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Abstract: Recycling of tailings in the form of cemented paste backfill (CPB) is a widely adopted
practice in the mining industry. Environmental performance is an important design criterion of CPB
structures. This environmental performance of CPB is strongly influenced by its saturated hydraulic
conductivity (permeability). Superplasticizers are usually added to improve flowability, but there
is a limited understanding of their influence on the hydraulic properties of the CPB. This paper
presents new experimental results on the variations of the hydraulic conductivity of CPB containing
polycarboxylate-based superplasticizer with different compositions and curing conditions. It is found
that the hydraulic conductivity of the CPB decreases with the addition of superplasticizer, which is
beneficial to its environmental performance. The reduction is largely attributable to the influence
of the ether-based superplasticizer on particles mobility and cement hydration. Moreover, both
curing temperature and time have correlations with the hydraulic conductivity of CPB containing
superplasticizer. In addition, the presence of sulfate and partial replacement of PCI with blast furnace
slag reduces the hydraulic conductivity. The variations are mainly due to the changes in the pore
structure of the CPB. The new results discussed in this manuscript will contribute to the design of
more environmental-friendly CPBs, which is essential for sustainable mining.

Keywords: cemented paste backfill; tailings; hydraulic conductivity; superplasticizer; environmental
performance; acid mine drainage

1. Introduction

Cemented paste backfill (CPB) offers an efficient means of mine waste (i.e., tailings)
valorization both environmentally and economically. The tailings, which is the waste
from the milling process, are combined with a binder, water, and chemical admixtures,
when applicable, and used to fill the voids created from the mining. These mine tailings
usually contain hazardous chemical compounds and would otherwise be impounded on
the land posing a grave threat to the environment as well as human lives. In addition,
the CPB technology is economically advantageous because it improves the productivity
of ore retrieval during mining [1–6]. Moreover, binder inclusion ensures that the backfill
becomes self-supporting after a short period, making the excavation of adjacent ore body
possible. To ensure optimum performance of CPB, its early-age and long-term behaviors
have to be incorporated in the design [7–10]. Some of these properties are responsible for
its environmental performance (e.g., leachability, susceptibility to acid mine drainage) and
are largely associated with hydraulic conductivity [11,12].

A notable environmental issue of great concern to the mining industry is the acid mine
drainage (AMD). The term is used to describe the production of acidic water from sulfide-
rich material when exposed to oxygen and water [13,14]. Although it occurs naturally, AMD
is more prevalent across mining sites, whether operational or abandoned, due to increased
exposure of sulfides by the mining operations [15]. This is because sulfide minerals occur as
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accessory minerals along with many other valuable minerals targeted by mining [16–18]. In
most cases, the sulfide compounds are inert due to the absence of molecular oxygen in the
rock mass [19]. Upon exposure to the atmosphere through mining, they react with water
and oxygen to produce sulfuric acid in the presence of acidophilic microorganisms [19]. For
example, oxidation of pyrite (FeS2—one of the most commonly occurring sulfide minerals)
produces sulfuric acid as well as ferric iron under favorable conditions [20]. When produced
in CPB, these compounds may leach into nearby groundwater body, thereby leading to
contamination. The susceptibility of CPBs to AMD is largely a function of the oxidation
potential of the tailings that make up the CPB. Subsequently, this oxidation potential is
not only controlled by the kinds and amount of sulfide minerals contained in the backfill
material, but also by the facility with which fluids (water and oxygen) gain access to and
flow through the matrix of the backfill material. In other words, this oxidation potential
also depends on the permeation properties of the CPB. These properties can be evaluated
using information about the hydraulic conductivity of the CPB [21].

Furthermore, the leachability of the CPB is another potential environmental concern
because of the possible presence of harmful ingredients, such as heavy metals and/or
other contaminants, in the CPB materials. As mines are closed and pumping is stopped,
the groundwater water table rises back to its natural level by the upward migration of
water through the backfill mass [22]. The flow rate of the groundwater through the backfill
structure is a function of the hydraulic conductivity of the CPB mass. In other words,
the hydraulic conductivity is the main parameter that governs the leaching capacity and
transport of contaminants through the CPB structure to groundwater [21,23].

