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Abstract: The sediment provenance influences the formation of the shale gas sweet-spot interval of
the Upper Ordovician–Lower Silurian Wufeng–Longmaxi shale from the Yangtze Platform, South
China. To identify the provenance, the mineralogy and geochemistry of the shale were investigated.
The methods included optical microscopy analysis, X-ray diffraction testing, field-emission scanning
electron imaging, and major and trace element analysis. The Wufeng–Longmaxi shale is mainly
composed of quartz (avg. 39.94%), calcite (avg. 12.29%), dolomite (avg. 11.75%), and clay minerals
(avg. 28.31%). The LM1 interval is the shale gas sweet-spot and has the highest contents of total
quartz (avg. 62.1%, among which microcrystalline quartz accounts for 52.8% on average) and total
organic carbon (avg. 4.6%). The relatively narrow range of TiO2–Zr variation and the close correlation
between Th/Sc and Zr/Sc signify no obvious sorting and recycling of the sediment source rocks.
Sedimentary sorting has a limited impact on the geochemical features of the shale. The relatively high
value of ICV (index of compositional variability) (1.03–3.86) and the low value of CIA (chemical index
of alteration values) (50.62–74.48) indicate immature sediment source rocks, probably undergoing
weak to moderate chemical weathering. All samples have patterns of moderately enriched light rare-
earth elements and flat heavy rare-earth elements with negative Eu anomalies (Eu/Eu* = 0.35–0.92)
in chondrite-normalized diagrams. According to Th/Sc, Zr/Sc, La/Th, Zr/Al2O3, TiO2/Zr, Co/Th,
SiO2/Al2O3, K2O/Na2O, and La/Sc, it can be inferred that the major sediment source rocks were
acidic igneous rocks derived from the active continental margin and continental island arc. A limited
terrigenous supply caused by the inactive tectonic setting is an alternative interpretation of the
formation of the sweet-spot interval.

Keywords: provenance analysis; geochemistry; Wufeng Formation; Longmaxi Formation;
Yangtze Platform

1. Introduction

A series of fine-grained sediments, such as mudstone, shale, bituminous shale, car-
bonaceous shale, and even carbonaceous diatomite, can be classified as shales [1–4]. Late
Ordovician and Early Silurian black shales, which form an important shale interval af-
ter the Phanerozoic, are distributed on continental shelves worldwide [5–13]. Several
geological events, such as Oceanic Anoxic Events (OAEs) and the Late Ordovician Mass
Extinction (LOME), have been recognized in this interval, e.g., [10,11,14–16]. The major
force behind the events was an abrupt rise in temperature caused by a rapid increase in
carbon dioxide content in the atmosphere because of volcanogenic/methanogenic activ-
ity [11,17–21]. Rapid global warming accelerated land weathering and nutrient input to
the ocean, triggering ocean eutrophication and global anoxia/euxinia [11]. The mineralogy
and geochemistry of shale, which is significantly influenced by its provenance, can be used
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to indicate the weathering, paleoclimate, and volcanogenic/methanogenic activity of the
sediment source area [14].

The Wufeng–Longmaxi shale on the Yangtze Platform is an important part of the
Upper Ordovician and Lower Silurian black shales. The shale is heterogeneous in chemi-
cal composition and is characterized by relatively high percentages of quartz, carbonate
minerals, and organic matter, as well as by the significant enrichment of several trace
elements (e.g., Ni, Zn, U, and Ba) and rare-earth elements (REEs), e.g., [22,23]. As the most
successful shale gas play in China and one of the largest shale gas plays worldwide [24–26],
the production from shale reached over 229 × 109 m3 in 2021 [27]. Although the thickness
of the shale is generally more than 300 m, the shale gas is predominantly produced from
the organic-rich interval at the bottom of this shale, with a thickness of 10–40 m [28] or
even just a few meters [29]. The gas-producing interval is commonly referred to as the
“sweet-spot” interval in unconventional petroleum exploration and development [28]. The
sweet-spot interval is characterized by high total organic carbon (TOC) and gas contents,
relatively high porosity, high brittle mineral content, and abundant lamination fissures
and fractures [28,29]. The formation of the interval was possibly controlled by an anoxic
shelf environment [15,23], sealed roof and floor strata [28], and abundant lamination [29].
However, the effect of provenance on the formation of the shale gas “sweet-spot” interval
is rarely mentioned.

Based on the investigation of mineralogy and geochemistry, this paper aims to evaluate
potential variations due to weathering, sorting, and recycling to constrain the provenance
and tectonic setting of the Wufeng–Longmaxi shale on the Yangtze Platform. The findings
from this study can provide a reasonable explanation for the formation of the sweet-spot
interval of the Wufeng–Longmaxi shale, as well as other shales of the same age worldwide,
e.g., [6].

2. Geological Setting

The Upper Ordovician and Lower Silurian black shales on the Yangtze Platform were
deposited during the demise of the South China Basin and the formation of the South
China orogenic belt [30–32]. At the end of the Cambrian, the Cathaysian and the Yangtze
blocks converged because of the Guangxi orogeny, and the Southeast Yangtze Platform
and Jiangnan Basin were raised in succession [32–34]. Then, the Yangtze region recorded
the development history of the passive continental margin [32]. A carbonate platform
was the main sedimentary facies in the Yangtze region during the Early to Middle Or-
dovician [35,36]. Beginning with the Late Ordovician, a mixed carbonate–clastic epeiric
sea covered the Yangtze basin, which was commonly scattered along the intrashelf sub-
basin. A paleogeographic reconstruction showed significant sea-level changes during the
Ordovician–Silurian transition [37]. In the Early Silurian, the Cathaysia plate began to
expand, and most of South China rose to the land, resulting in great changes in the distri-
butions of land and sea in South China (Figure 1). The Yangtze Sea became semi-closed
due to the rise of ancient lands, and a subaqueous high was formed under the action of
regional tectonic stress [37]. Due to the barrier of the land, uplifts, and the high topography
of the seafloor, the Yangtze Sea evolved into a deep-water shelf facies with an anoxic and
stagnated water column [38,39].

The Wufeng–Longmaxi shale on the Yangtze Platform is widely distributed and has
a total thickness reaching up to 500 m [24,40]. The shale is divided into the Wufeng
Formation, the Guanyinqiao Bed, and the Longmaxi Formation (Figure 2). The Wufeng
Formation is parallel unconformable with the underlying Baota nodular limestone and
parallel conformable with the overlying Guanyinqiao Bed (Figure 2) [26]. The Longmaxi
Formation, which is conformable with the Guanyinqiao Bed, is divided into Member 1
and Member 2, and Member 1 is subdivided into Sub-member 1 and Sub-member 2 [26].
Sub-member 1, which is characterized by high contents of organic matter, laminae, and
microfractures [29,41], is the sweet-spot interval for shale gas exploration and develop-
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ment [42]. In addition, the Wufeng–Longmaxi shale can be divided into thirteen graptolite
biozones, two 2nd cycles, and four 3rd cycles [24].
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Demirastrites triangulates, LM7 refers to the Lituigraptus convolutes biozone, LM8 refers to the Stimu-
lograptus sedgwickii biozone, and LM9 refers to the Spirograptus guerichi biozone [44]. 

  

Figure 2. Stratigraphic column and study interval of the Wufeng–Longmaxi shale (modified
from [24]). WF1 refers to the Dicellograptus complanatus biozone, WF2 refers to the Dicellograp-
tus complexus biozone, WF3 refers to the Paraorthograptus pacificus biozone, and WF4 refers to the
Metabolograptus extraordinarius biozone; LM1 refers to the Metabolograptus persculptus biozone, LM2
refers to the Akidograptus ascensus biozone, LM3 refers to the Parakidograptus acuminatus biozone, LM4
refers to the Cystograptus vesiculosus biozone, LM5 refers to the Coronograptuscyphus biozone, LM6
refers to Demirastrites triangulates, LM7 refers to the Lituigraptus convolutes biozone, LM8 refers to the
Stimulograptus sedgwickii biozone, and LM9 refers to the Spirograptus guerichi biozone [44].
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3. Samples and Methods

In this study, a total of eighty-three black shale samples were collected from wells Y105,
XD2, Z204, YH3-8, and N211 and the SH outcrop (Figure 1c). All samples are organic-rich
black shales (Figure 3) collected from the Wufeng Formation, the Guangyinqiao bed, and
the lowermost part of the Longmaxi Formation.
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number: YH-236), and (c) well Z204 (sample number: Z4-8) showing characteristics of the Wufeng-
Longmaxi shale (For the locations of the wells and outcrop, the reader is referred to Figure 1 of
this article).

3.1. Mineral Composition and Morphological Analysis

X-ray diffraction (XRD) was performed on 83 shale sample powders. XRD mea-
surement was conducted with a Panalytical X–Pert PRO MPD X-ray diffractometer from
Amsterdam, Netherlands, at a working voltage of 50 keV and a current of 800 µA. Diffrac-
tograms were recorded from 5◦ to 90◦ at a rate of 2θ. Sample preparation and spectral
identification followed the Chinese oil and gas industry standard (SY/T) 5163-2014. After
that, the mineral contents of quartz, calcite, dolomite, clay minerals, feldspar, and pyrite
were determined.

