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Abstract: The use of recycled mixed aggregates (RMA) in cement-stabilized materials (CSM) is
an effective way to dispose of and reuse demolition waste. However, this approach faces various
challenges; for example, the drying shrinkage of CSM with 100% RMA is very high, which is
unfavorable for use in road engineering. In order to use a simple method to reduce the drying
shrinkage of the CSM with 100% RMA and give it reliable strength, the effect of fly ash on the
mechanical properties, drying shrinkage, and abrasion resistance of CSM with 100% RMA was
investigated in this study, and the mechanism was examined by X-ray Diffraction (XRD), Mercury
Intrusion Porosimetry (MIP), and Scanning Electron Microscopy (SEM). The results revealed that
the addition of fly ash would decrease the drying shrinkage of CSM with 100% RMA. Moreover,
when the amount of fly ash was less than 20%, the later strength increased remarkably despite the
slight decrease in the early unconfined compressive strength, indirect tensile strength, compressive
and splitting elastic modulus, and abrasion resistance of CSM with 100% RMA. The microstructure
analysis results indicated that fly ash increased the decline range of diffraction intensity of C2S and
C3S at a later age and also helped to optimize the pore structure. Research results of this article can
be used to optimize the mechanical properties of CSM with 100% RMA and guide its application in
road base.

Keywords: fly ash; microstructure; recycled cement-stabilized materials; mechanical properties;
recycled aggregate

1. Introduction

As the process of urbanization continues to accelerate, many old buildings have been
demolished or repaired and consequently a huge amount of construction and demolition
waste has been produced [1]. At present, most construction and demolition waste is either
temporarily stacked, landfilled, or processed into low-value building materials, such as
recycled bricks, and the resource utilization is less than 10% [2,3]. Using construction and
demolition waste instead of natural sand to make recycled mixed aggregates (RMA), which
can be used as cement-stabilized materials (CSM) in road base, can alleviate the shortage of
natural sand, reduce construction costs, and effectively solve the difficulties of construction
demolition waste recycling [4].

The composition of construction demolition waste is relatively complex. The main
components of RMA made by crushing and screening include concrete, bricks, mortar,
glass, and wood chips [5–7], which have poor performance [8–11]. Cachim [12] compared
to the performance of RMA and natural aggregates and found that there were few spherical
or square particles in the RMA, and the shape index of the RMA was more than 130%
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higher than that of natural aggregates. This is not conducive to close combination with
the concrete mixture and affects the workability of concrete [13–15]. Zhou Tang et al. [16]
found that it was more frequent for the recycled concrete that cracks passed through the
aggregate particles in comparison with the natural aggregate. Pitarch [17] used waste tiles,
red clay bricks, and RMA sanitary ware as raw materials to partially replace aggregates.
The results revealed that the density of natural aggregates was higher than that of RMA,
and the water absorption rate varied greatly depending on the material and particle size,
ranging from 0.69% to 18.31%. The properties of CSM change depending on the aggregate
type. Davis et al. [18] studied the effect of four different aggregates (i.e., mica, limestone,
diabase, and granite) on the unconfined compressive strength of CSM. The results indicated
that the relationship between the unconfined compressive strength of CSM and the amount
of cement changes depending on the aggregate type. In addition, the physical properties
of recycled aggregates not only depend on the type of recycled materials, but also on the
manufacturing process [19]. Khatib and Otsuki [20,21] claimed that, due to their poor
properties, recycled aggregates weaken the interface between the aggregate and the cement
paste, resulting in a decrease in the mechanical properties of concrete, resulting lower
elastic modulus, flexural strength and splitting tensile strength [22,23].

