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Abstract: Geochemical studies of gases from low-permeability reservoirs have raised new questions
regarding the chemical and stable isotope systematics of gas hydrocarbons. For instance, the possi-
bility of thermodynamic equilibrium is recurrently in discussion. However, it is not clear whether
there is anything “unconventional” in the way these systems continue to be studied. Using molecular
and stable carbon isotope data from North American unconventional and conventional reservoirs,
this research has applied two parameters that well describe key transformation stages during gas
generation. The δ13C of ethane and the C2/C3 ratio increase from baseline values (<1%Ro, prominent
kerogen cracking) until a first inflexion at 1.5%Ro. The same inflexion leads to 13C depletion of ethane
and a rapidly increasing C2/C3 ratio as hydrocarbon cracking becomes prominent. The transition
between these two stages is proposed to be a crossover from equilibrium to non-equilibrium con-
ditions. There is no evidence for these characteristics to be limited to low-permeability reservoirs.
Unconventional gas geochemistry should represent an approach that acknowledges that chemical
and isotope distributions are not ruled by only one mechanism but several and at specific intervals of
the thermal history.

Keywords: unconventional; gas; carbon isotopes; ethane

1. Introduction

The term “unconventional gas geochemistry” has been ambiguously mentioned in
recent years, usually to refer to geochemical tools applied to study low-permeability
hydrocarbon reservoirs [1–3]. However, is there anything unconventional in the way we
interpret the geochemistry of such environments? That is a question we have not found a
complete answer for.

Previous studies suggested that the main isotopic difference between unconventional
and conventional gas resources is the carbon isotope reversal of ethane with respect to
methane at thermal maturities above 2%Ro [4,5]. The reversal consists in δ13C values
of ethane that are more negative than the δ13C values of methane from the same gas
charge (δ13Cethane < δ13Cmethane). Recent explanations for this phenomenon include partly
reversible free radical reactions for the formation of isotopically light ethane [6], diffusion
fractionation due to basin uplift [7], and methane cracking with subsequent generation of
ethane and propane [8].

Although less common then, isotope reversals had already been mentioned in the
1970s [9], and were proposed to result from a late increment of gas produced by its source,
where previously produced gas had been lost [9]. Additionally, open pyrolysis experiments
found 13C depletion of methane at temperatures above 600 ◦C, which was attributed
to a second precursor pool producing lighter methane [10,11]. It was also mentioned
that decreasing δ13C values of methane were probably seldom observed because the 13C
depletion is not perceived in the cumulative isotopic trend of methane in commercial gas
accumulations [8–10].

A more recent study [12] reported an additional feature in the isotopic composition
of low-permeability gas reservoirs that seems to be unique. Using gas isotope data from
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26 reservoirs around the world, these authors showed the tendency towards an even
isotopic distribution (EID) of 6‰ between methane and ethane, and between ethane and
propane at a thermal maturity of 1.5%Ro. This likely universal isotopic characteristic
implies that the carbon isotope distribution may shift towards equilibrium, and the same
tendency is interrupted by secondary cracking of hydrocarbons at the indicated maturity
level (~1.5% Ro). Around the same time, carbon isotope equilibrated gases were also
identified in other global conventional and unconventional gas isotope datasets [13,14], at
a thermal maturity of around 1.5%Ro.

Furthermore, pyrolysis experiments on Woodford Shale samples indicated the possi-
bility of both, isotopic and chemical equilibrium, in gas hydrocarbons [15]. The concept
of chemical equilibrium alone had been proposed by Mango et al. (2009) [16], and later
applied by Cesar et al. (2021a) [17] to identify hydrocarbon plays within the Montney
Formation, Western Canadian Sedimentary Basin (WCSB).

Although the findings mentioned above point towards new ways of interpreting gas
geochemical data, the geochemical parameters to study low-permeability reservoirs con-
tinue to be applied in a rather traditional way (i.e., interpreted as conventional hydrocarbon
systems, kinetic isotope fractionation during the entire maturation process). The concept of
“unconventional gas geochemistry” as a new understanding of the molecular and isotope
systematics of hydrocarbons from low-permeability reservoirs has not settled in.