A number of studies have been conducted in recent years to understand the hydraulic
conductivity behavior of CPB [21,23–27]. The variation of the hydraulic conductivity
in the CPB has been attributed to different factors such as tailings fineness [28], binder
content [11,21], binder types [21,24], curing time and temperature [21,29], and sulfate
content [21]. However, none of the studies investigated the hydraulic conductivity of
the CPB in the presence of high range water reducing admixtures, commonly known as
superplasticizers. The use of superplasticizers in CPB is becoming popular in the mining
industry; therefore, understanding their effects on the key permeation properties of the
CPB is of paramount importance for the reasons discussed above.

Superplasticizers are added to CPB in order to improve its workability and/or flowa-
bility without exceeding required mixing water for optimal performance. These admixtures
enhance the fluidity of cementitious materials based on the characteristics of their organic
polymer molecules [30]. The soapy molecules surround the solid particles in the cemen-
titious material, causing dispersion through electrostatic and steric forces [31,32]. The
major types of superplasticizers used are based on naphthalene, lignosulfonate, or poly-
carboxylate compounds [33,34]. The polycarboxylate-based superplasticizers are known
to affect cement hydration reaction [35] and may behave differently in the presence of
sulfide minerals [36,37] typically found in tailings. Despite these interactions, there has
not been any scientific research to understand the hydraulic conductivity behavior of CPB
containing this type of admixture.

In light of what is discussed above, the objective of this study was therefore to study
the changes in hydraulic conductivity of CPB admixed with polycarboxylate ether-based
superplasticizer.

2. Materials and Methods
2.1. Materials Used
2.1.1. Tailings

Pure ground silica tailings (ST) and natural tailings (NT) from a gold mine in Canada
were used as the main constituents of the CPB in this study. With 99.8 wt.% quartz and
grain-size distribution similar to the average from various mines in Canada (Figure 1),
the ST is a good medium for laboratory experiments to minimize uncertainties. This is
because it does not contain reactive minerals and, therefore, the observed variation would
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be as a result of the treatments the CPB is subjected to. Table 1 shows basic characteristics
of ST and NT. It can be observed from Figure 1 that the ST contains about 45 wt.% fines
(i.e., diameter < 20 µm) and can thus be classified as medium tailings. On the other hand,
the NT contains several mineral compounds such as albite and pyrite (determined by
XRD analysis), as shown in Table 2. It was incorporated in the study to have a better
understanding of the practicability of the tests since it is a better representation of the
tailings used in practice. The percentage of the fines in the NT is about 36 wt.%, so it is also
classified as medium tailings. To maintain uniform a water-to-cement ratio in the CPB, the
natural water content in the NT was calculated and then incorporated in determining the
mass of the mixing water.
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mine tailings (grain size distribution determined by means of laser particle size distribution analyzer.

Table 1. Characteristics of the tailings used and the coarse-grained sand.

Material
Characteristics

Gs D10 (µm) D30 (µm) D50 (µm) D60 (µm)

ST 2.7 1.9 9.0 22.5 31.5

NT 3.1 3.2 15.8 35.5 49.5
Note: Gs: specific gravity.

Table 2. Mineralogical composition of the tailings used (determined by XRD analysis in this study).

Tailings
Mineral

Quartz Albite Dolomite Calcite Chlorite Magnetite Pyrite Talc Pyrrhotite Pyrite Spinel Others Total

ST
(wt.%) 99.8 - - - - - - - - - - 0.2 100

NT
(wt.%) 15 32.8 15 4.2 16.1 2.4 1 7 1.8 0.3 1.8 2.6 100

2.1.2. Binders

The main binder used in the preparation of the CPB samples is Portland cement type
I (PCI). Because it accounts for a large portion of the CPB production cost, alternative
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pozzolans are often used as a replacement. For that reason, tests were conducted on CPB
containing ground blast furnace slag (BFS) and fly ash (FA) as a partial replacement of PCI
with a blending ratio of 50/50. BFS and FA were provided by Lafarge Canada Inc. The
properties of the three binders are given in Table 3.

Table 3. Physical and chemical properties of the binders.