To improve the performance of recycled aggregate concrete, Xuan [24–26] conducted
studies on CSM with RMA. They optimized the composition of CSM with RMA with a
response surface methodology and observed that the unconfined compressive strength and
elastic modulus of CSM increased with a smaller amount of bricks, and the tensile strength
of CSM without brick aggregate was twice that of CSM with 100% brick. Researchers have
also attempted to modify CSM by adding active powder or fiber. For example, Messala [27]
used woolen fibers, glass fibers, and steel fibers to investigate the effects of different fiber
types on the properties of recycled aggregate concrete, and the study indicated that the
addition of fibers can effectively optimize the mechanical properties of recycled aggregate
concrete. This enhancement is mainly due to these fibers limit the generation of micro-
cracks and development of crack width in concrete. Baricevic [28] combines human-made
steel fibers with unsorted waste tires and recycled steel fibers to develop an environmentally
and economically hybrid fiber-reinforced concrete; this could save up to 33% per m3 of
concrete without compromising the material properties. Li [29] investigated the influence
of alkali-activated fly ash on the mechanical properties of construction waste and explored
the mechanism of this effect by X-ray Diffraction (XRD), Scanning Electron Microscopy
(SEM) and Fourier Transform Infrared Spectrometry (FTIR). The results indicated that
the material internal structure becomes more compact and compressive strength of the
material can be significantly improved when the alkali-activated fly ash in incorporated.
This is because the material produced by alkali activation has a higher cementing capacity.
Tangchirapat et al. [30] improved recycled aggregate concrete properties by high fineness
of fly ash. The results showed that the slump loss behavior could be improved when the
replacement of fly ash is about 35~50% in recycled aggregate concretes. Lei [31] found that
the durability of recycled concrete can be significantly enhanced by modifying recycled
concrete with PVA emulsion or 1.5% nano-SiO2 solution, and replacing cement with 10%
fly ash.

In this paper, RMA and low-cost fly ash are used to prepare modified CSM with 100%
RMA, and the influence of fly ash on the mechanical properties, drying shrinkage, and
abrasion resistance of this CSM are investigated. The mechanism of action is explored by
XRD, Mercury Intrusion Porosimetry (MIP), and SEM to examine the effects of fly ash on
the phase composition, pore structure distribution, and micromorphology of CSM with
100% RMA. This study provides a simple and easy method to reduce the drying shrinkage
of CSM with 100% RMA, which will promote the application of this CSM in actual projects.
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2. Experiment
2.1. Materials

The materials used were as follows:

1. Ordinary Portland Cement was provided by China Hangzhou Fuyang Qianchao
Cement Co., Ltd., and it met the P;O 42.5 standard of General Portland Cement in
China, and the main components are listed in Table 1.

2. Fly ash, of which the technical performance indicators met the Use of Fly Ash in
Cement and Concrete in China requirements. Its density was 2350 kg/m3, and its
main chemical composition is presented in Table 1.

3. Recycled mixed aggregates were provided by China Hangzhou Qianjiang New City
Government Garden Construction Co., Ltd. It mainly contained concrete rocks,
crushed bricks, ceramic tiles, and wood chips, which accounted for 61.3%, 31.7%,
6.6%, and 0.4% of the total weight, respectively. The particle size specifications were
0–9.5 mm (fine particle size) and 9.5–31.5 mm (coarse particle size), and the aggregate
gradation is displayed in Figure 1, meeting the requirements of the Specifications for
Design of Highway Asphalt Pavement (in China).

Table 1. Chemical composition of cement and fly ash (wt %).

Composition Al2O3 SiO2 CaO Fe2O3 SO3 MgO Free-CaO K2O LOI

Cement 4.36 22.37 61.08 3.38 2.45 2.43 0.68 - 0.8%
Fly ash 26.18 41.83 3.41 3.26 - 0.61 - 1.31 5.6%
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Figure 1. Aggregate gradation of RMA.

2.2. Mix Ratio

Table 2 presents the mixing ratio of CSM with 100% RMA under different fly ash re-
placement rates (i.e., 0%, 10%, 20%, 30%, and 40%), where the content as a proportion of the
mass of cement was 6% and water was 15.8% (according to the Marshall compaction test).

Table 2. The mixing ratio of CSM with 100% RMA under different fly ash replacement rates (wt %).