In order to continue exploring different trends in the geochemistry of gas accumu-
lations, this study proposes new graphical tools that exhibit variances in molecular and
stable carbon isotope distribution of gases from low-permeability reservoirs compared to
conventional accumulations. It investigates how important changes in certain molecular
and isotope parameters may be attributed to key geochemical transformations during the
thermal history of hydrocarbon generation. Furthermore, it shows some caveats of using
an “unconventional gas geochemistry” approach, suggesting paths for improvement. The
data presented in this work were obtained from public molecular and carbon isotope data
of well-known North American low-permeability reservoirs.

2. Materials and Methods

Fundamental characteristics of the samples and low-permeability reservoirs included
in this study can be found in Table 1 and Table S1, with their corresponding sources. The
unconventional reservoirs include the Barnett Shale and the Fayetteville Shale from the
USA, and the Lorraine Shale from Eastern Canada; whereas, the conventional samples
originated in Kansas Midcontinent (USA). The selection of these datasets was based on the
public knowledge about them, and their relatively wide thermal maturity range (0.7–3%Ro).
An example from a well through Jurassic, Triassic, and Devonian strata from the Western
Canadian Sedimentary Basin has also been included for discussion (Table S2).

Table 1. Low-permeability reservoirs and conventional (*) reservoirs from which molecular and
carbon isotope data of gas samples was included in this study.

Reservoir (Age) Hydrocarbon Source Maturity Reference

Barnett Shale (Mississippian) Self-sourced 1–2%Ro [5]
Fayetteville Shale (Mississippian) Self-sourced 2–3%Ro [5]

Lorraine Shale (Ordovician) Self-sourced 0.6–2%Ro [18,19]
N Nemaha/Kansas * (Carboniferous) Woodford Shale 1–1.4%Ro [20–22]

Sedgwick Basin * (Carboniferous) Woodford Shale, Chattanooga Shale 0.7%Ro [20–22]

3. Results

3.1. The δ13C of Ethane and the ∆13CC1-C2 Versus the C2/C3 Ratio

The significance of the molecular ratio ethane/propane (C2/C3) probably goes back to
the work of Prinzhofer and Huc (1995) [23], who studied the thermal maturity evolution
of these two compounds given the multiple origins of methane and its susceptibility
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to migration. Then, methane was the only hydrocarbon gas considered to also have
a microbial origin (recent studies report 13C depleted ethane associated with microbial
methane [24,25]). The authors [23] found that in thermogenic gases, the C2/C3 ratio
remains almost constant during kerogen cracking and increases at higher thermal maturity,
specifically during hydrocarbon cracking. However, over the years, it is more common to
observe gas geochemistry studies using parameters such as the Bernard ratio C1/[C2 + C3],
and the isobutane to butane ratio i-C4/C4 (e.g., [7,26]).

Given the importance of hydrocarbon cracking for Early Triassic low-permeability
reservoirs in Western Canada (because it has generated gas/condensate fluids of economic
significance and lower carbon footprint), Cesar et al. (2021a) [17] reconsidered the ideas
presented by Prinzhofer and Huc (1995) [23], and used the C2/C3 ratio to identify regional
thresholds for the start of hydrocarbon cracking, which became target areas for natural gas
liquids (i.e., very light condensate) within the Lower Triassic Montney Formation. Earlier,
the same authors [12] had shown that changes in the C2/C3 ratio were also consistent with
key stable carbon isotope variations in these molecules. For example, 13C depletion of
ethane only registers during increasing C2/C3 ratio.

The above-mentioned provides the motivation for the application of the δ13C of ethane,
the ∆13CC1-C2, and C2/C3 in the following subsections. The δ13C of ethane is used because
ethane is expected to be less affected by migration (compared to methane). Additionally,
the δ13C values of propane have not been included since they are less often reported due to
the lower propane abundance for isotope measurements.