Binder Type MgO
(wt.%)

CaO
(wt.%)

SiO2
(wt.%)

Al2O3
(wt.%)

Fe2O3
(wt.%)

SO3
(wt.%) Relative Density Specific Surface

Area (cm2/g)

PCI 2.65 62.82 18.03 4.53 2.70 3.82 3.1 1300
FA 5.58 21.47 38.06 19.45 5.33 2.7 2.6 2200
BFS 10.98 41.14 34.32 9.54 - 3.87 2.8 2100

2.1.3. Chemical Admixture

A polycarboxylate ether-based Superplasticizer, Master Glenium 7500, made by Badis-
che Anilino und Soda Fabrik (BASF), was used as the water reducing admixture in the
preparation of the CPB. It is widely used in the backfill construction industries for the
improvement of workability and/or flowability. It complies with the ASTM standard
C494/C494M for high-range water-reducing admixture. The slump (determined according
to ASTM C143/C143M-15a [38] of the CPB mixes containing 0% and 0.125% of the super-
plasticizer were found to be 22.2 and 29.6 cm, respectively. The proportion used was chosen
based on common practice in Canada.

2.1.4. Mixing Water

Ordinary tap water was used for mixing the constituents of the CPB. When admixture
and/or sulfate were to be added, an appropriate mass was dissolved in the water before
being added to the solids.

2.2. Sample Preparation and Curing

CPB specimens with tailings and different compositions of superplasticizer, binders,
sulfate, and water-to-cement ratio were prepared based on the experimental plan given
in Table 4. For each mixture, the solids (i.e., tailings and binders) were first blended in a
mechanical mixer for about 2 min after which the water containing the admixture and/or
sulfate was added. The materials were then mixed further for an additional 5 min to achieve
homogeneity. It is important to mention that the ingredients were always pre-weighed
and kept in a temperature-controlled chamber (an oven or a refrigerator) over a period
of at least 24 h to achieve the desired temperature. In addition, the same chamber was
used during the mixing phase. Prepared CPB was then cast into airtight cylindrical molds
with a diameter of 5 cm and a height of 10 cm. The molds were agitated gently to remove
air bubbles from the CPB. They were then sealed and kept in the temperature-control
chamber before testing. The specimens were cured for 1, 7, 28, 60, and 90 days. The CPB
preparation method adopted in this study is similar to that used in numerous previous
studies (e.g., [39–42] ).

2.3. Hydraulic Conductivity Test

The saturated hydraulic conductivity (permeability) of cured CPB specimens was
determined using Tri-Flex 2 flexible wall permeameter in accordance with ASTM D5084-16
standard. A constant head method was adopted with a pressure difference between the
inflow and outflow being 10 Psi (69 kPa). Full saturation was achieved prior to the test by
applying backpressure after bridging the inflow and outflow burettes until the flow through
the specimen becomes constant. Each test was repeated twice to ensure reproducibility
of results.



Minerals 2022, 12, 93 5 of 18

Table 4. Experimental plan showing the composition of CPB samples.

Sample Name Tailings Type Binder Content
(%) *

PCI in the
Binder (%)

FA in the
Binder (%)

BFS in the
Binder (%) W/C Ratio Superplasticizer

Content (%)
Sulfate Content

(ppm)
Curing

TemPerature (◦C)

A. Time-dependent evolution of hydraulic conductivity

CPB-ST-0.0% ST 4.5 100 0 0 7.35 0.0 0 20
CPB-ST-0.125% ST 4.5 100 0 0 7.35 0.125 0 20
CPB-NT-0.125% NT 4.5 100 0 0 7.35 0.125 0 20

B. Effect of curing temperature on hydraulic conductivity

CPB-0.125-Tem 2 ST 4.5 100 0 0 7.35 0.125 0 2
CPB-0.125-Tem 20 ST 4.5 100 0 0 7.35 0.125 0 20
CPB-0.125-Tem 35 NT 4.5 100 0 0 7.35 0.125 0 35