Specimens RMA Cement Fly Ash Water

CF0 82.1 4.93 0 12.97
CF1 82.1 4.44 0.49 12.97
CF2 82.1 3.94 0.99 12.97
CF3 82.1 3.45 1.48 12.97
CF4 82.1 2.96 1.97 12.97
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2.3. Experimental Method
2.3.1. Method of Sample Preparing and Curing

Following the specification of Standard JTG E51-2009 [32], the RMA, cement, and
water were stirred together for 3 min. Then, the stirred mixture was poured into steel
molds and compacted to form Φ100 mm × H100 mm cylinder specimens for strength tests,
Φ150 mm × H150 mm cylinder specimens for abrasion resistance tests and
100 mm × 100 mm × 400 mm cuboid specimens for drying shrinkage tests. The mixture
was compacted to 3 MPa for 1 min with an automatic compactor after being placed in
the mold. The cylinder specimens were cured for 7, 14, 28 and 180 d, while the cuboid
specimens were cured for 7 d, under room conditions at 20 ◦C temperature and 95%
relative humidity.

2.3.2. Test Methods for Mechanics, Deformation, and Durability

1. Unconfined compressive strength (UCS) and indirect tensile strength (ITS): The
Φ100 mm × H100 mm cylinder specimens were removed from the curing room after curing
for 7 d, 14 d, and 28 d. Additionally, 9 specimens were tested at each age for both UCS and
ITS tests according to JTG E51-2009 [32]. The loading rate was approximately 1 mm/min.
During the loading process, the vertical and horizontal displacements of specimens were
recorded by an extensometer.

2. Compressive elastic modulus: The Φ100 mm × H100 mm cylinder specimens were
removed from the curing room after curing for 180 d, and 9 specimens were tested for
compressive elastic modulus according to JTG E51-2009 [32]. The predetermined load was
divided into five levels. After each load level was applied for 1 min, it was unloaded,
allowing the specimens to recover the elastic deformation. The operation was then repeated
step by step, and the loading rate was set to 1 mm/min.

3. Splitting elastic modulus: The Φ100 mm × H100 mm cylinder specimens were
removed from the curing room after curing for 180 d and 15 specimens were tested for
splitting elastic modulus according to JTG E51-2009 [32]. The predetermined load was
divided into six levels. After each load level was applied for 1 min, it was unloaded,
allowing the specimens to recover the elastic deformation. The operation was then repeated
step by step, and the loading rate was set to 1 mm/min.

4. Drying shrinkage properties: Three cuboid specimens for each group were mea-
sured by dial gauge and electronic scale for drying shrinkage deformation and weight loss
of each specimen within 31 days. The calculation formula is as follows:

Shrinkage strain : εi = δi/l; (1)

Drying shrinkage coefficient : αdi = εi/wi; (2)

Total shrinkage coefficient : ∑ εi/ ∑ wi. (3)

wi represents water loss rate;
δi represents drying shrinkage;
i represents the i-th measured data;
l represents the initial length of the specimen.

5. Abrasion resistance: The Φ150 mm × H150 mm cylinder specimens were removed
from the curing room after curing for the 28 days and 3 specimens were tested for abrasion
resistance tests according to JTG E51-2009 [32]. The specimens were fixed in a scouring
barrel and water was poured into it with 5 mm above the surface of the specimen, and a
10-Hz frequency was used to flush them for 30 min. The mass loss of the specimens was
then measured.

2.3.3. Test Methods for Microstructure

1. Phase composition analysis—XRD: The specimens for XRD analysis were broken
into tiny fragments after the UCS tests were performed, and particles of cement mortar were
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picked and ground to a residue ratio on the 80 µm sieve less than 2% for a specific curing
time. A Bruker D8 ADVACNCE X-ray diffractometer from Bruker Company, Karlsruhe,
Germany was used for the XRD analysis. A CuKa radiation source, scanning angles of
10◦–80◦, a step length of 0.026◦ and an acceleration voltage of 40 kV were applied in
this experiment.

2. Pore structure analysis—MIP: The micropore structure of CSM with RMA was
determined by an MIP test. The specimens for MIP were broken into small fragments and
dried at 60 ◦C for 24 h after performing UCS. The mercury analyzer used for this experiment
was an AutoPore IV9510 automatic mercury porosimeter (McMurraytic Instruments Co.,
Ltd., Norcross, GA, USA).

3. Microscopic morphology and composition analysis—SEM: The specimens used
for SEM were disintegrated into small fragments and the small fragments were sprayed
with gold for 60 s in an SBC-12 small particles sputtering apparatus to make the specimens
conductive. The microscopic structure of the specimens under different magnifications
was observed with a FEG-650 Quanta field emission scanning electron microscope (Ther-
moFisher Scientific Company, Waltham, MA, USA).