3.1.1. The Barnett Shale and the Fayetteville Shale

The Barnett shale (Fort Worth Basin, USA) was selected as an example of self-sourced
low-permeability reservoir (e.g., [2,27]) because of the availability of data covering a ther-
mal maturity range from 1 to 2%Ro, approximately [5]. The Barnett Shale consists of
black marine shales with some limestone; its total organic carbon (TOC) content aver-
ages 2.5%–3.5% and the organic matter is primarily Type II kerogen [2]. Data from the
Fayetteville Shale (Arkoma Bain, USA), also of Mississippian age, were included to cover
a higher thermal maturity range (>2.5%Ro). The higher thermal maturity has obscured
the original organic matter type of the Fayetteville shale, although it is estimated to be a
mixture of types II and III kerogen [28]. The molecular and stable isotope characteristics of
produced gas from these reservoirs can be found in the Table S1.

Figure 1a shows the variation of the δ13C values of ethane as the C2/C3 ratio increases.
For the Barnett Shale, the δ13C of ethane increases from −37‰ to −32‰ with a relatively
constant C2/C3 ratio of 2.5 (original or baseline C2/C3). As this ratio starts to increase,
the δ13C of ethane increases to a maximum of −29‰, which is reached at a C2/C3 value
of 6.6. After this section, ethane starts to deplete in 13C down to values as negative as
−42‰ at C2/C3 values above 26. For highly mature gases (2–3%Ro), such as those from
the Fayetteville Shale, δ13C values of ethane are more negative (<−41‰) and show the
highest C2/C3 ratios (>40).

The ∆13CC1-C2 difference of the original Barnett Shale ranges from −13 to −6‰
(Figure 1b) with a relatively constant C2/C3 ratio of 2.5. As the C2/C3 ratio increases,
the ∆13CC1-C2 difference shifts towards a value of zero, which is reached at a C2/C3 ratio
of 25. The trend in Figure 1b confirms that the ∆13CC1-C2 values are never above −6‰
when the C2/C3 ratio is relatively constant (original or baseline C2/C3). This is consistent
with previous findings indicating that ∆13CC1-C2 > −6‰ values are only identified when
secondary cracking of hydrocarbons is prominent as evidenced by a continuous increase in
the C2/C3 ratio [12]. Likewise, Figure 1b allows identifying the C2/C3 value at which the
∆13CC1-C2 reaches 0‰. Therefore, it is now possible to detect the C2/C3 value at which the
ethane carbon isotope reversal takes place (~26 for the Barnett Shale). The Fayetteville gases
all exhibit methane–ethane isotope reversal (∆13CC1-C2 > 0) associated with the highest
C2/C3 ratios.
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difference; for samples from the Barnett and Fayetteville shales.

It is important to mention that although the Fayetteville gases look like a continuation
of the Barnett Shale trend in Figure 1, this does not mean that less mature Fayetteville gases
would necessarily follow the Barnett Shale trend in the lower maturity section of the curve.
Even though they are similar in age, their original organic matter composition and thermal
history cannot be expected to be identical.

3.1.2. The Lorraine Shale

This section applies the same graphical tools described above, for two examples of
gases from the Lorraine Shale (Quebec, Canada). The Ordovician Lorraine Shale in the St.
Lawrence Lowlands is a flysch succession dominated by mudstones and siltstones with
locally thicker bedded sandstones [29]. This dataset covers a wide thermal maturity range
(from ≈0.6 to ≈2.0%Ro [16]); the samples correspond to mud-gas and two different profiles
(<10 km apart) of the same geological formation.
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Mud-gas profiles of the Lorraine Shale show similar trends to those of the Barnett
Shale. In the case of the Leclercville well (Figure 2a), the δ13C values of ethane start at
−37‰ with a C2/C3 value of 0.6, and increase to a value of −32‰ at a C2/C3 value of 1.6.
Subsequently, the 13C depletion starts until reaching values of −41‰ with a C2/C3 ratio
above 10. Additionally, Figure 2b shows that the methane–ethane isotope reversal starts at
a C2/C3 value of approximately 10.
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∆13CC1-C2 difference; for samples from the Fortierville (a,b; circle markers) and Leclercville (c,d;
square markers) wells in the Lorraine Shale.