C. Effect of binder type on the hydraulic conductivity

CPB-0.125-PCI ST 4.5 100 0 0 7.35 0.125 0 20
CPB-0.125-

PCI/FA ST 4.5 50 50 0 7.35 0.125 0 20

CPB-0.125-
PCI/BFS ST 4.5 50 0 50 7.35 0.125 0 20

D. Effect of W/C ratio on the hydraulic conductivity

CPB-0.125-W/C 5 ST 4.5 100 0 0 5 0.125 0 20
CPB-0.125-W/C

7.35 St 4.5 100 0 0 7.35 0.125 0 20

CPB-0.125-W/C
10 ST 4.5 100 0 0 10 0.125 0 20

E. Effect of sulfate on the hydraulic conductivity

CPB ST 4.5 100 0 0 7.35 0.0 0 20
CPB-sulf. ST 4.5 100 0 0 7.35 0.0 25,000 20

CPB-SP-0 ppm ST 4.5 100 0 0 7.35 0.125 0 20
CPB-SP-sulf ST 4.5 100 0 0 7.35 0.125 25,000 20

PCI: Portland cement type I; FA: fly ash; BFS: blast furnace slag; ST: silica tailings; NT: natural tailings; W/C ratio: water-to-cement ratio by weight; ppm: parts per million; * 4.5% binder
content is used in the preparation of CPB in many mines; sulf.: sulfate.
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2.4. Microstructural Analyses

To understand the microstructural composition of the CPB with different treatments,
thermal analyses (thermogravimetry (TG) and differential thermogravimetry (DTG)), X-ray
diffraction (XRD), and mercury intrusion porosimetry (MIP) tests were conducted. The
TG/DTG and XRD analyses were performed on cement paste samples with a W/C ratio of
2 (to mimic the high water content of CPB). The cement paste samples were prepared in the
same manner and condition as the CPB specimens. After reaching the desired curing period,
the specimens were oven-dried under 45 ◦C temperature until the mass becomes constant.
The fully dried specimens were ground and analyzed accordingly. The thermogravimetric
analyzer, SDT 2960 simultaneous DSC-TGA device (by TA Instruments, New Castle, DE,
USA) was used for the TG/DTG test under a nitrogen atmosphere and heating ramp of
10 ◦C/min to a maximum temperature of 1000 ◦C. The XRD test was carried out using
Rigaku ultima IV diffractometer (by Rigaku Corp., Akishima, Japan) equipped with cross
beam optics at a scanning rate of 1 degree per minute. In contrast, the MIP test was carried
out on CPB specimens that were also oven-dried at 45 ◦C temperature. The AutoPore III
9420 mercury porosimeter (by Micrometrcs, Norcross, GA, US) was used.