Field-emission scanning electron microscopy (FE–SEM) in conjunction with an energy-
dispersive X-ray spectrometer (EDAX, New York, NY, USA) was utilized to study the
mineral morphology and contents. Twenty-five shale samples were mechanically polished
and then polished with Ar ions on a 600 DuoMill instrument (Gatan, New York, NY, USA)
at 4 KV and a low angle (7.5◦) for 2 h. Details about milling and SEM observations can be
found in previous studies [29].

3.2. Geochemistry Analysis

For total organic carbon (TOC) content measurement, 83 shale samples were decar-
bonized by soaking them in 4 M HCl at 60 ◦C for at least 24 h. After that, impurities
and HCl were removed by rinsing in distilled water and then dried. TOC content was
determined by a LECO CS-400 analyzer (LECO, New York, NY, USA), and the standard
deviation of the measurements was lower than ±0.10%.

Major element concentrations were measured by X-ray fluorescence (XRF). Eighty-
three shale samples were ground to 200 mesh in an agate mortar, and 1.2 g of each sample
was accurately weighed after drying in a drying box. Then, 6 g of solvent (Li2B4O7) was
added and fully mixed in a milk bowl, and the mixture was moved into a platinum crucible
and dissolved into a uniform glass sheet at a high temperature of 1100 ◦C. Then, the major
components of the glass sheet were tested using an XRF-1500 spectrometer (ThermoFisher,
New York, NY, USA).

Trace element concentrations were analyzed by inductively coupled plasma mass
spectrometry (ICP–MS, AMETEK, Berlin, Germany). Samples (100 mg) were dried at
105 ◦C and then digested with a reagent composed of 0.5 mL of HClO4, 2.5 mL of HF, and
0.5 mL of HNO3 as well as 1 mL of HNO3 and 3 mL of H2O. After that, the solution was
diluted and measured by ICP–MS. A replicate analysis of the samples indicated better than
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2% precision for the analysis of major oxides and 4% for the elements analyzed by ICP–MS.
The standard samples OU–6 (slate), AMH–1 (andesite), and GBPG–1 (plagiogneiss) were
utilized to monitor the analysis. The analytical precision of the trace elements was better
than 0.5%.

Major and trace element results were contrasted with the post–Archean Australian
shales (PAAS, [45]) and Phanerozoic North American shale composite (NASC) [46].

3.3. Depositional Structures Analysis

Twenty-five pieces of thin sections for macroscopic depositional structure analysis
were prepared with sizes of 7 cm × 5 cm. The thickness of the thin sections was about
15–20 microns, and the maximum thickness was less than 30 microns. Depositional struc-
tures were mainly described by full-size thin-section imaging and polarized light mi-
croscopy. Details about full-size large thin-section imaging and polarized light microscopy
can be found in previous studies [29,47].

4. Results
4.1. Mineral Compositions

The Wufeng-Longmaxi shale is mainly composed of quartz, carbonate minerals, and
clay minerals, with minor amounts of feldspar and pyrite (Table 1). In addition, trace
amounts of apatite and barite can be observed in some samples.

The content of quartz ranges from 22.0% to 73.0%, with an average of 39.94%. There
exist silt-sized quartz and clay-sized quartz. The silt-sized quartz is commonly composed
of fine silt grains (grain sizes between 3.9 and 31.2 µm) with angular or sub-angular edges
(Figure 4a). The clay-sized quartz includes microcrystalline quartz and quartz associated
with clay minerals. The microcrystalline quartz has a grain size below 4 µm (Figure 4b).
The quartz associated with clay minerals is commonly irregularly shaped and coexists
with clay minerals (Figure 4c). The LM1 interval has the highest content of quartz (avg.
62.1%; Table 1), in which microcrystalline quartz can reach up to 85% (avg. 52.8%). For
the Longmaxi Formation, the content of clay-sized quartz decreases, and that of silt-sized
quartz increases progressively upwards (Figure 5).
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Table 1. Mineral compositions and TOC contents of the Wufeng–Longmaxi shale on the Yangtze Platform, South China.

No. Well Depth Lithology Formation Graptolite Zone Quartz Calcite Dolomite Clay Minerals Potassium Feldspar Plagioclase Pyrite TOC

1 Y105 1650.5 Shale Longmaxi LM6 39.0 / / 45.0 / 8.0 2.0 0.5

2 Y105 1655.1 Shale Longmaxi LM6 39.0 / 1.0 50.0 / 7.0 2.0 0.6

3 Y105 1658.4 Shale Longmaxi LM6 36.0 / 1.0 51.0 / 7.0 3.0 0.8

4 YH3–8 3742.4 Shale Longmaxi LM6 38.0 / / 53.0 / 7.0 1.0 0.3

5 YH3–8 3744.4 Shale Longmaxi LM6 36.0 1.0 4.0 54.0 / 7.0 2.0 0.80

6 YH3–8 3746.9 Shale Longmaxi LM6 43.0 / / 50.0 / 8.0 3.0 0.66

7 YH3–8 3747.3 Shale Longmaxi LM6 36.0 / 3.0 46.0 / 8.0 3.0 0.70

8 XD2 2052.5 Shale Longmaxi LM5 40.0 / 0.0 50.0 / 8.0 3.0 0.77

9 XD2 2055.3 Shale Longmaxi LM5 36.0 2.0 3.0 49.0 / 8.0 2.0 1.09

10 Y105 1664.1 Shale Longmaxi LM5 34.0 2.0 3.0 49.0 / 10.0 2.0 0.83

11 Y105 1668.1 Shale Longmaxi LM5 39.0 0.0 / 49.0 / 7.0 3.0 0.63

12 Y105 1673.1 Shale Longmaxi LM5 36.0 2.0 1.0 51.0 / 6.0 2.0 1.00

13 YH3–8 3749.4 Shale Longmaxi LM5 34.0 3.0 12.0 53.0 / 6.0 2.0 0.95

14 YH3–8 3753.4 Shale Longmaxi LM5 29.0 3.0 11.0 43.0 / 7.0 3.0 1.22

15 YH3–8 3757.1 Shale Longmaxi LM5 35.0 3.0 5.0 47.0 / 7.0 3.0 1.38

16 YH3–8 3761.7 Shale Longmaxi LM5 37.0 2.0 4.0 47.0 / 6.0 5.0 2.06

17 YH3–8 3766.0 Shale Longmaxi LM5 26.0 12.0 13.0 46.0 / 8.0 3.0 2.54

18 Z204 3398.6 Shale Longmaxi LM4 33.0 4.0 6.0 38.0 / 8.0 2.0 1.53

19 XD2 2058.6 Shale Longmaxi LM4 23.0 15.0 33.0 44.0 / 9.0 2.0 2.70

20 XD2 2061.1 Shale Longmaxi LM4 34.0 11.0 12.0 18.0 / 8.0 2.0 2.83

21 XD2 2062.6 Shale Longmaxi LM4 34.0 10.0 9.0 33.0 / 8.0 3.0 2.04

22 Y105 1674.6 Shale Longmaxi LM4 27.0 16.0 12.0 36.0 / 7.0 3.0 2.06

23 Y105 1676.3 Shale Longmaxi LM4 34.0 8.0 16.0 35.0 / 7.0 2.0 2.39

24 Y105 1677.7 Shale Longmaxi LM4 28.0 10.0 5.0 33.0 / 7.0 8.0 2.90

25 Y105 1679.5 Shale Longmaxi LM4 24.0 14.0 9.0 42.0 / 7.0 4.0 2.13

26 Y105 1681.8 Shale Longmaxi LM4 25.0 16.0 12.0 42.0 / 4.0 4.0 2.04

27 YH3–8 3769.8 Shale Longmaxi LM4 30.0 3.0 2.0 39.0 / 8.0 6.0 2.78
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Table 1. Cont.

No. Well Depth Lithology Formation Graptolite Zone Quartz Calcite Dolomite Clay Minerals Potassium Feldspar Plagioclase Pyrite TOC