In the Fortierville well (Figure 2c), the δ13C values of ethane start at −37‰ with a
C2/C3 value of 0.9, and increase to a value of −34‰ at a C2/C3 value of 2.4. Subsequently,
the 13C depletion starts until reaching values of −36‰ with a C2/C3 ratio of 4. Although
fewer data points are available for this well, the trend in Figure 2d suggests that the C2/C3
value at the start of the isotope reversal is close to 5.

It is interesting to note that although both wells cross the same geological unit and
overlapping maturity ranges (higher maturity reached in Leclercville), key isotope and
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molecular fluctuations are not the same. This matter will be expanded in the discussion
section.

3.1.3. Nemaha/Kansas Uplift and Sedgwick Basin

Data of conventionally produced gases from Nemaha/Kansas [20] have been included
because they were previously used to describe secondary cracking of oil at variable C2/C3
ratios [23]. These gases originated in the Andarko Basin (thermally mature rocks 1–1.4%Ro)
and migrated more than 160 km [20]. The specific source was later confirmed to be the
Woodford Shale [21]. With respect to conventional gas from the Sedgwick Basin, these
fluids are considered to originate from local source rocks of lower maturity (Chattanooga
Shale, 0.7%Ro [20], Woodford shale [22]). In this way, we cover a large variety of thermal
maturity levels and migration distances.

Isotopic and chemical composition trends are less clear for the conventional gas
samples. In the Nemaha/Kansas gases, the δ13C values of ethane increase from −38 to
−34‰ as the C2/C3 ratio increases from 0.8 to 4.1 (Figure 3a), whereas the ∆13CC1-C2
difference varies from −12 to −4‰ (Figure 3b). For the gases of the Sedgwick Basin, the
δ13C of ethane ranges between −37 and −34‰ as the C2/C3 ratio increases from 1.2 to 3.1
(Figure 3c). The ∆13CC1-C2 varies from −11 to −5‰ (Figure 3d).
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3.2. Devonian Duvernay Formation—Well SCL HZ KAYBOB 4-16-64-20

The example used in this section corresponds to a well from the Fox Creek area in
west-central Alberta. The same well lands its horizontal section within the Devonian
Duvernay Formation, which is intensively developed as a low-permeability reservoir
nowadays. However, enough gas for measurement was detected in the overlying Devonian
Winterbum and Ireton Formations, the Lower Triassic Montney Formation, and the Jurassic
Fernie Formation (including its Gordondale/Nordegg Member). The data and specific
corresponding depths can be found in Table S2. Gas data from this section are included to
test the applicability of the parameters described above to multiple gas sources from the
same well.

Although the thermal maturity ranged from 0.8%VReq in Gordondale/Nordegg to
1.8%VReq in Duvernay [29], the isotope data in Figure 4 do not display a maturity corre-
sponding trend. The youngest samples from the Jurassic Fernie Formation (50 m interval)
have δ13C values of ethane from −40 to −32‰, with C2/C3 ratios between 2.3 and 3.4, and
∆13CC1-C2 from −15 to −7‰. Also of Jurassic age, samples from Gordondale/Nordegg
(25 m interval) have δ13C values of ethane around −40‰ with a C2/C3 ratio of 3.2, and a
methane–ethane carbon isotope difference of −6‰. The Lower Triassic Montney Formation
(70 m interval) exhibits carbon isotope values of ethane from −40 to −38‰, equivalent to
C2/C3 ratios from 1.2 to 2.6 and ∆13CC1-C2 from −9 to −5‰. The Devonian Winterbum
and Ireton Formations (310 m interval) have the most positive δ13C of ethane (up to −30‰)
with a C2/C3 value around 3.7 and ∆13CC1-C2 differences below −14‰. In the case of the
Devonian Duvernay Formation (2 km horizontal interval), most of the samples oscillate
around −33‰ in their δ13C of ethane, C2/C3 values of ~3.7, and ∆13CC1-C2 of ~−12‰.
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Although the δ13C values of ethane are less negative in the Devonian strata, a thermal
maturity of 1.8%VReq in the Duvernay Formation would predict these gases to be in ethane
isotope reversal or at least have ∆13CC1-C2 approaching zero, which is not the case. Only
the Gordondale–Montney interval seems to have a more unconventional character with
∆13CC1-C2 approaching −6‰ and most negative δ13C values of ethane. These observations
will be further expanded in the discussion below.