3. Results and Discussions
3.1. Time Dependent Evolution of Hydraulic Conductivity of CPB

The hydraulic conductivity of the CPB showed a consistent decrease for all samples
over the curing period regardless of the tailings type and the superplasticizer content,
as observed from Figure 2. The influence of curing time was largely dependent on the
progression of cement hydration. Generally, the cement continues to undergo a chemical
reaction in the presence of water leading to the production of compounds (e.g., ettringite,
C-S-H, CH) that modify the pore structure of the CPB [43–46]. In effect, the spaces between
the solid particles shrink as a result of the refinement and that would make the CPB less
permeable. This can be noticed from the MIP graphs showing the distribution of pores in
CPB specimens tested at different curing ages (Figure 3). Both incremental porosity and
total pore volume were much higher in the CPB cured for 7 days. To further confirm the
difference in the hydration products, cement paste samples with different curing times
were subjected to thermal analyses. The TG/DTG diagrams of 7 days and 28 days samples
are presented in Figure 4. The DTG graphs exhibit three distinct peaks corresponding to the
proportion of the hydration products that decompose within specific temperature ranges.
The first peak occurred between 100 and 200 ◦C and it was caused by the dehydration of
hydrates, such as ettringite, gypsum, and C-S-H [47,48]. The second peak (between 400 and
500 ◦C) was mainly as a result of the de-hydroxylation of portlandite (calcium hydroxide,
CH), while the third peak (between 650 and 750 ◦C) was due to the decomposition of
carbonated compounds as well as calcite [46,47,49,50]. The DTG graphs from Figure 4
indicate that there were many more hydration products (especially CH) in the cement paste
cured for 28 days than that cured for 7 days. This was reflected in the TG curves as there
was about 80% of the 7-day specimen remaining after reaching 1000 ◦C temperature as
opposed to 70% of the 28-day specimen. The reduction of hydraulic conductivity of CPB
based on the progression of cement hydration has also been observed by other studies
(e.g., [21,24,25,51]).
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Beside the effect of curing time, Figure 2 also reveals that the hydraulic conductivity of
the CPB decreases by replacing the ST with NT and by the addition of superplasticizer. The
CPB-ST-0% sample had hydraulic conductivity values of 3.25 × 10−5 and 2.68× 10−6 cm/s
after 1 and 90 days, respectively, while the CPB-ST-0.125% sample had 1.01 × 10−5 and
1.51 × 10−6 cm/s after the same curing period. In other words, the hydraulic values
of the CPB-ST-0.125% sample after 1 and 90 days were approximately 3.2 and 1.8 times,
respectively, lower than those of the CPB-ST-0% sample. This decrease of the hydraulic con-
ductivity of CPB due to the addition of superplasticizer was beneficial to the environmental
performance of CPB, as explained earlier. The reduction can largely be attributed to the
influence of the superplasticizer on particles’ mobility and cement hydration. When used
in cementitious materials, polycarboxylate-based superplasticizer molecules formed coated
films around the solid particles, thereby preventing flocculation [34,52–54]. Although this is
understood to retard the cement hydration reactions within few hours after mixing [55,56]
the superplasticizer intensifies the hydration by favoring ionic diffusion and nucleation
of hydrates as time passes [54,57,58]. This claim is supported by the result of TG/DTG
analysis on cement pastes containing 0% and 0.125% superplasticizer cured for 7 days as
shown in Figure 5. It is evident that there are many more hydration products in the sample
containing superplasticizer as it exhibits higher peaks. In addition to the improvement
of cement hydration, the dispersion of the solid particles by the superplasticizer results
in more intact structure due to self-consolidation [59–61]. This subsequently produces a
CPB with less porosity and, therefore, less hydraulic conductivity as observed from the
experimental results. The observation is supported by the MIP analysis on CPB samples
containing 0% and 0.125% superplasticizer (Figure 6). The concentration of both coarse and
fine pores was lower in the CPB containing superplasticizer. With respect to the tailing
types, it was observed that the hydraulic conductivity of CPB specimens made of NT was
significantly lower than that made of ST in the early age (1 and 7 days). Beyond 28 days of
curing, there was relatively little or no difference between the hydraulic conductivity of the
two samples. Because the particle size distribution of the two tailing types tailings were
similar, the variation was likely associated with the mineralogical and chemical composi-
tions. While the ST was completely nonreactive, the NT contained sulfide minerals, namely
pyrite, pyrrhotite, and pyrrhotite (Table 2) as well as other minerals and sulfate ions that
could influence the cement hydration. The sulfide minerals in the tailings produce sulfate
compounds in the presence of oxygen and water [39,62,63]. The effect of sulfates on the
cement hydration is explained in Section 3.5. In addition, there was a high percentage of
chlorite in the NT (16.1%) and many forms of these minerals are known to be expansive,
capable of preserving permeability [64,65].

3.2. Effect of Temperature on the Hydraulic Conductivity

Each cemented backfill structure is unique with respect to its temperature. The
temperature of the backfill is a function of several factors, such as the binder hydration heat,
the initial temperature of the backfill components, the depth and geographic location of the
mine [66]. Therefore, the impact of temperature on the hydraulic conductivity of CPB with
superplasticizer was studied. Temperature was also observed to influence the hydraulic
conductivity of the CPB containing superplasticizer. Figure 7 presents the evolution of the
hydraulic conductivity of specimens prepared and cured at three different temperatures,
2, 20, and 35 ◦C. Throughout the curing period of 90 days, the CPB cured at 35 ◦C had
the least hydraulic conductivity, followed by 20 ◦C, and then 2 ◦C. This is similar to what
was observed from other studies on CPB and other cementitious materials (e.g., [21,67–69],
and thus, the presence of superplasticizer does not change the relationship. The MIP
results (Figure 8) on CPB containing 0.125% superplasticizer and cured at 20 and 35 ◦C
temperatures were in agreement with the assertion. The quantity of large pores as well as
the cumulative pore volume in the CPB cured at 2 ◦C was much higher than that in the CPB
cured at 35 ◦C. A more suitable parameter that can give a better understanding on why the
hydraulic conductivity is different based on the pore distribution is the threshold diameter.
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According to Aligizaki [70], the threshold diameter, with respect to the mercury intrusion
porosimetry, is the smallest pore size with geometric continuity throughout the sample,
thereby allowing uninhibited intrusion. This pore diameter is approximated to be the
point of inflexion on the cumulative porosity curve [70]. From Figure 8b, this diameter was
approximately 3 µm for the 20 ◦C specimen and 0.08 µm for the 35 ◦C specimen. This means
that the 35 ◦C-CPB has finer pore structure which translates to lower hydraulic conductivity.
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Figure 8. MIP graphs for CPB samples containing superplasticizer with different curing temperatures:
(a) Pore distribution, (b) Cumulative pore volume.