28 YH3–8 3773.7 Shale Longmaxi LM4 32.0 4.0 6.0 51.0 / 7.0 5.0 2.49

29 YH3–8 3775.8 Shale Longmaxi LM4 37.0 4.0 9.0 46.0 / 10.0 5.0 2.11

30 Z204 3406.8 Shale Longmaxi LM2–3 46.0 2.0 11.0 35.0 / 11.0 3.0 1.73

31 XD2 2065.4 Shale Longmaxi LM2–3 41.0 4.0 4.0 27.0 / 8.0 4.0 2.43

32 XD2 2067.8 Shale Longmaxi LM2–3 29.0 3.0 28.0 39.0 / 5.0 3.0 1.70

33 Y105 1685.0 Shale Longmaxi LM2–3 36.0 7.0 10.0 32.0 / 8.0 3.0 1.32

34 Y105 1687.0 Shale Longmaxi LM2–3 47.0 6.0 8.0 36.0 / 9.0 3.0 2.09

35 Y105 1688.2 Shale Longmaxi LM2–3 35.0 4.0 6.0 27.0 / 10.0 4.0 1.06

36 YH3–8 3779.1 Shale Longmaxi LM2–3 37.0 6.0 9.0 41.0 / 12.0 3.0 2.05

37 YH3–8 3781.0 Shale Longmaxi LM2–3 43.0 3.0 7.0 33.0 / 7.0 4.0 2.69

38 SH
outcrop / Shale Longmaxi LM2–3 38.0 9.0 7.0 36.0 / 10.0 4.0 2.14

39 SH
outcrop / Shale Longmaxi LM2–3 47.0 7.0 7.0 32.0 / 9.0 3.0 2.10

40 SH
outcrop / Shale Longmaxi LM2–3 44.0 6.0 8.0 27.0 / 9.0 3.0 2.19

41 SH
outcrop / Shale Longmaxi LM2–3 48.0 5.0 4.0 30.0 / 10.0 3.0 2.22

42 SH
outcrop / Shale Longmaxi LM2–3 47.0 4.0 6.0 30.0 / 11.0 3.0 2.73

43 XD2 2068.5 Shale Longmaxi LM1 61.0 3.0 10.0 29.0 / 5.0 4.0 3.14

44 XD2 2069.0 Shale Longmaxi LM1 63.0 2.0 4.0 23.0 / 4.0 4.0 3.32

45 XD2 2069.3 Shale Longmaxi LM1 53.0 2.0 6.0 30.0 / 6.0 3.0 3.16

46 Y105 1688.9 Shale Longmaxi LM1 48.0 2.0 4.0 31.0 / 7.0 8.0 6.03

47 Y105 1689.3 Shale Longmaxi LM1 71.0 4.0 7.0 12.0 / 3.0 3.0 4.21

48 Y105 1689.8 Shale Longmaxi LM1 69.0 3.0 10.0 12.0 / 3.0 3.0 4.97

49 YH3–8 3782.2 Shale Longmaxi LM1 56.0 8.0 15.0 14.0 / 4.0 3.0 4.76

50 SH
outcrop / Shale Longmaxi LM1 65.0 7.0 13.0 9.0 / 3.0 3.0 5.21



Minerals 2022, 12, 1190 9 of 31

Table 1. Cont.

No. Well Depth Lithology Formation Graptolite Zone Quartz Calcite Dolomite Clay Minerals Potassium Feldspar Plagioclase Pyrite TOC

51 SH
outcrop / Shale Longmaxi LM1 73.0 4.0 5.0 10.0 / 6.0 2.0 7.11

52 XD2 2069.5 Shale Guanyingqiao WF4 36.0 29.0 18.0 13.0 / 2.00 2.00 2.34

53 XD2 2069.6 Shale Guanyingqiao WF4 25.0 27.0 18.0 17.0 1.0 7.00 5.00 2.40

54 XD2 2069.7 Shale Guanyingqiao WF4 25.0 32.0 18.0 16.0 1.0 3.00 5.00 1.97

55 XD2 2069.9 Shale Guanyingqiao WF4 22.0 32.0 17.0 17.0 1.0 5.00 6.00 2.26

56 Y105 1690.2 Shale Guanyingqiao WF4 24.0 34.0 15.0 19.0 1.0 4.00 3.00 2.18

57 SH
outcrop / Shale Guanyingqiao WF4 23.0 32.0 15.0 22.0 1.0 5.00 2.00 5.90

58 YH3–8 3783.0 Shale Guanyingqiao WF4 23.0 35.0 16.0 17.0 1.0 5.00 3.00 3.70

59 YH3–8 3783.7 Shale Guanyingqiao WF4 23.0 33.0 16.0 21.0 1.0 4.00 2.00 4.30

60 Z204 3409.6 Shale Wufeng WF2–3 50.0 26.0 10.0 13.0 / 1.00 / 4.20

61 XD2 2070.3 Shale Wufeng WF2–3 48.0 26.0 11.0 14.0 / 1.00 / 4.40

62 XD2 2072.9 Shale Wufeng WF2–3 34.0 21.0 17.0 23.0 1.00 3.00 1.00 3.90

63 XD2 2075.6 Shale Wufeng WF2–3 60.0 16.0 9.0 12.0 / 1.00 2.00 3.90

64 XD2 2078.8 Shale Wufeng WF2–3 58.0 18.0 9.0 12.0 / 1.00 2.00 3.10

65 XD2 2080.6 Shale Wufeng WF2–3 55.0 17.0 15.0 13.0 / / / 3.20

66 XD2 2081.8 Shale Wufeng WF2–3 50.0 19.0 15.0 12.0 1.00 1.00 2.00 3.10

67 Y105 1690.5 Shale Wufeng WF2–3 47.0 22.0 18.0 12.0 / 1.00 / 3.00

68 Y105 1691.2 Shale Wufeng WF2–3 51.0 22.0 11.0 15.0 / 1.00 / 3.50

69 Y105 1691.5 Shale Wufeng WF2–3 58.0 19.0 9.0 13.0 / / 1.00 2.60

70 Y105 1691.9 Shale Wufeng WF2–3 41.0 23.0 16.0 16.0 1.00 1.00 2.00 4.60

71 YH3–8 3784.5 Shale Wufeng WF2–3 56.0 14.0 13.0 14.0 / 1.00 2.00 3.20

72 YH3–8 3788.2 Shale Wufeng WF2–3 37.0 19.0 26.0 14.0 1.00 1.00 2.00 4.10

73 YH3–8 3791.5 Shale Wufeng WF2–3 42.0 23.0 20.0 12.0 1.00 1.00 1.00 3.10

74 YH3–8 3792.6 Shale Wufeng WF2–3 42.0 24.0 19.0 13.0 / 1.00 1.00 3.40

75 SH
outcrop / Shale Wufeng WF2–3 47.0 23.0 16.0 12.0 / 1.00 1.00 3.00
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Table 1. Cont.

No. Well Depth Lithology Formation Graptolite Zone Quartz Calcite Dolomite Clay Minerals Potassium Feldspar Plagioclase Pyrite TOC

76 SH
outcrop / Shale Wufeng WF2–3 42.0 25.0 19.0 13.0 / / 1.00 2.80

77 SH
outcrop / Shale Wufeng WF2–3 33.0 28.0 16.0 21.0 / 1.00 1.00 3.70

78 SH
outcrop / Shale Wufeng WF2–3 40.0 20.0 26.0 13.0 / / 1.00 4.00

79 SH
outcrop / Shale Wufeng WF2–3 37.0 20.0 27.0 12.0 1.00 1.00 2.00 3.60

80 SH
outcrop / Shale Wufeng WF2–3 33.0 19.0 34.0 12.0 / 1.00 1.00 3.30

81 SH
outcrop / Shale Wufeng WF2–3 27.0 24.0 35.0 10.0 / 2.00 2.00 2.50

82 SH
outcrop / Shale Wufeng WF2–3 30.0 25.0 35.0 10.0 / / / 2.40

83 SH
outcrop / Shale Wufeng WF2–3 25.0 27.0 34.0 12.0 / / 2.00 2.50

Average 39.94 12.29 11.75 28.31 0.16 5.19 2.66 2.64
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Figure 4. SEM photos showing the occurrence of typical minerals of the Wufeng–Longmaxi shale 
on the Yangtze Platform, South China. (a) Silt-sized quartz, well N211, 2334.17 m; (b) microcrystal-
line quartz, well YH3–8, 3783.4 m; (c) quartz associated with clay minerals; (d) calcite and dolomite, 
dissolution pores can be observed on the calcite surface, well YH3–8, 3784.49 m; (e) calcite, dissolu-
tion pores can be observed on the surface, well YH3–8, 3783.4 m; (f) calcite and dolomite, dissolution 
pores and crushing lines can be observed on the calcite surface, well YH3–8, 3783.4 m; (g) chlorite, 
well N211, 2321.05 m; (h) chlorite, well N211, 2334.17 m. Qtz: Quartz, Cal: Calcite, Dol: Dolomite. 

Figure 4. SEM photos showing the occurrence of typical minerals of the Wufeng–Longmaxi shale on
the Yangtze Platform, South China. (a) Silt-sized quartz, well N211, 2334.17 m; (b) microcrystalline
quartz, well YH3–8, 3783.4 m; (c) quartz associated with clay minerals; (d) calcite and dolomite,
dissolution pores can be observed on the calcite surface, well YH3–8, 3784.49 m; (e) calcite, dissolution
pores can be observed on the surface, well YH3–8, 3783.4 m; (f) calcite and dolomite, dissolution
pores and crushing lines can be observed on the calcite surface, well YH3–8, 3783.4 m; (g) chlorite,
well N211, 2321.05 m; (h) chlorite, well N211, 2334.17 m. Qtz: Quartz, Cal: Calcite, Dol: Dolomite.
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Figure 5. Characteristics of the sweet-spot interval of the Wufeng–Longmaxi shale on the Yangtze 
Platform, South China. This figure is modified from [29]. B–SB: Bioturbated-type massive bedding; 
GL–C: graded lamination composed of claystone; H–SB: heterogeneous-type massive bedding; PL: 
paper lamination; GL–SC: graded lamination composed of siltstone and claystone; IL: interlami-
nated lamination composed of siltstone and claystone. 

 

Figure 5. Characteristics of the sweet-spot interval of the Wufeng–Longmaxi shale on the Yangtze
Platform, South China. This figure is modified from [29]. B–SB: Bioturbated-type massive bedding;
GL–C: graded lamination composed of claystone; H–SB: heterogeneous-type massive bedding; PL:
paper lamination; GL–SC: graded lamination composed of siltstone and claystone; IL: interlaminated
lamination composed of siltstone and claystone.