4. Discussion

Using the distribution of stable carbon isotopes of ethane from the Barnett Shale
(Figure 1a) allows us to confirm that during kerogen cracking, i.e., when the C2/C3 ratio
is relatively constant (2.5), the δ13C values of ethane tend to increase as it would be
expected during normal kinetic fractionation (e.g., [13,30]). Likewise, ethane starts to
deplete in 13C at a specific C2/C3 ratio (~6.6) which has been previously reported to take
place circa 1.5%Ro [12,19]. From there, the C2/C3 ratio increases towards values of up
to 40 as secondary cracking of hydrocarbons takes place, including cracking of wet gas
components (C2-C5). It is the time where enough radicals may be available, for example, for
certain reactions to occur and regenerate 13C depleted ethane (e.g., [6,8]). It is particularly
interesting to note in Figure 1a that with an increase in the C2/C3 ratio from 2.5 to 6.6, the
δ13C value of ethane increases, too. To the current knowledge, this interval, representing
a 13C enrichment of ethane by 3‰ for the Barnett Shale, has not been identified before.
This stage may be a transition interval from gas generation by kerogen cracking to gas
generation dominated by hydrocarbon cracking (we should remember that even during
hydrocarbon cracking, compounds continue to be released from kerogen [23,31,32]).

We may anticipate that the C2/C3 inflexions and isotope enrichment/depletion men-
tioned above are unique of different source rocks/reservoirs. For instance, in the Lorraine
Shale from Leclercville (Figure 2a), the curve changes in C2/C3 ratio happen at 0.6 and ~1.6
with a 13C enrichment of ~4‰, whereas the same rock in the Fortierville well (Figure 2c) has
C2/C3 ratio varying from 0.9 to ~2.4 with a 13C enrichment of ~4‰. This demonstrates that
even for the same geological formation, chemical and isotopic composition of hydrocarbon
gases can vary on relatively small scales.

Moving forward in thermal maturity, plotting the C2/C3 ratio versus ∆13CC1-C2
(Figure 1b) proved helpful because it allows us to identify the C2/C3 value at which
the ethane isotope reversal starts—~26 for the Barnett Shale. If ∆13CC1-C2 > 0 values had
been reported to happen above 2%Ro [5,12], this means we are now able to identify a
C2/C3 value for such thermal maturity boundary (i.e., dry gas zone). The same boundary
for the Lorraine Shale seems to have values of 10 (in Leclercville, Figure 2b) and 5 (in
Fortierville, Figure 2d). Gases in ethane isotope reversal such as those from the Fayetteville
Shale (Figure 1b) and the Lorraine Shale (Leclercville, Figure 2b) have the highest C2/C3
ratios of their corresponding curves, as it would be expected for their maturity levels.

When interpreting the conventional gas data, both trends (Figure 3a,c) show increasing
δ13C values of ethane with increasing C2/C3 ratio, which is consistent with stable carbon
isotope distributions described before unconventional gas development (e.g., [27,30,31].
However, we could also argue to be seeing the equivalent thermal maturity section ap-
proaching towards 1.5%Ro, discussed for the unconventional shales, where there is a
transition from prominent kerogen cracking to prominent hydrocarbon cracking. Knowing
the thermal maturity of Nemaha/Kansas (1–1.4%Ro) and Sedgwick (0.7%Ro) gases, we
may infer that the mentioned transition is not necessarily the case. Another aspect to
consider is migration and hydrocarbon mixing always affecting conventional gas accumu-
lations, which overprint the original carbon isotope signature of the gas. Additionally, it
is challenging to find a wide range of thermal maturity in conventional gases that come
from the same source rock and develop an isotope curve such as the ones developed for
the Barnett Shale and Lorraine Shale.
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4.1. Implications on Isotope Equilibrium

Although thermodynamic equilibrium or meta-stable equilibrium conditions for natu-
ral gas are more often stated in recent literature [12–15], the exact equilibrium conditions
continue to be a mystery as they lack precise definitions. It seems that hydrogen exchange
may play an important role in free radical activation and other transformations responsible
for the equilibrium [15,33].