3.3. Effect of Binder Type on the Hydraulic Conductivity

Because the replacement of PCI with pozzolans is a common practice in the backfilling
industry, the effects of FA and BFS in CPB containing superplasticizer were investigated in
this study. The evolution of the hydraulic conductivity of CPB with three blending ratios
(100% PCI; and 50/50 PCI/FA; 50/50 PCI/BFS) is shown in Figure 9. It can be noticed
that the CPB containing PCI and FA had the highest hydraulic conductivity after 1 day
and from 28 days onward. The sample containing PCI and BFS was the least permeable
throughout the curing period. The reason for that can be attributed to the physical structure
of the binders and the manner in which they react during the hydration process. Although
BFS exhibited slow hydration reaction in the early age [71], its presence in the CPB could
improve the hydraulic conductivity due to its filler effect. Slag had smaller particle size
(with a specific surface greater than PCI, Table 3) and was therefore capable of filling the
spaces between cement and tailings particles [72]. Furthermore, the pozzolanic effect of
the BFS began once there was a sufficient amount of CH from PCI hydration. The reaction
between CH and the BFS produced additional C-S-H gel which contributed to less porosity
in the CPB [21,73]. On the other hand, FA did not act in the same way as the BFS on
the overall hydration process. Its influence can be classified into dilution, physical, and
chemical effects [74]. Replacement of PCI with the same quality of FA has been reported to
increase the available water for hydration, which could subsequently improve the degree
of cement hydration in concrete, a termed as dilution effect [74–76]. However, FA may
also slow down the hydration due to the physical nature of its particles. Even though
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it has greater specific surface area than PCI (Table 3), calcium ions adsorb on its surface,
thus lowering the overall ions to participate in the chemical reaction [77,78]. Similar to
BFS, FA participates in the chemical reaction by reacting with the CH produced by cement
hydration to form C-S-H gel [79]. Having the lowest percentage of CaO as shown in Table 3,
this pozzolanic reaction produces less hydration products as compared to BFS in the long
term. The XRD graphs presented in Figure 10 are in agreement with the above assertions.
The CPB containing the blend of PCI and BFS had the largest quantities of C-S-H and
ettringite indicating which facilitated the filling of pores which was the reason for its low
hydraulic conductivity. These results show that replacement of cement with BFS would
improve the environmental performance of CPB containing superplasticizer with respect
to fluid transport ability.
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3.4. Effect of Water-to-Cement Ratio on the Hydraulic Conductivity

Superplasticizers are added in cementitious construction materials to improve worka-
bility and/or flowability without the need to increase the water content beyond what is
required for optimum performance. Furthermore, CPB is always prepared with an excess
of water (in terms of W/C) to enhance its flow ability. The optimal amount of water or
W/C used to prepare CPB is very variable and is a function of several factors (e.g., pump-
ing and distribution system, tailing types). However, the combined superplasticizer and
W/C ratio on the hydraulic conductivity of CPB is unknown. Thus, the variation of the
hydraulic conductivity of CPB with different W/C ratios and constant amount of PCI and
superplasticizer was investigated in this study. As shown in Figure 11, increasing the
W/C ratio increased the hydraulic conductivity of the CPB. However, the increase was less
than one order of magnitude. The reason of the aforementioned increase was due to the
negative effect of excess water on the pore structure or porosity of CPB and cementitious
material [21,80,81]. Indeed, a higher W/C ratio implies a greater initial capillary pore
content in the CPB specimen, i.e., in higher initial porosity and coarser pore structure of
the backfill sample. This leads to slower and less complete filling of the CPB pores with
binder hydration products, thus leading to higher hydraulic conductivity values due to
coarser pore structure and higher porosity. This is evident in the pore distributions of CPB
specimens with W/C ratios of 5 and 7.35 shown in Figure 12. Thus, limiting the W/C ratio
in CPB to a required proportion is beneficial towards the improvement of its permeability,
and thus enhancing its environmental performance. These conclusions and explanations
also agree with the MIP results discussed by Fall et al. [21,64], which show that CPBs with
a higher W/C ratio have a higher overall porosity and coarser pore structure.
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Figure 10. XRD analysis results for 28 days cement paste containing different binder types. (a) CPB
containing 100% PCI (b) CPB containing 50:50 proportions of PCI and BFS (c) CPB containing 50:50
proportions of PCI and FA.
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Figure 11. Effect of W/C ratio on the hydraulic conductivity of CPB containing superplasticizer.
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Figure 12. Effect of W/C ratio on the (a) pore size distribution and (b) cumulative pore volume in
the CPB samples containing superplasticizer.

