

Article Rapid Extraction Chemistry Using a Single Column for ²³⁰Th/U Dating of Quaternary Hydrothermal Sulfides

Li-Sheng Wang ^{1,2,3,*}, Ye-Jian Wang ⁴, Jun Ye ⁵, Xue-Feng Wang ^{1,3}, Ju-Le Xiao ^{1,2,6} and Zhi-Bang Ma ¹

- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; xfwang@mail.iggcas.ac.cn (X.-F.W.); jlxiao@mail.iggcas.ac.cn (J.-L.X.); mzb@mail.iggcas.ac.cn (Z.-B.M.)
- ² College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- ³ Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China
- ⁴ Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; yjwang@sio.org.cn
- ⁵ Laboratory of Marine Geology and Geophysics, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; yejun@fio.org.cn
- ⁶ Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
- * Correspondence: wangls@mail.iggcas.ac.cn

Abstract: ²³⁰Th/U dating can provide high-precision age constraints on Quaternary hydrothermal sulfides. However, low content of U and Th often involves extraction chemistry for the separation and enrichment of U and Th, but these chemical processes are very complex. We developed a simplified procedure consisting of total sample dissolution and single-column extraction chemistry, which can reduce the time and improve the accuracy of the dating. Concentrated HCI-HF followed by HNO3 was added to ensure complete dissolution. A single column filled with 0.4 mL of AG 1-X8 anion resin was used, then 8 M HNO₃, 8 M HCl and 0.1 M HNO₃ were used to elute most of the matrix metals, Th and U. This process provided more than 95% recoveries for U and Th, and negligible blanks. Meanwhile, Pb and Bi interferences were tested and showed no effect on the U and Th isotope ratio. The ²³⁰Th/²³⁸U activity of the Geological Survey of Japan geochemical reference material JZn-1 in secular equilibrium was determined and showed a radioactive equilibrium (1.00 ± 0.01 , n = 5, all errors 2σ) and an in-house standard QS-1 was consistent to 0.0078 ± 0.0001 (n = 8, $\pm 2\sigma$) with an average age of 705 \pm 10 yrs BP (n = 8, $\pm 2\sigma$). The technique greatly shortens the sample preparation time and allows more concise and effective analysis of U-Th isotopes. It is ideally suited for the high-precision ²³⁰Th/U dating of Quaternary submarine hydrothermal sulfides and sulfides from other settings.

Keywords: ²³⁰Th/U dating; quaternary hydrothermal sulfides; MC-ICPMS; extraction

1. Introduction

²³⁰Th/U dating, also called U-Th dating or ²³⁰Th-²³⁴U-²³⁸U dating, is a conventional high-precision tool for dating Quaternary carbonate [1–4] and sulfides [4–9]. This process can act as an accurate chronological control for submarine hydrothermal systems and provides important time constraints for the formation mechanism, the history of transformation and the growth rate of large sulfide deposits [10–15]. The ages obtained may be continuous or scattered and can provide information regarding hydrothermal metallogenic evolution when combined with complimentary geochemical studies [5,11,15].

The ²³⁰Th/U dating method is based on measuring the degree of secular equilibrium between ²³⁸U and its daughters, ²³⁴U and ²³⁰Th. As the abundances of ²³⁴U and ²³⁰Th are low, the precision of ²³⁰Th/U dating is limited by counting statistics. Therefore, before analysis, it is necessary to enrich and purify the U and Th in the samples. In recent years, with the development and application of high-precision mass spectrometry (multicollector inductively coupled plasma mass spectrometry; MC-ICPMS), per mil and even epsilon-level

Citation: Wang, L.-S.; Wang, Y.-J.; Ye, J.; Wang, X.-F.; Xiao, J.-L.; Ma, Z.-B. Rapid Extraction Chemistry Using a Single Column for ²³⁰Th/U Dating of Quaternary Hydrothermal Sulfides. *Minerals* **2021**, *11*, 983. https:// doi.org/10.3390/min11090983

Academic Editors: Chiharu Tokoro, Shigeshi Fuchida and Yutaro Takaya

Received: 22 July 2021 Accepted: 6 September 2021 Published: 9 September 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). (1 part in 10,000) precision of 234 U and 230 Th analysis have been widely achieved [1,16–22]. The dating range has also been extended from the modern age to 640,000 yrs BP [1,3]. At present, 230 Th/U dating is mainly applied to carbonate materials, whereas its use for sulfides is still limited.