Some authors had considered that chemical and isotope equilibrium were perhaps
limited to gases in low-permeability reservoirs that have not experienced major migra-
tion [12,17]. This was based on the significance of residence time for isotope equilibrium
to be established [34]. However, other studies found that equilibrium was also possible
in conventional gas [13,14] (supported by clumped isotope analysis as well). Therefore, it
may simply be more difficult to study the possibility of isotope equilibrium in conventional
gases due to hydrocarbon mixing and extended migration distances.

Another aspect to question is that the equilibrium is probably not reached at 1.5%Ro.
This is based on the fact that the even isotopic distribution of 6‰ (“even isotopic distribu-
tion (EID)” is the situation where the difference between the δ13C values of methane and
ethane equals the difference between the δ13C values of ethane and propane [12]) could
not be explained by the isotope equilibrium calculations for a wide range of temperatures
by Thiagarajan et al. (2020) [13]. It should be mentioned that the later study also included
CO2 in the equilibration process. It is possible that the even isotopic distribution of 6‰
simply represents the last stage of the quasi-equilibrium leading to a completely new type
of chemical transformations, which ultimately generate ethane depleted in 13C.

The crossover from equilibrium to disequilibrium conditions might not occur at a
specific maturity as stated before (1.5%Ro, [14]), but rather over a maturity range finishing
at 1.5%Ro. For example, in the case of the Barnett Shale, the crossover might be equivalent to
the interval where the C2/C3 ratio increases from 2.5 (initial or original value) to 6.6 (value
at 1.5%Ro) as the transition from prominent kerogen cracking to prominent hydrocarbon
cracking takes place. This reinterpretation has been represented in Figure 5.
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Figure 5. Diagram representing the geochemical characteristics to take into account when considering
an equilibrium approach. After Thiagarajan et al. (2020) [13], Cesar et al. (2020) [12], and this
study. “Crossover” stands for the suggested crossover between equilibrium and non-equilibrium
conditions. The exact %Ro for the equilibrium (if established) remains unknown. EID: even isotopic
distribution [12].

The geochemical variability presented in Figure 5 for the generation of gas hydrocar-
bons may also explain why the isotopic composition of natural samples have satisfied all
previous empirical models reported in the literature (usually consisting of maturity versus
δ13C calibrations). For instance, natural samples have satisfied equilibrium models [35],
kinetic models [36–38], and adaptations of these [39]. In reality, all these processes are
possible, but one dominates over the other at a particular interval of the thermal evolution
of the source rock/reservoir. Understanding the order in which the isotope fractionation
mechanisms take turn during thermal history will be key for fluid-fluid and fluid-source
correlation studies.
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4.2. Devonian Duvernay Formation—Well SCL HZ KAYBOB 4-16-64-20

In this sample set, all gases in Devonian reservoirs, including the target Duvernay
Formation, have large carbon isotope differences between methane and ethane (∆13CC1-C2
< −12‰, Figure 4b). For their level of thermal maturity (>1.5%Ro), gases formed at post-
equilibrium conditions would be expected to have ∆13CC1-C2 approaching 0 and even a
methane–ethane isotope reversal (in the case of Duvernay with 1.8%Ro), which is not the
case of these samples. Therefore, we can interpret that these gases are probably mixtures
or gases whose molecular composition has fractionated during migration. The Duvernay
Formation is a well-known source rock for conventional hydrocarbons [40], thus it is
conceivable that gases from the tight sections of the same rock have migrated variable
distances.

Only the gases from the Jurassic and Triassic reservoirs (Fox Creek, Alberta) seem to
resemble gases from reservoirs such as the Barnett Shale. For instance, the carbon isotope
difference between methane and ethane approaches −6‰ at a relatively constant C2/C3
ratio in gases from the Jurassic Fernie Formation (including its Gordondale/Nordegg
Member). The ∆13CC1-C2 also approaches values of −6‰ in gases from the Montney
Formation associated with an increase in their C2/C3 ratio.

