectors
on rutile and garnet flotation were studied, then the effects of inhibitors under different
collector conditions were explored, and finally, the effect of activators was determined.
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2.3. Zeta Potential Measurement

A nano-ZS90 zeta potentiometer was used to measure the electrophoretic mobility of
rutile and garnet to examine the effect of different reagents on the electric surface potential
of the two minerals. The test temperature was kept at 25 ◦C, the sample particle size was
−5 µm, and the reagent concentration was 50 mg/L. After the reagent was added, the
slurry was stirred for 15 min and then allowed to settle for 5 min, before the supernatant
was taken for measurement. Each group of tests was performed in triplicate, and the
average results were used for analysis.

2.4. FTIR Tests

A Nicolet 6700 Fourier transform infrared spectrometer was used to study the ad-
sorption of the reagents on the surface of the two minerals, and the rutile and garnet
samples before and after the conditioning with collectors, inhibitors, activators, and their
combinations. A total of 1 g of the sample was used to prepare the slurry with the same
concentration as the flotation concentration. After adding the reagent, it was stirred for
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15 min, and then filtered and dried for testing. The adsorption performance of each reagent
on the sample surface was compared and analyzed by the test results.

2.5. Contact Angle Measurements

To study the effect of the reagents on the contact angle of the two minerals, the rutile
and garnet samples were conditioned with each reagent and then dried at low temperature,
and each group of samples was pressed into a tablet shape by a tablet machine for testing.
The contact angles of the rutile and garnet before and after each reagent’s action were
measured by a JC2000D. A droplet of 0.3 µL volume was produced and the stage carrying
the tablet-pressed sample was raised to contact the droplet, and then lowered, and the
contact angle of the droplet on the surface of the sample was measured. Each surface with
or without reagent was tested 3 times.

3. Results and Discussion
3.1. Flotation Results of Different Types of Collectors

The effect of pH on flotation is shown in Figure 3. With BHA as the collector, the
recoveries of rutile and garnet both reach their maximum at pH = 7, and simultaneously the
largest difference (34.67%) between the recoveries of the two minerals is obtained. When
using SHA as the collector, the recovery of garnet reaches its maximum at pH = 6, while
that of rutile reaches its maximum at pH = 7. The difference between the recoveries of the
two minerals at pH = 9 is larger, namely, 20.80%. With SPA as the collector, the recoveries
of the two minerals reach their maximum values at pH = 8, and the difference of this is
also the largest (21.95%). It is demonstrated that BHA probably works best for flotation
separation of rutile and garnet in the above collectors.
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Figure 3. Effect of pH on the flotation of rutile and garnet with different types of collectors. (Concen-
tration of collectors = 40 mg/L).

The effect of collector concentration on the flotation recovery is shown in Figure 4.
With BHA as the collector, the increasing trend of the recoveries of rutile and garnet is
linear with a low inclination when the concentration is 50 mg/L and 30 mg/L, and the
recoveries are constant at 89.92% and 59.27%, respectively. When using SHA as the collector,
the recoveries of rutile and garnet tend to be stable when the collector concentration is
40 mg/L, and are constant at 67.14% and 63.1%, respectively. With SPA as the collector, the
recoveries of rutile and garnet also tend to be constant when the collector concentration is
40 mg/L, and are constant at 45.37% and 31.44%, respectively. In the BHA flotation system,
the flotation recovery of the two minerals are maximum at different concentrations, which
may be due to their selectivity to the two minerals resulting in more interaction sites with
rutile [11].
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The selectivity and hydrophobization of BHA are better, while the hydrophobization
and selectivity of SHA for fine particles are both poor, and the collecting ability of SPA was
the worst, and the selectivity better than SHA, lower than BHA. With BHA as collector, the
recovery difference between the two minerals is the largest when the concentration is 20 at
pH = 7. However, it is difficult to achieve a great separation effect by using only a collector.
Therefore, the effect of inhibitors on the flotation of two minerals was further studied.