3. Results and Discussion
3.1. Influence of Fly Ash on the Mechanical Properties of CSM with 100% RMA
3.1.1. Unconfined Compressive Strength

Figure 2 presents (a) UCS of the CSM with 100% RMA under different fly ash re-
placement rates and (b) the ratio of UCS at different ages to the 7 d strength. Figure 2a
indicates that, as the replacement rate of fly ash increased, the UCS of CSM with 100% RMA
gradually decreased. When the replacement rate of fly ash was ≤20%, the addition of fly
ash had little effect on the UCS of CSM with 100% RMA. However, when the replacement
rate of fly ash was >20%, the incorporation of fly ash significantly reduced the UCS.

To study the influence of age on the UCS of the CSM, the 7 d strength of each group
was used as the benchmark (100%), and the ratios of the 14 d and 28 d strengths to the 7 d
strength were calculated, as illustrated in Figure 2b. It can be seen that, with an increase in
age, the USC of each group of the CSM gradually increased. Specifically, the incorporation
of fly ash greatly increased the strength later, which demonstrates that adding fly ash is
beneficial to the later USC development of the CSM.
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3.1.2. Indirect Tensile Strength

Figure 3 illustrates (a) ITS of CSM with 100% RMA under different fly ash replacement
rates and (b) the ratio of ITS at different ages to the 7 d strength. It can be seen from
Figure 3a that, as the replacement rate of fly ash increased, the ITS of the CSM gradually
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decreased. When the replacement rate of fly ash was ≤20%, the ITS decreased slightly,
whereas when the replacement rate of fly ash was >20%, the ITS decreased significantly.

To study the influence of age on the ITS of the CSM, the 7 d ITS of each group was
used as the benchmark (100%), and ratios of the 14 d and 28 d strengths to the 7 d strength
were calculated, as illustrated in Figure 3b. It can be seen that with an increase in age, the
ITS of the CSM gradually increased. The 14 d ITS of specimens CF0, CF1, CF2, CF3, and
CF4 was higher than that of the 7 d indirect tensile strength, exhibiting an increase in 125%,
132%, 131.3%, 150%, and 223.5%, respectively. The 28 d ITS of the specimens was higher
than the 7 d ITS by 130.4%, 146%, 145.8%, 200%, and 247%, respectively. Thus, an increased
replacement rate of fly ash increased the ITS in the later period, indicating that the addition
of fly ash is beneficial to the development of the later ITS of the CSM.
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3.1.3. Compressive and Splitting Elastic Modulus

Figure 4 illustrates the compressive and splitting elastic modulus of CSM with 100%
RMA under different fly ash replacement rates, where CF0 was used as a baseline. It can
be seen that when the replacement rate of fly ash was 10%, 20%, 30%, and 40%, compared
to the baseline, the compressive elastic modulus of the CSM was reduced by 9.8%, 25.1%,
36.2%, and 38.0%, respectively, while the splitting elastic modulus was reduced by 17.7%,
31.5%, 44.2%, and 51.4%, respectively. This indicates that the incorporation of fly ash can
significantly reduce the compressive and splitting elastic modulus of the CSM.
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3.2. Influence of Fly Ash Replacement Rate on Drying Shrinkage and Deformability of CSM with
100% RMA

Figure 5 presents the changes in (a) drying shrinkage strain and (b) water loss rate
of CSM with 100% RMA over time under different fly ash replacement rates. The results
indicate that as the age increased, the drying shrinkage strain and water loss rate of the
CSM continued to increase. The 31 d drying shrinkage strain of specimens CF0, CF1,
CF2, CF3, and CF4 was 833 µε, 817 µε, 740 µε, 630 µε, and 525 µε, respectively, and
the water loss rate was 12.65%, 13.68%, 13.94%, 14.56%, and 15.34%, respectively. These
results indicate that with an increase in the replacement rate of fly ash, the dying shrinkage
strain of the CSM gradually decreases while the water loss rate gradually increases. This
may be because the specific surface area of fly ash is large and its secondary hydration
reaction leads to an increase in water demand, which makes the water loss rate of CSM
with 100% RMA gradually increase with an increase in the fly ash replacement rate. In
addition, fly ash optimized the internal structure of the CSM by refining large holes, thereby
improving the drying shrinkage performance of the CSM by the filling effect and secondary
hydration reaction.
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replacement rates.