The content of carbonate minerals ranges from 1% to 70.0% with an average of 24.04%.
Carbonate minerals possibly originated from a terrigenous supply and/or primary chemical
precipitation. The primary chemical precipitates of carbonate minerals mainly include
calcite and dolomite. Both calcite and dolomite, in which a relatively large one has grain
sizes reaching up to 20–40 µm, are dispersed among other minerals. The content of calcite
ranges from 1% to 35.0%, with an average of 12.29%. Under SEM, calcite is relatively light in
color and predominantly irregularly shaped (Figure 4d–f). Dissolution pores (Figure 4d,e),
longitudinal stripes, and crushing lines (Figure 4f) can be observed on the surface. The
content of dolomite ranges from 0 to 35.0%, with an average of 11.75%. Under SEM,
dolomite is relatively dark and occurs mostly as regular euhedral crystals (Figure 4d,f). In
addition, some semi-euhedral calcite crystals are surrounded by a lighter overgrowth edge
(Figure 4e), which is the replacement of dolomite by ankerite, showing a distinct rhombic
crystal shape and almost no dissolved pores. The contents of carbonate minerals are the
highest in the WF4 interval and reach up to 31.8% on average, according to XRD analysis
(Table 1; Figures 5 and 6).

The contents of clay minerals range from 9.0% to 54.0%, with an average of 28.31%.
Clay minerals are dominated by illite, chlorite, and I/S, with minor amounts of kaolinite,
according to SEM–EDX data. Illite is mostly in the form of flakes, needle clusters, or flocs
and usually retains transportation traces on large-particle surfaces. Chlorite commonly
has an elongated shape and loosened interlayers and is intercalated with euhedral pyrite
particles. Chlorite is usually bent or deformed with the shape of the host rock and shows
obvious plasticity (Figure 4g,h). I/S is mostly lamellar and has a honeycomb shape of ag-
gregates. Quartz particles are usually embedded in or wrapped by I/S minerals (Figure 4c).
For the Wufeng–Longmaxi shale, the contents of clay minerals increase from the bottom to
the top and reach up to 49.9% in the LM6 interval (Figure 5).
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Figure 6. Variations in contents of some mineral compositions (%) [48], TOC contents (%), chemical
index of alteration (CIA), Ti-normalized ratios, and total rare-earth elements (∑REE) showing the
change in lithology and paleoclimate.

4.2. TOC Content and Dispersed Organic Matter

The content of TOC varies between 0.27% and 7.11%, with an average of 2.64%. The
value is similar to that of the shales in southern Iran and the Arabian Plate, which have
TOC contents ranging from 2% to 12% [9]. The dispersed organic matter is commonly
pyrobitumen with minor amounts of vitrinite and fusinite. Pyrobitumen, which is black
in reflected white light, commonly has void-filling and embayment textures (Figure 7a,b).
Vitrinite, which is gray or pale gray in reflected white light, commonly has an elongated
or irregular shape (Figure 7). Fusinite, which is white in reflected white light, commonly
has an irregular or globular shape (Figure 7). The LM1 interval has the highest contents of
TOC (avg. 4.6%) and sapropelic (reaching up to 100%). Moving upwards, the TOC content
gradually decreases together with the diminishing content of sapropelic and increasing
content of inertinite.

4.3. Lithology and Depositional Structures

The Wufeng Formation is mainly composed of graptolite-rich black shale with bioturbated-
type structureless beds [29] (Figure 8a) or graded lamination composed of claystone
(Figure 8b). In this interval, the grain sizes of calcite and dolomite vary between 22 and
45 µm (Figure 9a). The Guanyingqiao bed consists of bioclastic limestone or argillaceous
limestone with massive-type structureless beds (Figure 8c,d). The mineral composition
mainly consists of calcite and dolomite with small amounts of quartz (Figure 9b). The
Longmaxi Formation consists of laterally extensive graptolite-rich, largely unbioturbated,
gray to black shales, mudstone, siltstone, and sandwiched K–bentonite. From bottom to
top, paper lamination (Figure 8e), graded lamination composed of claystone and siltstone
(Figure 8f,g), and interlaminated lamination composed of siltstone and claystone occur
in succession (Figure 8h). The LM1 interval predominantly consists of quartz with grain
sizes less than 4 µm, and from LM1 to LM6, the carbonate mineral content and grain size
gradually increase from the bottom to the top (Figure 9c–f).
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Figure 7. Photomicrographs of organic matter in reflected white light of the Wufeng–Longmaxi shale
on the Yangtze Platform, South China. (a) Pyrobitumen in the image is black, and vitrinite is gray and
irregularly shaped, sample number: YH-242; (b) pyrobitumen in the image is black, sample number:
SH9-15-1; (c) vitrinite in the image is pale gray and has an elongated shaped, sample number: YH-242;
(d) vitrinite in the image is pale gray and has an irregular or elongated shape, and fusinite is white
and has an irregular or globular shape, sample number: SH9-15-1.

4.4. Geochemistry

Consistent with the mineral compositions, the XRF results show that SiO2 and Al2O3
are the dominant major element oxides in the Wufeng–Longmaxi shale (Table 2). The SiO2
content ranges from 20.56% to 78.69%, with an average of 56.11%. The contents of Al2O3,
Fe2O3T (referring to the total contents of Fe2O3 and FeO), and K2O vary between 1.95% and
20.55% (avg. 8.89%), 0.91% and 13.82% (avg. 3.46%), and 0.51% and 5.36% (avg. 2.31%),
respectively. The CaO content ranges from 0.83% to 33.17% (avg. 10.06%). Other major
element oxides contents are relatively low. Generally, except for MgO, MnO, and P2O5, the
average major element contents of the Wufeng–Longmaxi shale are dramatically different
from PAAS and NAAS. In detail, the value of SiO2 is significantly lower than that of PAAS
and NAAS, those of Al2O3, Fe2O3T, NaO, and TiO2 are less than the half values of PAAS
and NAAS, and the value of CaO is 3~8 times that of PAAS and NAAS.
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Figure 8. Typical sedimentologic characteristics of the Wufeng-Longmaxi shale on the Yangtze Plat-
form, South China. (a) Bioturbated-type structureless beds, YH3–8, Wufeng Formation; (b) graded
lamination composed of claystone, Chuanghe outcrop, Wufeng Formation; (c) massive-type struc-
tureless beds, Shuanghe outcrop, Guanyingqiao bed; (d) massive-type structureless beds, Shuanghe
outcrop, Guanyingqiao bed; (e) paper lamination, Z204, Longmaxi Formation; (f,g) graded lamination
composed of siltstone and claystone, N211, Longmaxi Formation; (h) interlaminated lamination
composed of siltstone and claystone, Z204, Longmaxi Formation.
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Figure 9. SEM photos showing typical minerals and grain sizes of various intervals of the Wufeng–
Longmaxi shale on the Yangtze Platform, South China. (a) Sample from the Wufeng Formation of
well N211, mainly composed of quartz, calcite, dolomite, and clay minerals with grain sizes ranging
from 22 to 45 µm; (b) sample from the Guanyingqiao bed of well N211, mainly composed of calcite
and dolomite with small amounts of quartz with grain sizes ranging from 20 to 40 µm; (c) sample
from LM1 of well Z201, mainly composed of quartz with grain sizes less than 4 µm; (d) sample
from LM2–3 of well YH3–8, mainly composed of quartz with small amounts of calcite and dolomite;
(e) sample from LM4–5 of well YH3–8, mainly composed of quartz, calcite, and dolomite with small
amounts of clay minerals; (f) sample from LM6 of well YH3–8, mainly composed of quartz, calcite,
and dolomite with small amounts of clay minerals.
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Table 2. Major element concentrations and organic carbon contents of the Wufeng–Longmaxi shale on the Yangtze Platform, South China.

No. Well Depth Lithology Formation Graptolite
Zone

Sample
No. SiO2 Al2O3 CaO Fe2O3T K2O MgO MnO Na2O P2O5 TiO2 LOI TOTAL K2O/Na2O SiO2/Al2O3 CIA ICV

1 Y105 1650.5 Shale Longmaxi LM6 Y105–1 57.36 15.83 3.93 5.52 3.98 2.96 0.03 0.71 0.10 0.73 8.62 99.77 5.61 3.62 70.40 1.18

2 Y105 1655.1 Shale Longmaxi LM6 Y105–11 61.76 12.14 5.08 4.01 3.29 2.42 0.03 0.56 0.11 0.59 9.71 99.70 5.88 5.09 69.16 1.23

3 Y105 1658.4 Shale Longmaxi LM6 Y105–18 58.30 11.93 6.88 4.47 3.25 2.41 0.04 0.54 0.13 0.61 11.10 99.66 6.02 4.89 69.23 1.27

4 YH3–8 3742.4 Shale Longmaxi LM6 YH–1 60.52 15.81 2.16 5.37 3.75 2.57 0.03 0.78 0.10 0.55 8.28 99.91 4.81 3.83 70.44 1.10

5 YH3–8 3744.4 Shale Longmaxi LM6 YH–10 59.86 15.42 2.51 5.34 3.86 2.67 0.03 0.76 0.11 0.57 8.79 99.92 5.08 3.88 69.74 1.15

6 YH3–8 3746.9 Shale Longmaxi LM6 YH–30 60.41 15.17 2.38 5.28 3.77 2.64 0.03 0.69 0.10 0.52 8.58 99.57 5.46 3.98 70.46 1.13

7 YH3–8 3747.3 Shale Longmaxi LM6 YH–33 59.45 16.38 2.18 5.54 3.97 2.77 0.03 0.72 0.10 0.55 8.28 99.98 5.51 3.63 71.04 1.10

8 XD2 2052.5 Shale Longmaxi LM5 XD–B54 53.24 13.05 5.73 4.25 3.59 3.00 0.03 0.64 0.08 0.53 13.31 97.45 5.61 4.08 68.50 1.31