As with authigenic carbonate, submarine Quaternary sulfides are known to meet the two preconditions for 230 Th/U dating, namely: (1) a large amount of highly soluble U and almost no Th are taken up during mineral deposition; (2) after deposition, the system remains closed to U and Th. According to the literature, the 238 U content of most submarine hydrothermal sulfide minerals ranges from several ppb to tens of ppm, whereas the 232 Th content is generally less than a few ppb [7–9,13,23,24].

U and Th separation and enrichment methods for sulfides have mostly been established by modifying the chemical processes used for carbonate dating. For Quaternary carbonate dating, these methods generally involve sample digestion, double spike addition, coprecipitation and U-Th separation by ion-exchange chromatography. Compared with carbonates, submarine hydrothermal sulfides have much more complex compositions. Sulfides usually contain many metals (Fe, Zn, Cu, Pb, etc.) and sulfur, but lower uranium contents; therefore, a larger sampling size is needed than for carbonates, which leads to difficulties in sample complete dissolution or re-precipitation with the same chemical conditions. Th tends to adsorb on the insoluble resistate minerals [25], resulting in a lower Th content or poor data repeatability for incompletely dissolved samples.

In typical literature procedures, several grams of sulfide are dissolved in concentrated nitric acid at 85 °C for several days, during which any insoluble minerals are discarded [7,9]. Then, Fe³⁺ and OH⁻ are added to the solution in sequence to form Fe(OH)₃ precipitate. U and Th are coprecipitated with Fe(OH)₃ [6] and loaded directly into double columns packed with AG 1-X8 and U/TEVA resins to separate the U and Th [7,9] using HCl and HNO₃. The separated U and Th fractions are analyzed using MC-ICPMS or thermal ionization mass spectrometry (TIMS) [6,10,12,26–28]. However, our preliminary experiments showed that such procedures do not completely dissolve sulfide samples and are subject to significant matrix effects, resulting in poor precision. Therefore, the accuracy of dating could not be guaranteed. For example, we obtained 249,630 ± 6025 yrs and 551 ± 65 yrs (unpublished data) for the same sulfide sample.

For these reasons, it was necessary to develop one more simple, accurate and reproducible method to reduce the sample mass, labor and time costs. To solve these problems, a rapid extraction procedure using a single column for U and Th in sulfides was designed using the AG 1-X8 resin. In our work, the dissolving efficiency performed better than others [6,7,9]; the separation of U and Th could be completed within one day and the accuracy and precision for the U and Th isotope ratios and the ²³⁰Th age were improved. Using this method, repeated analyses of the Geological Survey of Japan geochemical reference material JZn-1 (about 65 Ma) and an in-house hydrothermal sulfide standard QS-1 gave very consistent results, which suggest that QS-1 is potentially a very good Quaternary U-Th age reference material.

2. Materials and Methods

2.1. Reagents and Standards

Nitric acid (HNO₃, \approx 14 M) and hydrochloric acid (HCl, \approx 12 M) (CMOS grade, Sinopharm Chemical Reagent Co., Ltd., Shanghai, China) were purified three times using a Savillex DST-1000 sub-boiling system (Savillex, Eden Prairie, MN, USA) at 30 °C. All reagents and standards were diluted with the purified acids and ultrapure water (18.2 M Ω ·cm; Milli-Q system, EMD Millipore, Billerica, MA, USA). The ultrapure hydrofluoric acid (HF, 46.0%–51.0%) and perchloric acid (HClO₄) are from Kanto Chemical Co., Inc. (Tokyo, Japan).