3.5. Effect of Sulfate Content on the Hydraulic Conductivity

Sulfate is often found in CPB, which can be generated through oxidation of the sulfide
minerals in the tailings and mining processed water used as the mixing water for CPB [82].
Moreover, polycarboxylate-based superplasticizers are known to be sensitive to sulfate
ions because both are adsorbed by the cement particles competitively [36,37]. Therefore, it
is important to study the combined effect of the two compounds on CPB. The hydraulic
conductivity of CPB containing superplasticizer with 0 and 25,000 ppm sulfate contents
is presented in Figure 13. The result indicates that the presence of sulfate in the CPB
significantly reduces the hydraulic conductivity. This is likely due to the refinement of
the pore structure of the CPB by the reaction of the sulfate with the binder and cement
hydration products (CH). Studies have shown that sulfate ions induce the precipitation
of expansive minerals (gypsum and ettringite) as a result of the reaction between the
sulfate ions and the cement components (C3A) and hydration products (e.g., [25,83–85] ).
These expansive minerals fill pores in the cemented matrix of the CPB, thereby refining
its pore structure and reducing its porosity. The pore distribution in the CPBs used in
this study as seen from the MIP results in Figure 13 confirms that there is less porosity
in the specimen containing sulfate. It is important to point out the little change in the
hydraulic conductivity in the sulfated CPB from 60 to 90 days. There is a high tendency
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that the hydraulic conductivity of the CPB without sulfate would be less in the long term.
This is expected because the excessive production of ettringite and gypsum due to sulfate
eventually leads to cracks in the CPB [86–88], thus increasing the hydraulic conductivity.
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4. Summary and Conclusions

This study highlighted the variations in the hydraulic conductivity of CPB contain-
ing polycarboxylate ether-based superplasticizer with different compositions and curing
conditions. Vital conclusions drawn based on the results are summarized below.

1. The addition of ether-based superplasticizer decreased the hydraulic conductivity of
the CPB. The reduction was largely attributable to the influence of this superplasticizer
on particles mobility and cement hydration. These results then imply that the addition
of polycarboxylate ether-based superplasticizer to CPBs should result in an increase
of the environmental performance of CPBs;

2. The hydraulic conductivity of the CPB decreased with curing time regardless of the
mix composition, superplasticizer content, or curing condition. It generally decreased
rapidly in the early age (up to 7 days) and continued slowly beyond that;

3. Increase in the curing temperature resulted in a significant decrease in the hydraulic
conductivity. The behavior was largely due to faster cement hydration at high temper-
atures which led to more hydration products and finer pore structure;

4. Presence of sulfide minerals or sulphate ions in natural tailings influenced the hy-
draulic conductivity by inducing an excessive generation of expansive compounds
that fill the pores in the CPB;

5. Replacement of PCI with blast furnace slag was observed to improve the hydraulic
conductivity significantly of the CPB containing ether-based superplasticizer. How-
ever, replacement with fly ash has an opposite effect although the marginal changes
are small. These results suggest that the partial replacement of the Portland cement
of CPB that contains polycarboxylate ether-based superplasticizer with Slag should
improve its environmental performance;

6. A high water-to-cement ratio produced CPB with high hydraulic conductivity, im-
plying that a lower water-to-cement ratio required for CPB with superplasticizer
is beneficial towards the improvement of its permeability, and thus enhancing its
environmental performance.
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