9 XD2 2055.3 Shale Longmaxi LM5 XD–B50 41.93 8.70 14.61 3.15 2.52 5.31 0.07 0.36 0.08 0.40 21.22 98.35 7.00 4.82 68.94 2.31

10 Y105 1664.1 Shale Longmaxi LM5 Y105–31 60.23 11.60 6.81 3.61 3.26 2.27 0.03 0.48 0.10 0.50 11.10 99.99 6.79 5.19 69.39 1.20

11 Y105 1668.1 Shale Longmaxi LM5 Y105–40 55.73 10.10 8.43 5.00 2.76 3.19 0.07 0.47 0.13 0.54 13.40 99.82 5.87 5.52 68.98 1.65

12 Y105 1673.1 Shale Longmaxi LM5 Y105–52 63.46 9.58 6.78 3.23 2.33 2.05 0.03 0.45 0.12 0.47 11.22 99.72 5.18 6.62 70.50 1.25

13 YH3–8 3749.4 Shale Longmaxi LM5 YH–44 58.84 15.75 2.92 5.46 3.89 2.82 0.03 0.78 0.09 0.55 8.62 99.75 4.99 3.74 69.88 1.16

14 YH3–8 3753.4 Shale Longmaxi LM5 YH–67 61.23 14.31 3.01 5.02 3.51 2.77 0.04 0.81 0.09 0.53 8.62 99.94 4.33 4.28 68.85 1.22

15 YH3–8 3757.1 Shale Longmaxi LM5 YH–85 56.42 14.75 4.66 5.11 3.48 3.27 0.05 1.16 0.11 0.59 10.26 99.85 3.00 3.83 66.02 1.36

16 YH3–8 3761.7 Shale Longmaxi LM5 YH–117 25.33 3.84 33.17 3.03 0.76 3.08 0.39 0.51 0.07 0.15 29.42 99.75 1.49 6.60 60.54 3.40

17 YH3–8 3766.0 Shale Longmaxi LM5 YH–142 59.51 13.06 5.03 4.93 3.02 2.54 0.04 1.26 0.11 0.59 9.88 99.98 2.40 4.56 63.76 1.37

18 Z204 3398.6 Shale Longmaxi LM4 Z4–23 62.41 18.43 0.83 6.62 4.98 2.93 0.06 0.31 0.10 0.64 1.28 98.60 15.83 3.39 74.09 1.03

19 XD2 2058.6 Shale Longmaxi LM4 XD–B44 43.03 20.55 4.67 8.95 5.36 2.91 0.08 0.56 0.03 0.34 11.69 98.17 9.57 2.09 72.85 1.04

20 XD2 2061.1 Shale Longmaxi LM4 XD–B41 41.49 5.44 18.85 1.97 1.58 5.19 0.05 0.26 0.05 0.26 23.36 98.50 6.08 7.63 67.92 3.21

21 XD2 2062.6 Shale Longmaxi LM4 XD–B38 42.42 6.24 17.27 2.03 1.82 5.57 0.05 0.29 0.05 0.30 22.98 99.02 6.28 6.80 68.05 3.03

22 Y105 1674.6 Shale Longmaxi LM4 Y105–58 60.26 12.14 6.02 3.75 3.03 2.41 0.03 0.52 0.11 0.54 11.14 99.95 5.83 4.96 70.83 1.18

23 Y105 1676.3 Shale Longmaxi LM4 Y105–64 60.23 10.87 6.84 4.08 2.74 2.04 0.03 0.49 0.13 0.52 11.49 99.46 5.59 5.54 70.33 1.20

24 Y105 1677.7 Shale Longmaxi LM4 Y105–69 60.54 10.28 7.15 4.22 2.56 2.03 0.03 0.48 0.13 0.51 11.67 99.60 5.33 5.89 70.23 1.26

25 Y105 1679.5 Shale Longmaxi LM4 Y105–75 59.89 9.89 7.55 3.62 2.53 2.33 0.04 0.50 0.13 0.50 12.77 99.75 5.06 6.06 69.26 1.35

26 Y105 1681.8 Shale Longmaxi LM4 Y105–82 61.83 10.69 6.10 3.68 2.76 2.07 0.03 0.49 0.12 0.51 11.99 100.27 5.63 5.78 69.88 1.21

27 YH3–8 3769.8 Shale Longmaxi LM4 YH–169 67.83 9.98 2.31 4.83 2.38 1.74 0.03 0.59 0.10 0.36 9.81 99.95 4.03 6.80 68.81 1.26
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Table 2. Cont.

No. Well Depth Lithology Formation Graptolite
Zone

Sample
No. SiO2 Al2O3 CaO Fe2O3T K2O MgO MnO Na2O P2O5 TiO2 LOI TOTAL K2O/Na2O SiO2/Al2O3 CIA ICV

28 YH3–8 3773.7 Shale Longmaxi LM4 YH–190 66.41 9.17 3.60 3.97 2.15 1.81 0.03 0.59 0.15 0.35 11.65 99.88 3.64 7.24 68.21 1.30

29 YH3–8 3775.8 Shale Longmaxi LM4 YH–202 72.10 7.47 3.05 2.74 1.70 1.37 0.03 0.50 0.06 0.26 10.59 99.87 3.40 9.65 68.16 1.22

30 Z204 3406.8 Shale Longmaxi LM2–3 Z4–8 48.04 12.24 13.50 3.75 2.80 3.73 0.31 0.35 0.09 0.42 2.97 88.20 7.93 3.93 74.48 1.40

31 XD2 2065.4 Shale Longmaxi LM2–3 XD–B35 39.90 5.43 21.80 1.81 1.62 3.73 0.06 0.24 0.05 0.25 23.84 98.73 6.75 7.35 68.07 2.51

32 XD2 2067.8 Shale Longmaxi LM2–3 XD–B32 69.10 3.47 9.87 0.91 1.00 1.13 0.03 0.19 0.05 0.16 13.28 99.19 5.26 19.91 66.98 1.56

33 Y105 1685.0 Shale Longmaxi LM2–3 Y105–92 57.51 9.64 7.43 3.69 2.46 2.51 0.04 0.51 0.13 0.49 13.86 98.27 4.82 5.97 68.92 1.43

34 Y105 1687.0 Shale Longmaxi LM2–3 Y105–98 58.72 10.55 6.71 3.21 2.70 2.70 0.03 0.65 0.10 0.52 14.09 99.98 4.15 5.57 67.55 1.39

35 Y105 1688.2 Shale Longmaxi LM2–3 Y105–102 50.30 8.68 11.00 3.27 2.17 3.97 0.06 0.60 0.11 0.46 19.05 99.67 3.62 5.79 66.72 1.98

36 YH3–8 3779.1 Shale Longmaxi LM2–3 YH–226 65.69 8.47 4.71 3.96 2.00 1.81 0.03 0.56 0.09 0.33 11.86 99.51 3.57 7.76 67.85 1.37

37 YH3–8 3781.0 Shale Longmaxi LM2–3 YH–236 66.22 5.02 9.07 2.34 1.06 2.63 0.07 0.37 0.10 0.18 12.57 99.63 2.86 13.19 67.95 2.17

38 SH
outcrop / Shale Longmaxi LM2–3 SH11–9–1 60.24 5.56 10.43 1.80 1.49 3.23 0.03 0.36 0.08 0.28 16.24 99.74 4.14 10.83 66.50 2.26

39 SH
outcrop / Shale Longmaxi LM2–3 SH11–1–2 57.50 5.45 11.72 1.74 1.39 3.80 0.03 0.27 0.07 0.26 17.64 42.37 5.15 10.55 69.46 2.49

40 SH
outcrop / Shale Longmaxi LM2–3 SH10–8–1 57.38 5.09 14.28 2.00 1.29 1.98 0.03 0.37 0.11 0.24 17.14 42.53 3.49 11.27 66.04 1.83

41 SH
outcrop / Shale Longmaxi LM2–3 SH9–23–2 57.15 4.80 14.76 1.58 1.25 2.04 0.03 0.40 0.08 0.23 17.51 42.68 3.13 11.91 64.24 1.92

42 SH
outcrop / Shale Longmaxi LM2–3 SH9–15–1 69.29 4.30 9.09 1.28 1.11 1.68 0.02 0.22 0.07 0.20 13.19 31.16 5.05 16.11 69.04 1.70

43 XD2 2068.5 Shale Longmaxi LM1 XD–B31 75.11 4.57 4.48 1.21 1.31 1.22 0.02 0.30 0.05 0.20 10.84 99.31 4.37 16.44 65.49 1.44

44 XD2 2069.0 Shale Longmaxi LM1 XD–B30 68.41 5.98 5.53 1.91 1.74 1.68 0.02 0.41 0.10 0.27 13.18 99.23 4.24 11.44 64.88 1.52

45 XD2 2069.3 Shale Longmaxi LM1 XD–B29 44.40 3.39 20.11 1.47 1.04 3.06 0.06 0.25 0.10 0.16 25.33 99.37 4.16 13.10 63.47 3.24

46 Y105 1688.9 Shale Longmaxi LM1 Y105–104 56.62 8.04 9.71 3.57 2.06 2.47 0.04 0.62 0.10 0.44 15.92 99.59 3.32 7.04 65.28 1.68

47 Y105 1689.3 Shale Longmaxi LM1 Y105–106 60.75 7.20 8.04 4.02 1.82 2.28 0.04 0.59 0.11 0.40 14.40 99.65 3.08 8.44 64.77 1.79

48 Y105 1689.8 Shale Longmaxi LM1 Y105–108 62.95 7.66 5.08 2.84 1.98 2.48 0.04 0.62 0.09 0.45 15.46 99.65 3.19 8.22 64.65 1.69

49 YH3–8 3782.2 Shale Longmaxi LM1 YH–242 66.53 5.93 7.06 3.42 1.42 2.27 0.04 0.46 0.07 0.25 12.13 99.58 3.09 11.22 66.00 1.92

50 SH
outcrop / Shale Longmaxi LM1 SH8–12–1 76.22 4.35 2.42 1.39 1.13 1.19 0.01 0.10 0.12 0.21 12.74 99.88 11.30 17.52 73.66 1.32

51 SH
outcrop / Shale Longmaxi LM1 SH8–10–1 75.89 4.67 2.15 1.45 1.22 1.26 0.01 0.21 0.11 0.23 12.59 99.79 5.81 16.25 69.86 1.38

52 XD2 2069.5 Shale Guanyingqiao WF4 XD–B28 50.43 6.88 16.74 1.72 2.01 2.31 0.06 0.48 0.10 0.35 17.69 98.77 4.19 7.33 64.66 1.64
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Table 2. Cont.