U and Th were separated from the sample matrix through an AG1-X8 column (200–400 mesh, chloride form, Bio-Rad [29], Hercules, CA, USA) with a 0.4 mL resin volume. S can form volatile H_2S after dissolution, whereas most matrix and interfering

elements exist as cations. So, a standard sulfide simulation solution (SS-1) without S was prepared by mixing various standard solutions, including 100 ppm Cu, Fe, Zn and Pb (plasma level, Alfa Aesar, Tewksbury, MA, USA); 1 ppm Na, K Ca and Mg; 140 ppb U; 100 ppb Th and a 10 ppb multi-element standard solution (Al, As, B, Ba, Be, Bi, Cd, Co, Cr, Ga, Li, Mg, Mn, Ni, Sb, Sn, Sr, Ti, Tl and V, NCS, Beijing, China).

The accuracy of ${}^{235}\text{U}/{}^{233}\text{U}$, $\delta^{234}\text{U}$ (equal to $({}^{234}\text{U}/{}^{238}\text{U})_{activity} - 1) \times 1000$) and ${}^{230}\text{Th}/{}^{232}\text{Th}$ were determined by one work standard U (IU-1, prepared with NBS SRM 950a and ${}^{233}\text{U}-{}^{236}\text{U}$ double spike, ${}^{235}\text{U}/{}^{233}\text{U} = 13.01 \pm 0.50$ and $\delta^{234}\text{U} = (-18.35 \pm 2.00)\%)$ and one Th isotopic standard (ITh-1). ITh-1 was prepared from the carbonate standard GBW04412 and NCS ${}^{232}\text{Th}$, and the long-term mean value of ${}^{230}\text{Th}/{}^{232}\text{Th}$ for ITh-1 was 0.0085 \pm 0.0001, which was calibrated by a gravimetric working standard Th-1 (${}^{230}\text{Th}/{}^{232}\text{Th} = (51.68 \pm 0.26) \times 10^{-6}$) and Th-2 (${}^{230}\text{Th}/{}^{232}\text{Th} = (5.083 \pm 0.008) \times 10^{-6}$) [28].

A geochemical reference material, zinc ore JZn-1, was obtained from the Geological Survey of Japan at about 65 Ma (in secular equilibrium) [29]. JZn-1 is a crude ore from the Kamioka Pb-Zn mine in Gifu Prefecture, Japan, consisting of hedenbergite, quartz, calcite, sphalerite and epidote [29]. A marine hydrothermal sulfide sample QS-1 collected from the Wocan Hydrothermal Field on the slow-spreading Carlsberg Ridge in the Indian Ocean [30] was analyzed to verify the accuracy and precision of the method for ²³⁰Th/U dating.

2.2. Sample Digestion and U/Th Purification

After removing the surface dirt by a physical method, the fresh parts were selected to be peeled off, pulverized using a tungsten steel crusher to 200-mesh powder and subjected to U and Th elemental analysis.

All chemical procedures were performed in a class-100 clean hood at the Uranium Series Chronology Laboratory, Institute of Geology and Geophysics, Chinese Academy of Sciences (IGGCAS), Beijing, China.

For ample digestion, 20–50 mg of powder was placed in a pre-cleaned 7 mL PFA beaker (Savillex, Eden Prarie, MN, USA). A total of 2 mL of mixed acid (12 M HCl/46% HF = 3:1) was added into the beaker, seated for 1 h and then sealed tightly. Subsequently, the beaker was heated on a hot plate at 120 °C for 12 h. After cooling, 0.5 mL of 14 M HNO₃ was added into the sample and the resealed beaker was heated at 120 °C for 6 h. After cooling, 0.1 mL of HClO₄ and a 0.1–0.5 mL U-Th spike with a known concentration $(^{233}U/^{236}U = 1.006747$ and 229 Th) were added (to ensure identical mass bias, the optimum $^{235}U/^{233}U$ ratio in the samples was 10–30 [31]). After drying on a hot plate at 180 °C, the sample was dissolved in several drops of 14M HNO₃ and then dried again. Finally, the sample was dissolved in 0.2 mL of 8 M HNO₃ and loaded on the ion-exchange chromatography resin.