Figure 6 presents the total drying shrinkage coefficient of CSM with 100% RMA under
different fly ash replacement rates. It can be seen that the total shrinkage coefficient of
specimens CF0, CF1, CF2, CF3, and CF4 at an age of 31 d was 65.84 µε/%, 59.72 µε/%,
53.06 µε/%, 43.27 µε/%, and 34.22 µε/%, respectively. The higher the replacement rate
of fly ash, the lower the total shrinkage coefficient. When the replacement rate of fly ash
was 10%, 20%, 30%, and 40%, the total drying shrinkage coefficient was reduced by 9.3%,
19.4%, 34.3%, and 48.03%, respectively, compared to the baseline group (CF0). The test
results indicate that the incorporation of fly ash can significantly reduce the total drying
shrinkage coefficient of the CSM and can significantly improve the ability of the CSM to
resist drying shrinkage.
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Figure 6. Total drying shrinkage coefficient of CSM with 100% RMA under different fly ash replace-
ment rates.

3.3. Influence of Fly Ash Replacement Rate on Abrasion Resistance of CSM with 100% RMA

Figure 7 illustrates the mass loss rate of CSM with 100% RMA under different fly ash
replacement rates. It can be seen that the mass loss rate of specimens CF0, CF1, CF2, CF3,
and CF4 was 0.094%, 0.101%, 0.118%, 0.132%, and 0.149%, respectively. The higher the
replacement rate of fly ash, the higher the mass loss rate. When the replacement rate of fly
ash was 10%, 20%, 30%, and 40%, the mass loss rate was increased by 7.4%, 25.5%, 40.4%,
and 58.5%, respectively, compared with the baseline, indicating that the incorporation of
fly ash can reduce the abrasion resistance of the CSM.
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3.4. Effect of Fly Ash Replacement Rate on the Microstructure of CSM with 100% RMA and
Mechanism Analysis
3.4.1. XRD Mineral Composition Analysis

Figure 8 presents the XRD pattern analysis results of CSM with 100% RMA under
different fly ash replacement rates. The main phase composition of the CSM included quartz
(SiO2), limestone (CaCO3), dicalcium silicate (C2S), tricalcium silicate (C3S), hydrated
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calcium silicate gel (C-S-H), and ettringite (AFt). To compare and analyze the influence
of the fly ash replacement rate on the XRD phase of the CSM, the characteristic peaks of
C2S and C3S at 2θ = 32.2◦ and 32.6◦, and the characteristic peaks of CaCO3 and C-S-H at
2θ = 29.4◦ were selected. As illustrated in Figure 8, at the age of 28 d, the characteristic
peak area of C2S, C3S, CaCO3, and C-S-H of the baseline group (CF0) was the largest.
After adding fly ash, the characteristic peak area of C2S and C3S of groups CF1, CF2,
CF3, and CF4 gradually decreased. Although C-S-H is difficult to detect, the dispersion
peak of C-S-H can be found. The characteristic peaks of CaCO3 and C-S-H also slightly
decreased, indicating that as the replacement rate of fly ash increased, cement clinker
minerals decreased, and the resulting C-S-H gel also decreased, thus explaining the reason
for the compressive and tensile strength reduction.
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Figure 8. X-ray diffraction pattern analysis results of fly-ash-modified CSM with 100% RMA and a partial enlarged view of
characteristic peaks at an age of 28 d.

The semi-quantitative method was further used to calculate the peak intensities of
C2S, C3S, and C-S-H (excluding CaCO3 of the CF0 group) of the fly-ash-modified CSM
with 100% RMA at different ages. The calculation results are presented in Figure 9. It
can be seen that with an increase in age, the C2S and C3S peak intensities of groups CF0,
CF1, CF2, CF3, and CF4 gradually decreased, while the C-S-H peak intensities gradually
increased. The main reason is that the cement clinker minerals C2S and C3S in the CSM
were continuously consumed with the increase in age and gradually hydrated to form
C-S-H gel. At the same age, with an increase in the fly ash replacement rate, the C2S, C3S,
and C-S-H peak strengths of the CSM tended to gradually decrease. This is because part
of the cement was replaced by fly ash. The higher the fly ash replacement rate, the fewer
cement minerals contained in the stabilized material, and the fewer cement hydration
products at the same age.