No. Well Depth Lithology Formation Graptolite
Zone

Sample
No. SiO2 Al2O3 CaO Fe2O3T K2O MgO MnO Na2O P2O5 TiO2 LOI TOTAL K2O/Na2O SiO2/Al2O3 CIA ICV

53 XD2 2069.6 Shale Guanyingqiao WF4 XD–B27 44.73 6.15 18.26 3.99 1.81 2.61 0.07 0.52 0.14 0.32 18.70 97.30 3.48 7.27 62.60 2.18

54 XD2 2069.7 Shale Guanyingqiao WF4 XD–B26 57.88 8.88 2.28 13.82 2.61 0.91 0.06 1.07 0.94 0.49 9.53 98.47 2.44 6.52 58.30 2.05

55 XD2 2069.9 Shale Guanyingqiao WF4 XD–B24 58.11 9.36 4.94 9.21 2.74 1.33 0.06 1.07 0.30 0.50 10.32 97.94 2.56 6.21 59.04 1.76

56 Y105 1690.2 Shale Guanyingqiao WF4 Y105–109 53.82 6.68 14.72 3.26 1.70 1.61 0.07 0.50 0.15 0.38 16.82 99.71 3.40 8.06 65.68 1.54

57 SH
outcrop / Shale Guanyingqiao WF4 SH7–4–1 42.89 7.26 20.46 3.75 1.91 3.00 0.09 0.55 0.12 0.36 19.52 99.91 3.47 5.91 65.16 2.00

58 YH3–8 3783.0 Shale Guanyingqiao WF4 YH–247 42.59 9.83 12.54 4.61 2.46 6.02 0.10 0.67 0.10 0.42 20.16 99.50 3.67 4.33 66.85 2.43

59 YH3–8 3783.7 Shale Guanyingqiao WF4 YH–250 61.80 9.29 7.44 3.13 2.29 2.24 0.04 0.49 0.12 0.34 12.76 99.94 4.67 6.65 69.39 1.32

60 Z204 3409.6 Shale Wufeng WF2–3 Z4–1 35.25 12.22 20.41 3.53 3.05 2.64 0.48 0.33 0.82 0.37 5.57 84.67 9.17 2.89 73.47 1.19

61 XD2 2070.3 Shale Wufeng WF2–3 XD–B22 44.14 14.39 12.25 1.96 4.12 3.70 0.03 0.63 0.09 0.35 17.40 99.06 6.54 3.07 68.74 1.23

62 XD2 2072.9 Shale Wufeng WF2–3 XD–B19 51.57 6.05 17.55 1.41 1.46 2.15 0.07 0.21 0.05 0.22 18.66 99.40 6.95 8.52 72.67 1.49

63 XD2 2075.6 Shale Wufeng WF2–3 XD–B15 36.01 7.10 21.78 5.37 2.11 3.12 0.13 0.24 0.14 0.52 21.41 97.93 8.79 5.07 69.75 2.16

64 XD2 2078.8 Shale Wufeng WF2–3 XD–B10 57.67 8.97 9.42 2.13 2.73 3.08 0.07 0.34 0.07 0.43 14.05 98.96 8.03 6.43 68.73 1.55

65 XD2 2080.6 Shale Wufeng WF2–3 XD–B6 42.59 12.86 14.87 2.88 3.58 3.53 0.11 0.41 0.65 0.43 16.27 98.18 8.73 3.31 71.07 1.30

66 XD2 2081.8 Shale Wufeng WF2–3 XD–B2 43.63 13.55 13.84 2.91 3.98 3.89 0.09 0.67 0.05 0.65 15.31 98.57 5.94 3.22 67.50 1.42

67 Y105 1690.5 Shale Wufeng WF2–3 Y105–110 31.02 1.95 31.19 1.65 0.51 1.68 0.11 0.41 0.03 0.11 30.92 99.58 1.24 15.91 50.62 3.86

68 Y105 1691.2 Shale Wufeng WF2–3 Y105–112 54.67 6.77 11.63 2.88 1.78 2.29 0.04 0.41 0.11 0.37 19.14 100.09 4.34 8.08 67.36 1.70

69 Y105 1691.5 Shale Wufeng WF2–3 Y105–113 52.49 7.60 9.86 2.91 2.06 3.71 0.07 0.35 0.09 0.42 20.08 99.64 5.89 6.91 69.17 2.02

70 Y105 1691.9 Shale Wufeng WF2–3 Y105–G1 60.54 11.88 2.29 3.66 3.30 3.00 0.03 0.46 0.14 0.64 13.96 99.90 7.17 5.10 69.99 1.34

71 YH3–8 3784.5 Shale Wufeng WF2–3 YH–255 71.70 8.22 2.36 2.91 1.89 1.75 0.03 0.48 0.10 0.31 10.05 99.80 3.94 8.72 69.37 1.26

72 YH3–8 3788.2 Shale Wufeng WF2–3 YH–270 50.25 10.66 10.91 4.69 2.83 4.27 0.22 0.59 0.29 0.49 14.70 99.90 4.80 4.71 68.02 1.86

73 YH3–8 3791.5 Shale Wufeng WF2–3 YH–288 63.89 12.03 5.06 4.44 2.97 2.36 0.09 0.69 0.06 0.53 7.76 99.87 4.30 5.31 68.65 1.26

74 YH3–8 3792.6 Shale Wufeng WF2–3 YH–295 20.56 4.85 30.95 2.05 1.02 1.18 0.18 0.39 0.05 0.22 38.55 99.98 2.62 4.24 66.99 1.49

75 SH
outcrop / Shale Wufeng WF2–3 SH6–7–2 54.25 8.44 12.35 2.99 2.14 2.31 0.04 0.75 0.18 0.46 16.11 100.02 2.85 6.43 63.80 1.57

76 SH
outcrop / Shale Wufeng WF2–3 SH6–3–1 59.61 9.25 8.47 2.27 2.33 2.07 0.03 0.52 0.16 0.46 14.70 99.87 4.48 6.44 68.57 1.25
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Table 2. Cont.

No. Well Depth Lithology Formation Graptolite
Zone

Sample
No. SiO2 Al2O3 CaO Fe2O3T K2O MgO MnO Na2O P2O5 TiO2 LOI TOTAL K2O/Na2O SiO2/Al2O3 CIA ICV

77 SH
outcrop / Shale Wufeng WF2–3 SH5–33–2 39.58 4.57 20.60 2.78 1.21 3.91 0.06 0.34 0.13 0.23 26.66 100.07 3.56 8.66 65.27 3.18

78 SH
outcrop / Shale Wufeng WF2–3 SH5–30–2 52.08 3.89 17.48 1.51 1.03 2.16 0.06 0.19 0.10 0.18 21.41 100.09 5.42 13.39 69.06 2.19

79 SH
outcrop / Shale Wufeng WF2–3 SH5–26–2 57.34 3.82 15.63 1.37 1.06 1.70 0.05 0.18 0.08 0.18 18.45 99.86 5.89 15.01 68.67 1.90

80 SH
outcrop / Shale Wufeng WF2–3 SH5–20–1 60.96 3.82 14.01 1.28 1.05 1.45 0.04 0.23 0.08 0.18 16.74 99.84 4.57 15.96 66.83 1.75

81 SH
outcrop / Shale Wufeng WF2–3 SH4–32–1 78.69 4.44 3.61 1.42 1.24 1.16 0.02 0.11 0.07 0.22 9.01 99.99 11.27 17.72 72.22 1.32

82 SH
outcrop / Shale Wufeng WF2–3 SH4–24–1 67.52 3.23 11.11 1.41 0.88 1.97 0.05 0.17 0.05 0.15 13.62 100.16 5.18 20.90 68.08 2.38

83 SH
outcrop / Shale Wufeng WF2–3 SH4–16–1 63.13 4.02 11.31 1.55 1.15 2.71 0.05 0.12 0.06 0.19 15.45 99.74 9.58 15.70 70.99 2.45

Average 56.11 8.89 10.07 3.46 2.31 2.60 0.06 0.49 0.13 0.39 14.68 96.27 5.22 7.88 67.87 1.70