For the purification and separation of U and Th, a PFA column was filled with approximately 0.4 mL of AG 1-X8 resin (Table 1, column volume = 0.5 mL, liquid volume = 1.5 mL, with a polyethylene frit at the bottom; see Wang et al. for details [6]) and pre-cleaned using acid (Table 1). Then, 0.2 mL of digested sample in 8 M HNO₃ was loaded on the resin. The sample matrix elements were eluted using 1.0 and 0.5 mL of 8 M HNO₃. Then, a > 95% Th fraction was eluted using 1.0 and 0.5 mL of 8 M HCl and a > 95% U fraction was eluted using 1.0 and 1.0 mL of 0.1 M HNO₃.

Subsequently, 1 drop of HClO₄ was added to both of the Th and U fractions to remove the trace organic matter. They were then dried on a hotplate at 180 $^{\circ}$ C, dissolved in 2 drops of 14 M HNO₃, dried and dissolved in 0.4 M HNO₃ and 0.01 M HF for MC-ICPMS measurements.

Two parallel chemical blanks for the entire process were 8.2 ± 0.4 pg for 238 U, 0.3 ± 0.7 fg for 230 Th and 2.5 ± 0.1 fg for 232 Th, which were negligible for the measured samples. The monitored recoveries (the ratio of the recovered to the total amount of known) of U and Th were better than 95%.

Step	Acid Condition	Volume (mL)	Elements Eluted	Fractions
Clean	8 M HNO3	1.0		
		0.5		
	8 M HCl	1.0		
		0.5		
	H ₂ O (18.2 MΩ·cm)	1.0		
		1.0		
Condition	8 M HNO ₃	1.0		
		1.0		
Load Sample	8 M HNO3	0.2		а
Wash	8 M HNO3	1.0	matrix elements	b
		0.5	matrix elements	с
Elute Th	8 M HCl	1.0	Th	d
		0.5	Th	e
Elute U	0.1 M HNO3	1.0	U	f
		1.0	U	g

Table 1. U and Th separation using an AG 1-X8 resin column.

2.3. Instrumental Analysis

The U and Th isotope analyses were performed using MC-ICPMS (Neptune, Thermo Fisher, Waltham, MA, USA). The sample solution was introduced using a PFA 50 μ L/min Nebulizer on an Aridus II desolvating nebulizer system. The U and Th isotopes were analyzed in a peak-jumping mode, using one retarding potential quadruple lens (RPQ) system with a secondary electron multiplier (SEM) to improve the abundance sensitivity in the following order: ²³³U-²³⁴U-²³⁵U-²³⁶U (²³⁸U was calculated from the measured ²³⁵U amount using a constant 137.818 [32]) and ²²⁹Th-²³⁰Th and ²³²Th (²³²Th was determined using a Faraday cup and calibrated by ²³⁸U(Faraday)/²³⁶U(SEM) and ²³⁸U(Faraday)/²³⁵U(SEM)) [1,27]. We estimated the tailing effect of ²³⁸U by measuring the ion counts at m/z positions 232.5-233.5-234.5-235.5-236.5 and ²³²Th at 228.5-229.5-230.5. The detailed information was described by Cheng et al. [1] and Wang et al. [27]. The SEM/Faraday intensity conversion factor was monitored by a ²³⁵U amount of 5–7 mv every other two or three samples and the drift was less than 0.5‰ per hour with no effect on age accuracy.

We obtained transmission efficiencies of 1%–2% for the U and Th in routine measurements by a peak-jumping mode with an SEM [1,27]. All tests were conducted in a block of 500 cycles, with each cycle having an integration time of 3 s. The typical internal precision for one 234 U/ 235 U block was better than 5 × 10⁻⁵. Instrumental mass bias and shift were corrected using a 233 U/ 236 U double spike and the standard deviation of the mass bias factor for routine tests between adjacent ratios was less than 1%.

During daily analysis, the signal stability was monitored using standard NBS-CRM 112A, which spiked with $^{229}\text{Th}-^{233}\text{U}-^{236}\text{U}$ with a known isotope ratio. The long-term test results gave a mean value of (52.84 \pm 0.03) \times 10⁻⁶ (n = 12, $\pm 2\sigma$) for $^{234}\text{U}/^{238}\text{U}$ and (-38.5 \pm 0.03) ‰ (n = 12, $\pm 2\sigma$) for ^{234}U , which agreed with the reference values (52.841 \pm 0.082 and -38.7 \pm 1.5 (n = 82) for $^{234}\text{U}/^{238}\text{U}$ and ^{234}U) within 2 σ error [28].