In terms of the macroscopic performance, the strength of the CSM gradually decreased
as the replacement rate of fly ash increased. The C2S and C3S peak intensity of groups CF1,
CF2, CF3, and CF4 at an age of 7 days was 213.21, 225.40, 187.11, and 172.48, respectively,
which was 12%, 6.9%, 22.7%, and 28.8% lower than the 242.21 peak intensity of the baseline
group (CF0), respectively. When the replacement rate of fly ash was >20%, the C2S, C3S,
and C-S-H peak strength of the CSM was significantly reduced. This may be the reason for



Minerals 2021, 11, 992 10 of 15

the reduction in the compressive and tensile strength of the CSM when the replacement
rate of fly ash was >20%.
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3.4.2. MIP Pore Structure Analysis

Figure 10 presents the pore structure data of fly-ash-modified CSM with 100% RMA
at an age of 7 d and 28 d. The results indicate that the porosity of groups CF0, CF1, CF2,
CF3, and CF4 at 7 d was 32.42%, 31.19%, 30.8%, 29.81%, and 30.15%, respectively. As the
replacement rate of fly ash increased, the porosity shows the trend of first decreasing and
then increasing. At 28 d, the average pore size of groups CF0, CF1, CF2, CF3, and CF4
was 27.6 nm, 26 nm, 25.7 nm, 29.1 nm, and 32 nm, respectively, displaying the trend of
first decreasing and then increasing. This indicates that, when the replacement rate of fly
ash is low, it is beneficial to reduce the porosity and average pore size of the CSM. The
reason is that when the fly ash content is low, it can fill the voids between the aggregates
to make the CSM denser and optimize the pore structure. However, the addition of fly
ash is not conducive to the hydration of cement. When the amount of fly ash is too high,
the cement hydration products will decrease, which will help the formation of the internal
pore structure of the CSM. By comparing and analyzing the pore structure data of different
ages, it can be seen that with increasing age, the average pore size and porosity of the
CSM were significantly reduced. This indicates that with increasing age, cement and fly
ash continue to hydrate, and the hydration products gradually fill the pores in the CSM,
thereby optimizing the porosity and average pore size of the CSM.

According to Zhongwei’s classification of microscopic pores in cement-based materials
into four levels according to pore size [33], the effect of the replacement rate of fly ash on
the pore structure distribution of the CSM was further compared and analyzed. Figure 10
indicates that, at an age of 7 d, the proportion of harmful pores (>200 nm) in groups CF0,
CF1, CF2, CF3, and CF4 was 54.32%, 46.49%, 43.33%, 42.82%, and 47.22%, respectively,
while the proportion of non-hazardous pores (<20 nm) was 20.69%, 20.72%, 23.14%, 20.67%,
and 18.38%, respectively. The proportion of harmful pores gradually decreased and the
proportion of non-hazardous pores first increased and then decreased with an increasing
fly ash replacement rate. This indicates that the incorporation of fly ash can reduce the
proportion of large pores in the CSM and optimize its pore structure distribution.

Comparative analysis of the pore structure distribution of fly-ash-modified CSM
with 100% RMA at 7 d and 28 d indicates that, with an increase in age, the proportion of
harmful pores (>200 nm) of the fly-ash-modified CSM with 100% RMA decreased while
the proportion of harmless pores (<20 nm) increased. For example, in the CF1 group, the
proportion of harmful pores (>200 nm) decreased from 46.49% at 7 d to 35.2% at 28 d, while
the proportion of harmless pores (<20 nm) increased from 20.72% at 7 d to 25.14% at 28 d.
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This occurred because the C-S-H gel produced by the continuous hydration of fly ash and
cement gradually filled the pores of the CSM.