PAAS 62.8 18.80 1.29 6.50 3.68 2.19 0.11 1.19 0.16 0.99 / / / / / /

NASC 64.8 16.90 3.63 / 3.97 2.86 0.06 1.14 / 0.70 / / / / / /
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Compared to the trace element contents of the upper continental crust (UCC) [49],
several elements are remarkably enriched (Table S1; Figure 10), and they can be represented
by the concentration coefficient (CC = the ratio of the element concentration in the Wufeng–
Longmaxi shale vs. UCC) [50]. The trace elements Ba, Zn, and U have CCs ranging
from 2 to 5, among which the trace element U has a CC very close to 5. Other elements,
including Sr, Sc, Cr, Co, Ga, Ta, Nb, Rb, Th, Y, Tb, Gd, Eu, Sm, Ho, Er, Tm, Pr, Ce, La, Yb,
Nd, Pb, Dy, Lu, Cs, V, Ni, Cu, and REEs, have CC values similar to the average of UCC
(0.5 < CC < 2). The CCs of the elements Hf and Zr are lower than 0.5. Notably, the contents
of enriched elements such as V (26.54~886 ppm, avg. 197.4 ppm), Ni (13.75~212 ppm, avg.
85.8 ppm), Ba (280.6~3898 ppm, avg. 1292.8 ppm), Zn (9.6~4942 ppm, avg. 177.3 ppm),
and U (0.82~73.1 ppm, avg. 13.7 ppm) are relatively variable and are higher than those of
NASC and PAAS (Table S1).
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The total rare-earth-element contents (∑REE) in the Wufeng–Longmaxi shale in the
Yangtze Platform range from 40.92 to 310.23 ppm, with an average of 184.77 ppm, which
is very close to that of the North American shale composition (185.77 ppm) (Table S1).
Vertically, ∑REE decreases from the interval WF2–3 to WF4 and reaches the minimum
in the LM1 interval (Figure 8). Across the LM1 interval, ∑REE increases abruptly and
reaches its maximum in the LM6 interval. The total light REEs (∑LREE) ranges from 31.3
to 266.07, with an average of 167.16 ppm, accounting for 90.4% of ∑REE. The total heavy
REEs (∑HREE) ranges from 7.83 to 44.16 ppm, with an average of 17.61 ppm, accounting
for 9.6% of ∑REE.

The ratio between ∑LREE and ∑HREE (∑LREE/∑HREE) reflects the fractionation
degree of light and heavy REEs. A higher value of ∑LREE/∑HREE indicates more en-
richment of LREE. The ratio of ∑LREE/∑HREE fluctuates between 3.25 and 11.88, with
an average of 9.46, which is very close to the North American black shales (10.49). In the
chondrite-normalized diagrams, all samples show a similar REE pattern characterized by
a relatively high slope of the LREE part and a flat slope of the HREE part, together with
slightly negative Eu anomalies (Eu/Eu* = 0.35~0.92; Figure 11). This pattern reflects a
moderate enrichment of LREEs, a consistent provenance, and steady tectonic activity. The
LaN/YbN values (with the NASC standard) vary from 3.22 to 22.81, with an average of
13.55, which shows a slight LREE enrichment. The values of LaN/SmN range from 2.67 to
9.08 (avg. 6.88), indicating an inconspicuous fractionation among HREEs as well.



Minerals 2022, 12, 1190 22 of 31Minerals 2022, 12, x FOR PEER REVIEW 17 of 30 
 

 

 
Figure 11. Chondrite-normalized rare-earth-element (REE) patterns in sedimentary rocks of the 
Wufeng–Longmaxi shale in the Yangtze Platform, South China. Chondrites values are from [51]. 
(a) The Wufeng Formation; (b) the Guanyingqiao bed; (c) the Long 11 member of the Longmaxi 
Formation; (d) the Long 12 of the Longmaxi Formation. 

 

Figure 11. Chondrite-normalized rare-earth-element (REE) patterns in sedimentary rocks of the
Wufeng–Longmaxi shale in the Yangtze Platform, South China. Chondrites values are from [51].
(a) The Wufeng Formation; (b) the Guanyingqiao bed; (c) the Long 11 member of the Longmaxi
Formation; (d) the Long 12 of the Longmaxi Formation.

5. Discussion

Sedimentary processes (weathering, sorting, and diagenesis) have significant impacts
on the compositions of sedimentary rocks and can cause changes in geochemical informa-
tion [48,52]. Therefore, it is very important to assess the effects of weathering, sorting, and
alteration before provenance analysis. Commonly, mobile elements are used to infer the
effects of the sedimentary process, whereas immobile elements are utilized to reflect the
parent rock lithology and tectonic setting [53,54].

5.1. Sedimentary Sorting and Recycling

Hydraulic sorting can result in the enrichment of some heavy minerals (e.g., zircon,
monazite, sphene, and apatite) and the depletion of some mobile elements (e.g., Ca, Mg,
and Na). Some elements can be used to identify the concentrations of heavy minerals
during sediment transport [55,56]. The TiO2–Al2O3–Zr ternary diagram (Figure 12a),
La/Sm versus Th bivariate diagram (Figure 12b), Tb/Yb versus Hf bivariate diagram
(Figure 12c), and Ta/La versus Ti bivariate diagram (Figure 12d) are commonly utilized
to specify the accumulation of zircon, sphene, and apatite, as well as some allanite. In
the TiO2–Al2O3–Zr ternary diagram (Figure 12a), all samples display a relatively narrow
span of TiO2–Zr variations, indicating no or weak sorting of zircon. Furthermore, there are
weak and unsystematic correlations observed in these bivariate diagrams (Figure 12b–d),
indicating the weak accumulation of sphene, apatite, and zircon [56]. These distributions
reveal that sedimentary sorting has had a limited impact on the geochemical features of
these samples.
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Zirconium (Zr) commonly exists in zircon, is stable, and can continuously accumulate
with sedimentary recycling; scandium (Sc) mainly exists in basic rocks and usually retains
the characteristics of sediment source rocks. Therefore, the ratio of Zr/Sc can indicate the
enrichment of Zr. Thorium (Th) commonly exists in silicic rocks, and the ratio of Th/Sc
can specify the degree of chemical differentiation. As a result, the Th/Sc versus Zr/Sc
bivariate diagram can be used to evaluate the effects of sedimentary recycling. The ratios
of Th/Sc (0.77–4.36) and Zr/Sc (6.17–43.51) of the studied samples show a high correlation
but have no or a slightly increasing trend of Zr/Sc ratios (Figure 13a), indicating no or
minor sedimentary recycling of the sediment source rocks.

5.2. Weathering and Paleoclimate

The index of compositional variability (ICV), the chemical index of alternation (CIA),
and the ratios of Cs/Ti and Rb/Ti can indicate weathering and the paleoclimate. The ICV,
which is defined as ICV = (Fe2O3T + K2O + Na2O + CaO* + MgO + MnO + TiO2)/Al2O3,
is a common proxy to differentiate the recycling sediment source from the first-cycle one.
In detail, samples with ICV < 1 suggest a compositionally mature and recycling sediment
source, whereas samples with ICV > 1 suggest a compositionally immature and first-cycle
sediment source [61,62]. The CIA, which is defined as CIA = [Al2O3/(Al2O3 + CaO*
+ Na2O + K2O)] × 100, is a common proxy to quantify the degree of weathering [63]. In
general, the CIA value of weakly weathered shale is lower than 65, that of a moderately
weathered one is between 65 and 85, and that of an intensely weathered one is between
85 and 100 [64,65]. Weathering is highly correlated with the climate: intense weathering
(especially chemical) is related to a warm and humid climate, whereas weak weathering is
associated with a cold and arid climate [66]. Here, Fe2O3T, K2O, Na2O, CaO*, MgO, MnO,
TiO2, and Al2O3 are molecular concentrations, with CaO* representing Ca–silicates only
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(i.e., excluding calcite, dolomite, and apatite). In this study, we modified CaO* based on
the ratio of CaO/Na2O [53], and CaO* equals the small value of mol Na2O and CaO. Cs
and Rb are very sensitive to climatic influences and may become leached during chemical
weathering [67]. Generally, enhanced chemical weathering will result in higher Cs and
Rb contents. Thus, the Cs/Ti and Rb/Ti ratios are important elemental indicators for
paleoclimate conditions [67,68].

The ICV values for the studied samples are generally above 1, with an average of
1.69 (Figure 14a), suggesting compositionally immature and first-cycle sediment source
rocks. The CIA values for the studied samples vary from 60 to 80, with an average of 68.9
(Figure 14b) after adopting the method of [69], suggesting weak to moderate weathering of
the sediment source rocks.
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Figure 13. (a) Th/Sc–Zr/Sc diagram for discriminating sedimentary recycling [53]; (b) SiO2/Al2O3–
K2O/Na2O [57], (c) La/Th–Hf [58], and (d) Co/Th–La/Sc diagrams [59] for discriminating source
compositions. Compositions of andesite, rhyolite, tonalite, granodiorite, and granite are from [60].
Compositions of PAAS and UC are from [45]. PAAS = post–Archean Australian shales; UC = average
upper crust.
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(b) A–CN–K (Al2O3 − [CaO* + Na2O] − K2O) diagram. Data for tonalite (To), granodiorite (Gd),
granite (Gr), and post–Archean Australian shales are from [45]. Arrowheads show the predicted
weathering trends. Chl = chlorite; Gbs = gibbsite; Hbl=hornblende; III = illite; Kfs = potassic feldspar;
Kln = kaolinite; Ms = muscovite; Pl = plagioclase; Sm = smectite.