The U and Th isotope ratios were collected by MC-ICPMS, then isotope fraction corrected, quality controlled (closely related to the precision and accuracy) and age calculated via the equation shown in Formulas (1) and (2) using Excel. The specific instrument parameters and the cup configurations for data acquisition are shown in Tables 2 and 3.

Instrument	Parameter	Setting
	RF power	1250 W
	Cooling gas	16 L/min
MC ICDMC	Auxiliary gas	1.8 L/min
MC-ICPMS	Sample gas	1 L/min
	Extraction voltage	-2000 V
	Low resolution	300
	Sample injection rate	50 μL/min
	Ar sweep gas	2 L/min
CETAC Aridus II	Nitrogen gas	3 mL/min
	Spray chamber temperature	110 °C
	Membrane oven temperature	160 °C

Table 2. Instrument parameters.

Table 3. Faraday cup configurations for measurement of U and Th by MC-ICPMS.

Element	L1	C(SEM)	H1	H2	H3
U		233 U 234 U 235 U 236 U		²³⁸ U	²³⁸ U
Th		²²⁹ Th ²³⁰ Th		²³² Th	

Equations (1) and (2) were used to calculate age *t*:

$$\left[\frac{230_{\text{Th}}}{238_{\text{U}}}\right]_{\text{activity}} = 1 - e^{-\lambda_{230}t} + \left(\frac{\delta^{234}U_t}{1000}\right) \left(\frac{\lambda_{230}}{\lambda_{230} - \lambda_{234}}\right) \left(1 - e^{(\lambda_{234} - \lambda_{230})t}\right)$$
(1)

$$\delta^{234} \mathbf{U}_{t} = \left[\frac{\left(\frac{234_{\rm U}}{238_{\rm U}}\right)}{\left(\frac{234_{\rm U}}{238_{\rm U}}\right)_{eq}} - 1 \right] \times 10^{3}$$
(2)

where λ is the decay constant, *t* is the age, and *eq* is secular equilibrium. $\lambda_{230} = 9.17052 \times 10^{-6} a^{-1} [1]$, $\lambda_{234} = 2.82206 \times 10^{-6} a^{-1} [1]$, $\lambda_{238} = 1.55125 \times 10^{-10} a^{-1} [33]$.

Mineralogical analysis of sample QS-1 was measured using X-ray diffraction (XRD) by a D/max 2400 system with a Cu target tube and an X'Celerator detector (Rigaku Corporation, Japan) under the conditions of a tube voltage of 40 kV and a tube flow of 40 mA. The major elements were quantitatively determined by inductively coupled plasma optical emission spectrometry (ICP-OES, Thermo Fisher, USA) and uncertainty was within $\pm 5\%$.

3. Results and Discussion

3.1. Impact of Dissolution Protocols on U and Isotopes

Various dissolution methods for submarine hydrothermal sulfides were evaluated. Aqua regia [4–6,26], HNO₃ [7,9] or HNO₃ + HF were usually used in various references, but insoluble residues, mainly including undissolved silicates, sulfur, the precipitation and residual BaSO₄, were rarely reported. Sulfur could be effectively oxidized by HNO₃ + HBr generating more toxic Br₂ [34]. The modified dissolution method for the whole rock of the hydrothermal sulfide deposit gave much better dissolving efficiency and took less time. Using the HCl + HF and HNO₃ protocol in this study (in Section 2.2), a less than 100 mg sample can be completely dissolved with a total U \geq 5 ng in one working day (see Table 4).