The main reason for the drying shrinkage deformation of CSM is the evaporation
and loss of internal moisture. Fly ash can reduce the porosity and average pore size of
the CSM, and moisture inside the CSM cannot easily evaporate. Furthermore, fly ash can
significantly optimize the pore structure distribution, reduce the proportion of harmful
pores where water can easily evaporate, and increase the proportion of small pores that are
harmless and where it is more difficult for water to evaporate. Therefore, the incorporation
of fly ash can effectively improve the drying shrinkage properties of the CSM.
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3.4.3. SEM Microscopic Morphology Analysis

Figure 11 presents the microstructure diagram (×1000) of CSM with 100% RMA at 7 d
under different fly ash replacement rates. It can be seen that when the replacement rate of
fly ash increased, more spherical fly ash particles filled the aggregates. The baseline group
(CF0), had a greater number of pores, and the pores were mostly large in diameter. With an
increased fly ash replacement rate, the CF1, CF2, and CF3 specimens exhibited fewer pores,
and large pores were significantly reduced, with mostly small pores remaining. This result
is consistent with the aforementioned MIP pore structure analysis results.
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Figure 11. Microstructure diagram of CSM with 100% RMA at 7 d under different fly ash replacement
rates (×1000). (Note: the upper left is CF0, the upper right is CF1, the lower left is CF2, the lower
right is CF3).

Figure 12 displays the micromorphology of CF1 at different ages. It can be seen that
the spherical particles were fly ash, while the needle-like and flocculated substances were
cement hydration products. Comparative analysis of the microscopic morphology of CSM
at 3 d, 7 d, 14 d, and 28 d indicates that in the early period of 3 d and 7 d, there were more
cement hydration products, and the fly ash particles were still smooth and spherical. This
indicates that the cement had begun to hydrate in the early stage; however, the fly ash had
not yet undergone a hydration reaction, and the hydration rate was relatively low. As the
age increased, the fly ash particles gradually began to hydrate from the surface. At 28 d,
the fly ash particle ball began to collapse, and intersected with the surrounding cement
hydration products, filling the pores of the CSM.
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4. Conclusions

This study examined the influence of fly ash on the mechanical properties, drying
shrinkage deformation, and abrasion resistance of CSM with 100% RMA, and explored
the mechanism of action by XRD, MIP, SEM, and other microscopic methods. The main
conclusions are as follows:

1. The incorporation of fly ash can reduce the unconfined compressive strength, indirect
tensile strength compressive and splitting tensile rebound modulus of CSM with
100% RMA at all ages. However, it is benefit to the later strength development as the
incorporation of fly ash. Moreover, When the replacement rate of fly ash was ≤20%,
fly ash had little effect on the strength of CSM with 100% RMA. When the replacement
rate of fly ash was greater than 20%, the strength of the CSM was significantly reduced.

2. The incorporation of fly ash can significantly improve the drying shrinkage perfor-
mance, increase the mass loss, and reduce abrasion resistance of CSM with 100% RMA.
When the replacement rate of fly ash was 10%, 20%, 30%, and 40%, the total drying
shrinkage coefficient was reduced by 9.3%, 19.4%, 34.3%, and 63.21%, respectively,
compared to baseline (0%).

3. XRD phase analysis results revealed that the incorporation of fly ash reduced the early
cement clinker mineral consumption and C-S-H gel generation of CSM with 100%
RMA. However, with an increase in age, fly ash continued to hydrate, and the later
cement clinker mineral consumption and C-S-H gel production gradually increased,
explaining the macroscopic reason for the greater increase in the later strength of the
fly-ash-modified CSM with 100% RMA.

4. MIP pore structure analysis and SEM results indicated that fly ash can reduce the
porosity and average pore size of CSM with 100% RMA and optimize the pore
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structure distribution by filling the gaps between the aggregates. The proportion of
harmful pores in CSM with 100% RMA gradually decreased while the proportion
of harmless pores gradually increased, which may be the reason for the improved
drying shrinkage performance of CSM with 100% RMA.

There are many modification methods for CSM with 100% RMA. In this study, low-
cost, simple and feasible fly ash was used to improve the SCM performance. However,
there are still many performance modification methods that can be tried, such as blending
of fibers and nanomaterials.
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