The values of CIA, Cs/Ti, and Rb/Ti display systematic variations with two obvious
shifts (Figure 6). One shift occurs across WF2–3, WF4, and, subsequently, LM1, and the
other occurs across LM4 and LM5. For the first shift, WF2–3 have CIA values between
67.5 and 72.7 and relatively higher ratios of Cs/Ti and Rb/Ti (Figure 6), indicating a
moderately warm and semi-humid climate and moderate chemical weathering. In contrast,
the lower part of WF4 has CIA values between 58.3 and 59.04 and relatively low ratios
of Cs/Ti and Rb/Ti, suggesting a cool and arid climate and weak chemical weathering.
Subsequently, the values of CIA, Cs/Ti, and Rb/Ti abruptly shift across the uppermost part
of WF4, suggesting that the weather changed from cool and arid to moderately warm and
semi-humid. The shift is consistent with the two extinction pulses of the LOME [10,15,70,71].
For the second shift, LM4 has CIA values between 69.3 and 70.8, indicating a warm and
semi-humid climate and moderate chemical weathering (Figure 6). In comparison, the
lowermost part of LM5 has CIA values between 60.5 and 63.8, suggesting a cold and arid
climate and weak chemical weathering. This shift is probably related to regional activated
tectonism [72].

There is a huge difference in the relative concentrations of REEs between terrigenous
sediment and seawater. Generally, the REE contents of terrigenous input are much higher
than those of seawater. The mixing of a small amount of terrigenous input may significantly
increase the value of REEs in seawater. From WF2–3 to LM1 (Figure 6), the value of ∑REE
gradually decreases, indicating the progressive weakening of terrigenous input. From LM1
to LM6, the values of ∑REE gradually increases, indicating the progressive strengthening
of terrigenous input.

5.3. Protoliths

With respect to protoliths, the sediment source compositions have a close relationship
with immobile elements. As a result, the A–CN–K diagram is widely utilized to identify
protoliths. All samples are plotted in the granite trend in the A–CN–K diagram (Figure 14b),
indicating that the protoliths of these rocks are probably acidic igneous rocks. In addition,
the Th/Sc–Zr/Sc bivariate diagram is widely used to identify protoliths. In this diagram,
all samples are plotted in and around the area of granite (Figure 13a), further suggesting
that the protoliths of these rocks are acidic igneous rocks.

The element content in shale is more homogeneous and stable and can retain most of
the information of protoliths [73,74]. As a result, REE patterns can be an effective method
for identifying protoliths. Generally, basic rocks have low REE contents and no or positive
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Eu anomalies, whereas acidic rocks have high REE contents and obvious negative Eu
anomalies [48,75]. Almost all samples display moderate to high REE contents (Table S1)
and obvious negative Eu anomalies, indicating that the protoliths could have originated
from acidic rocks. In addition, these samples have REE patterns with enriched light REEs
and depleted heavy REEs (Figure 11), precluding the contribution of basic rocks.

The ratios between immobile major and trace elements, such as Th/Sc, Zr/Sc, SiO2/Al2O3,
K2O/Na2O, La/Th, Co/Th, and La/Sc, can also be used to identify protoliths. In the
SiO2/Al2O3–K2O/Na2O, Zr/Al2O3–TiO2/Zr, La/Th–Hf, and Co/Th–La/Sc binary plots,
all samples are plotted between the fields of felsic igneous rock and granite (Figure 13).
These further indicate that the protoliths could be felsic igneous rocks.

5.4. Tectonic Setting

Commonly, there exists a close relationship between the geochemical compositions of
sedimentary rocks and the tectonic setting [53,76,77]. From the oceanic island arc to the con-
tinental island arc to the active continental margin to the passive margin, the TiO2, Al2O3,
and Fe2O3T + MgO concentrations and the Al2O3/SiO2 ratios of shale would decrease,
while SiO2 concentration and K2O/Na2O and Al2O3/(CaO + Na2O) ratios would generally
increase [76]. In the TiO2–(Fe2O3T + MgO) diagram, most samples are plotted in and
around the continental island arc and active continental margin fields (Figure 15a) [76]. In
contrast, most samples are plotted in the passive continental margin and active continental
margin fields with a few in the arc field in the (K2O + Na2O)–SiO2 diagram (Figure 15b).
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Relatively immobile trace elements such as REEs and HFSEs are also effective in
discriminating the tectonic setting of sedimentary rocks. Systematic increases in La, Ce, and
HFSEs and in the ratios of Th/U, La/Sc, and Th/Sc have been reported in graywackes from
the oceanic island arc to the passive continental margin, together with decreases in Eu/Eu*,
Zr/Hf, Zr/Th, La/Th, and Ti/Zr ratios [48,75]. For the Wufeng–Longmaxi shale, most
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samples are plotted in and around the active continental margin and continental island arc
fields in the Sc–La–Th (Figure 15c) and Zr/10–Th–Sc diagrams (Figure 15d), indicating that
the sediment source rocks most likely formed in active continental margin and continental
island arc tectonic settings [75].

Major elements such as Na, K, Ca, and Mg are easily weathered and migrate during
transportation, diagenesis, and metamorphism [76]. Therefore, the results obtained from
major element analysis should be used with caution. However, the results obtained from
immobile trace elements are commonly reliable [78,79]. In view of this, we suggest that
the tectonic setting of Wufeng–Longmaxi shale is the continental island arc and active
continental margin, as inferred from immobile trace elements. This conclusion is consistent
with the insight that the Yangtze Plate subducted against the Cathaysian Plate during the
formation period of the Wufeng–Longmaxi shale, as acquired in a previous study.

5.5. Genesis of Shale Gas Sweet-Spot Interval

The term “sweet spot” for petroleum geology was proposed in [80], which refers
mainly to gas-bearing or gas-producing geographic areas with the best enrichment in
unconventional shallow biogenic gas basins. This term was subsequently applied to the
evaluation of unconventional oil and gas resources [81]. Chinese scholars have widely
utilized this term and further expanded its original connotation. The oil and/or gas accumu-
lation intervals in rock formations are named “sweet-spot intervals”, while accumulation
areas in geography are called “sweet-spot areas” [28].

The shale gas sweet-spot interval of the Wufeng–Longmaxi shale is LM1 (Figure 5).
This interval is rich in graptolites such as Avitograptus avitus and Avitograptus ex gr.avitus [44]
and has an Ro ranging from 2.38%~3.02%. The interval is characterized by high TOC content
(>2% on average) [82], high quartz content (avg. 60%), high gas content (>6 m3/t), high
porosity (>5%) [83], a high ratio of horizontal permeability to vertical permeability, high
organic pore content (>61.4%) [29], and high biological quartz content (>85%). In addition,
the interval is dominated by paper lamination and graded lamination composed of siltstone
and claystone [29], together with abundant microfractures [41].

The genesis of the sweet-spot interval has always been a research hotspot and has
various explanations. Some suggest that expanded anoxia induced by a warm and humid
climate is the dominant factor for the formation of organic-rich shale [15,22,23,28,84].
Nevertheless, some studies suggest that rapid transgression because of glacial melting
may be the dominant factor [85,86], while the lower terrigenous supply induced by the
inactive tectonic setting may be the potential reason for the formation of the sweet-spot
interval [24].

Here, we propose that the limited terrigenous supply caused by the inactive tectonic
setting may be an alternative explanation for the formation of the sweet-spot interval.
The reasons could be as follows: First, during the Late Ordovician to Early Silurian, the
compression of the Yangtze and Cathaysia blocks in the Upper Yangtze area progressively
strengthened [37], leading to an increased sedimentation rate from LM1 to LM6. The focus
interval only has a sedimentation rate varying between 1.7 and 7.5 m/Ma [24], which is
considerably lower relative to other intervals. The lower sedimentation rate considerably
favors the enrichment of organic matter because of the limited dilution of the terrigenous
supply [87]. Second, the LM1 interval has the minimum ∑REE and highest TOC content
(Table 1; Figure 5), indicating the weakened influence of terrigenous input in this period [48].
In addition, the significant increase in ∑REE accompanied by the decreasing TOC content
from the LM2 to LM6 interval can further confirm the above assumption. Third, on account
of the warm and humid climate and the rapid rise in sea level during the period of LM1–
LM6 [14,23], it is unreasonable to merely ascribe the formation of the sweet-spot interval to
a warm and humid climate and a rapid sea-level rise.
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6. Conclusions

(1) The Wufeng–Longmaxi shale is predominantly composed of quartz, calcite, dolomite,
and clay minerals. LM1 is a sweet-spot interval and has the highest contents of total
quartz, microcrystalline quartz, and TOC.

(2) The Wufeng–Longmaxi shale was derived from compositionally immature and first-
cycle sediment source rocks and underwent weak to moderate weathering and sorting.
Sedimentary sorting has a limited impact on the geochemical features of the shale.

(3) The dominant protoliths of the Wufeng–Longmaxi shale were acidic igneous rocks,
and the tectonic setting was an active continental margin and continental island arc.

(4) Apart from expanded anoxia and transgression, the limited terrigenous supply caused
by the inactive tectonic setting is an alternative cause of the formation of the sweet-
spot interval.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/min12101190/s1, Table S1: Trace element data of shale samples
from Wufeng Formation-Longmaxi Formation in this study.
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