At a larger scale, the composition of gases from Montney and Fernie might be more
consistent with chemical and isotope equilibration, whereas gases in Devonian strata
have mixed molecular and isotope signatures. However, the amount of data density and
variability in this occasion does not strongly support either conclusion. Interpreting carbon
isotope data from one particular well is not a straightforward process, and comparison
with additional data from nearby wells and wider ranges of thermal maturity is required.
Other elements from the structural geology and basin history will also help understand the
probabilities of hydrocarbon migration and mixing.

The take-home message of this study, and the real implication of “unconventional gas
geochemistry” is that the possibility of chemical and isotope equilibrium needs to be taken
into account particularly when analyzing gases from low-permeability reservoirs. This is
especially relevant in basins producing hydrocarbons in the wet gas window, which coin-
cides with postulated quasi-equilibrium conditions (approaching 1.5%Ro). Additionally,
we know that the tendency towards quasi-equilibrium is not unique of unconventional
accumulations, but gases in tight rocks are thought to have a higher probability of undergo-
ing “equilibration” because of the longer residence time of in-situ hydrocarbons and their
shorter migration/mixing distances.

The main pitfall of considering the above is that, as shown in this example, we can find
all scenarios in one single well. It might also seem tedious having to take more variables
into account. However, correlations (fluid-fluid or fluid-source) will be more accurate, and
information about the openness of the system could also be obtained. For instance, for a
reservoir section with the same maturity, we should be able to distinguish in-situ generated
gas from migrated gas. The in-situ generated gas would have formed in a semi-open system
over long residence times, more likely tending towards equilibrium. Instead, migrated gas
would have formed in an open system (some distance away) even if its reservoir today is
tight, and will more likely be non-equilibrated.

5. Conclusions

Although gas generation mechanisms are the same, low-permeability reservoirs pro-
vide the environment for particular features to be noted in unconventional gas, for instance,
carbon isotope reversals and even isotopic distribution. These characteristics are probably
unnoticed in conventional gas due to its lower residence time in the source rock (or where
generated) and hydrocarbon mixing/migration. Geochemical parameters such as the δ13C
values of ethane and the C2/C3 ratio are helpful to characterize self-sourced reservoirs
such as the Barnett and Lorraine Shales. Key changes in these parameters are associated
with variations in the chemical transformations during thermal history. For instance, they
increase from baseline values during kerogen cracking towards intermediate values that
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might be equivalent to an equilibrium-disequilibrium crossover ending at 1.5%Ro. After
this, C2/C3 ratio rapidly increases as the δ13C values of ethane become more negative
(ending in methane–ethane isotope reversal) during prominent hydrocarbon cracking.
Unconventional and conventional gases cannot continue to be studied under the same
isotope geochemistry principles.

6. Future Work

The ideal scenario will be to estimate a C2/C3 ratio versus δ13C of ethane curve for
every low-permeability reservoir, such as the one obtained for the Barnett Shale in Figure 1a.
This curve would be used as a baseline for the interpretation of different geochemical
processes taking place in that particular reservoir, considering that the parent material
(either kerogen or migrated bitumen) is relatively homogeneous (not the case in most
instances). A way to attempt this goal may be new isotope calculations using quantum
chemistry for the estimation of the hypothetical curves. However, for these calculations,
the different chemical transformations at all stages of gas generation and thermal evolution
need to be pre-stablished, and some additional work is required to reach a consensus on
this matter. The role played by the reversibility or carbon flows [40] as well as the influence
from the structure of gas precursors and their intramolecular isotope distribution [41,42]
are areas with paths ahead, too.

Having the ethane curve of a particular reservoir could also help us predict the δ13C
value of methane at 1.5%Ro, which would be 6‰ more negative than the δ13C of ethane.
This is important for identifying methane migration, not only between hydrocarbon produc-
ing intervals but also towards shallow intervals with potential environmental implications
(e.g., groundwater and surface vents).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/min12101188/s1, Table S1: molecular and stable isotope data of
produced gases from the low-permeability reservoirs and conventional reservoirs included in this
study; Table S2: molecular and stable isotope data of mud-gas from the Lorraine Shale; Table S3:
molecular and stable isotope data of mud-gas from the Well SCL HZ KAYBOB 4-16-64-20.
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