3.2. Flotation Results of Inhibitors

Flotation results of inhibitors are as follows. Figure 5 shows the effect of pH on
flotation under different inhibitor conditions. When SSF and BHA are used as reagents, the
recoveries of rutile and garnet reach their maximum at pH = 7, and the difference between
the recoveries of the two minerals is the largest at pH = 7, namely, 38.9%. The recovery
of rutile in (NaPO3)6 and BHA flotation systems reaches the maximum at pH = 7, while
the recovery of garnet reaches the maximum at pH = 8. The difference is the largest at
pH = 7, but only 7.35%. (NaPO3)6 has a great inhibitory effect on the flotation of rutile, and
has no obvious selectivity. This may be because (NaPO3)6 acts as a dispersant to disperse
the fine rutile particles in the pulp, and it is difficult to achieve hydrophobic flocculation
even under the action of the collector, which reduces the collision probability between the
mineral particles and the bubbles, thus, affecting the floating effect.
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Figure 6 shows the effect of inhibitor concentration on flotation. The recovery of the
two minerals decreases with the increase in inhibitor concentration. In the SSF and BHA
flotation systems, the recoveries of rutile and garnet are constant at 63.11% and 30.47%
when the SSF concentration is 50 mg/L and 30 mg/L, respectively. In the (NaPO3)6 and
BHA flotation systems, when the (NaPO3)6 concentration is increased to 30 mg/L and
50 mg/L, the recoveries of rutile and garnet are stable at 17.85% and 35.76%, respectively.
The difference in inhibitor concentration for the two groups of minerals to achieve constant
recovery may be due to the finer particle size of the rutile, the high specific surface area, and
more action sites of the reagent. The inhibitory effect of (NaPO3)6 on rutile even exceeds
that of garnet, proving that (NaPO3)6 is not available as an inhibitor for the flotation
separation of rutile and garnet.
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3.3. Flotation Results of Activator

According to the above experiments, BHA was selected as the collector and SSF as
the inhibitor, and the effect of Pb2+ as the activator on the flotation behavior of rutile and
garnet was studied. As shown in Figure 7, the flotation recovery for both minerals reaches
maximum at pH = 7. The best recoveries of rutile and garnet are 72.51% and 49.44%,
respectively, while without adding Pb2+, the recoveries of the two minerals are 67.4% and
31.5%, respectively (Figure 6). Pb2+ can activate both rutile and garnet, but the difference
between the two recoveries after activation is reduced to 23.07%, indicating that Pb2+ has
a stronger activation effect on garnet and could not improve the separation effect of the
two minerals.
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The effect of the concentration of Pb2+ on the flotation of rutile and garnet is shown in
Figure 8. The recovery of both minerals increases with the increase in Pb2+ concentration.
When the Pb2+ concentration is 15 µg/mL, the recovery values tend to be stable. The
recovery of rutile increases from 65.96% to 72.74%, and the recovery of garnet increases
from 31.4% to 45.95%, showing that the activation effect of Pb2+ on garnet is greater than
that on rutile.
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Figure 8. Effect of concentration on Pb2+ activation of rutile and garnet (pH = 7, concentration of
BHA and SSF = 40 mg/L).

The addition of Pb2+ does not lead to better separation of garnet and rutile. Therefore,
BHA was selected as the collector and SSF as the inhibitor, and the 1:1 artificial mixed
ore of rutile and garnet was used for mixed flotation. The results of mixed flotation are
shown in Figure 9. It can be seen that the index does not meet the separation standard, and
the separation of the two is not achieved. This may be because the particle size of rutile
and garnet is different, and the rutile particle size was too fine, meaning it was seriously
entrained in the mixed flotation [14]. In addition, the use of terpineol oil, a foaming agent,
may also increase the recovery of garnet in mixed flotation.
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3.4. Contact Angle Measurements Results

Figure 10 shows the measurement results of the surface contact angle of rutile and
garnet under the action of different reagents at pH = 7. The contact angles of pristine
rutile and garnet samples are 32◦ and 24.5◦, respectively. Compared to the contact angle of
pristine mineral samples, the contact angle of rutile and garnet after the action of BHA is
the largest, which is 50.5◦ and 38.5◦, respectively, and the hydrophobicity is the maximum,
followed by SHA, and SPA has the smallest change in the hydrophobicity of the two
minerals. The contact angle difference between rutile and garnet after SHA is the largest,
which is 12◦, indicating that the selectivity of SHA is better. Among the two inhibitors, SSF
has a greater effect on the contact angles of the two minerals, and significantly reduces
their hydrophobicity, while the inhibitor (NaPO3)6 and the activator Pb2+ have few effects
on the contact angles of the two minerals.
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Figure 10. Effects of reagents on the hydrophobicity of rutile and garnet.

The effects of different chemical combinations on the surface hydrophobicity of rutile
and garnet are shown in Figure 11. In the absence of the activator Pb2+, the chemical
combination of SSF and SPA has the greatest difference in the influence of the contact
angle of rutile and garnet, which is more conducive to the separation of the two minerals.
The contact angle of rutile and garnet after the action of BHA and SSF is the largest,
and the hydrophobicity of minerals improves the most. With the addition of Pb2+, the
hydrophobicity of the two minerals does not change. This may be because Pb2+ affects the
floatability of the minerals through other modes, which is also consistent with the results of
the previous set of experiments and flotation experiments [8]. In addition, the results of the
contact angle measurements may be smaller than that of the flaky mineral samples. This
may be because the samples for the contact angle test are pressed from mineral powders,
which affects the wettability of the samples under the action of capillary force, but has few
effects on the study of the overall trend of hydrophobicity.

3.5. Reagent Adsorption Results

Figures 12 and 13 show the infrared test results of the interaction of reagents and
minerals. After conditioning rutile with BHA, the adsorption bands appearing at 3434,
1714, and 1646 cm−1 are related to the stretching vibration of –OH, C=O, and the benzene
ring in BHA [15,16]. The chemical environment of rutile is altered by BHA. Compared
with the absorption bands 3434, 1714, and 1646 cm−1 under the action of BHA only, the
absorption bands of each functional group under the action of BHA and SSF (3519, 1734,
and 1643 cm−1) have a slight shift and are very weak. This indicates that SSF affects the
adsorption of BHA on rutile. Compared with the infrared spectrum of rutile treated with
BHA, the absorption peaks of each functional group in the infrared spectrum of rutile
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under the action of Pb2+ and BHA show slight shifts. In addition, more complex absorption
bands appear in the infrared spectrum, and the transmittance also changes, which indicates
that Pb2+ has obvious changes on the chemical environment of rutile.
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Figure 13 shows the adsorption results of reagent on the surface of the garnet. After
conditioning with BHA, the absorption bands at 3444, 1700, and 1450 cm−1 have only
slight changes in transmittance, which are related to the stretching vibration of OH, C=O,
and benzene rings, respectively [17]. It suggested that there is little change in its chemical
environment. Compared with the garnet treated with BHA, the infrared spectrum of the
garnet treated with SSF and Pb2+ and then treated with collectors has only a difference in
transmittance, and the change in transmittance is slight. It shows that both SSF and Pb2+

cause slight changes in the chemical environment of BHA, but due to the little environment
alteration of BHA on garnet, the influence of inhibitors and activators is small.

3.6. Zeta Potential Measurement Results

The zeta potential test results of rutile and garnet before and after the action of each
reagent are shown in Figure 14. The zeta potential of rutile shifts negatively with the
increase in pH, because with the increase in OH− concentration, the surface of rutile
adsorbs OH− to form a TiOH interface, which hydroxylates the surface of rutile [18]. When
pH > 9, the adsorption of H+ on the surface of garnet to the anionic active sites in the
pulp exceeds the adsorption of the cationic active sites (Ti+) and OH−, causing the zeta
potential to shift positively [19]. With the addition of BHA, the zeta potential of rutile shifts
negatively, resulting in instability of the system, and the possibility of agglomeration of
rutile particles. The garnet has a small negative shift, which may be because BHA does
not change the chemical environment of garnet much and has little effect on zeta potential.
With the addition of SSF, in comparison to the BHA action environment, the zeta potential
of the rutile under the action of BHA shifts slightly positively, while that garnet shifts
negatively. This indicates that either BHA and SSF compete for adsorption on the rutile
surface, so the addition of SSF has little effect on the zeta potential of the rutile [20], or that
SSF hinders the adsorption of BHA, leading to a lower negative shift in the zeta potential
in the presence of both reagents. While SSF is adsorbed in garnet, the positively charged
ions (the active site Fe2+, Fe3+, Al3+) on its surface are adsorbed with negative ions in the
solution, so that the surface of the garnet is negatively charged. SSF competes with anionic
collectors for adsorption, which reduces the adsorption of BHA on the surface of the garnet,
so SSF has an inhibitory effect on the garnet [21].
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4. Conclusions

(1) Among the collectors used in this paper, BHA has a better collection performance,
and the difference in recovery between flotation rutile and garnet is the largest;

(2) SSF reduces the contact angles of rutile and garnet from 32◦ and 24.5◦ to 25◦ and
19◦, respectively, significantly reducing their hydrophobicity. Among the collectors, BHA
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increases the contact angles of the two minerals to 50.5◦ and 38.5◦, which greatly improves
their hydrophobicity;

(3) BHA has little effect on the surface potential of garnet, but negatively shifts the
surface potential of rutile. The potential of rutile and garnet are adversely affected by the
addition of SSF, and the effect on rutile is less;

(4) BHA and SPA change the chemical environment of rutile but not garnet. SSF slightly
affects the environment in which BHA and SPA interact with rutile. However, various
reagents and reagent combinations have little effect on the surface chemical environment
of garnet. This provides a certain basis for the flotation separation of fine rutile and garnet,
In the future, in addition to flotation reagents, the separation of the two can also be studied
in terms of particle size.
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