No.	Mass (g)	Dissolution Acid	Resin	Dissolution Time (Day)	Instrument	Reference
1	2.0-4.0	aqua regia	AG 1 \times 8 or AV-17	>2	α-couting and MC-ICP-MS	Lalou et al., 1985, 1986 [4,5]; Kuznetsov et al., 2006 [26]; Wang et al., 2019 [6]
2	1.0–2.0	$HNO_3 + H_2O$	AG1-X8 and U/TEVA	2–7	ICPMS and MC-ICP-MS	Takamasa et al., 2013 [9]; Ishibashi et al., 2015 [12]; Nakai et al., 2018 [7]
3	<0.1	HCl + HF followed by HNO ₃	AG 1-X8	<1	MC-ICP-MS	This study

Table 4. Dissolution conditions and resin types in sulfide dating.

3.2. Yields of Th and U, and Leaching

The most abundant elements after digestion in sulfides were Fe, Cu, Zn and Pb, which account for up to 95% of the total. Therefore, the elution efficiencies of Fe, Cu, Zn and Pb were mainly to be considered during leaching. Usually, Fe(OH)₃ precipitation was used to adsorb most of the U and Th from carbonates or sulfides for removing most of the Ca, Mg and other major elements [1,6]. We compared the element-selective adsorption efficiencies of six elements (Fe, Cu, Zn, Pb, Th and U) during Fe(OH)₃ precipitation to the standard solution SS-1. It showed that the precipitation operation could not efficiently remove Cu and Zn. The recovery rates of Pb, Th and U were similar to those of Fe (Figure 1) and incomplete Fe precipitation could lead to low U and Th recoveries. Thus, Fe(OH)₃ precipitation should be considered abandoned for Quaternary hydrothermal sulfides.

Figure 1. Recovery efficiencies of six elements for SS-1 using Fe(OH)₃ precipitation.

AG1-X8 is a common anion exchange resin used in the analysis of geological samples. As shown in Figure 2, the separation of Th and U was investigated using 0.4 mL of AG1-X8 resin for the standard solution SS-1 (see Section 2.1). Fe, Cu, Zn and Pb were completely eluted by less than 3.0 mL of 8 M HNO₃. Recoveries of Th and U (measured vs. loaded) were greater than 95%. Therefore, we considered another separation step in the reports [7,9,12] to separate omittable Pb.

3.3. Impact of Pb and Bi on U-Th Isotopes

As many studies have found, Pb and Bi can produce peaks at the masses ranging from U to Th [7,9], but the studies have been not very clear about the interfering species. So, we performed Pb and Bi interference tests. Eleven standards were prepared with compositions similar to the separated U fractions of the sample, but with different amounts of Pb and Bi (no addition, 50 ppb and 100 ppb). The measured ${}^{235}\text{U}/{}^{233}\text{U}$ atom ratios and $\delta^{234}\text{U}$ of the standards are shown in Figure 3. ${}^{235}\text{U}/{}^{233}\text{U}$ isotopic ratios and $\delta^{234}\text{U}$ were all within 2σ error, indicating that there was little interference from Pb and Bi. The ${}^{230}\text{Th}/{}^{232}\text{Th}$ isotopic ratios in the twelve standards are shown in Figure 4 and are also close to the standard value (within $\pm 2\sigma$ error).

Figure 2. Relative recovery (measured vs. loaded) and elution fractions for the standard SS-1.

Figure 3. Effects of Pb and Bi on ${}^{235}U/{}^{233}U$ and $\delta^{234}U$ of IU-1.

Figure 4. Effects of Pb and Bi on ²³⁰Th/²³²Th isotopic ratio of ITh-1.

3.4. High-Precision ²³⁰Th/U Dating of Sulfide Standard and Geological Sample

Until now, there has been no international sulfide standard for ²³⁰Th/U dating. Therefore, we chose the Geological Survey of Japan geochemical reference material JZn-1 (a sulfide ore powder) to determine the technical reliability. As shown in Table 5, the five independent measurements were consistent within $\pm 2\sigma$ error. The ²³⁸U content varied from 2033 to 2042 ppb; the ²³²Th from 9178 to 9218 ppb and the δ^{234} U from 17 to 20‰. The ²³⁰Th/²³⁸U activity ratio was the same value, 1.00 \pm 0.01 (n = 5, $\pm 2\sigma$) within $\pm 2\sigma$ error.

Standard	Mass (mg)	²³⁸ U (ppb)		²³² Th (ppb)		230 Th/ 232 Th (AT $ imes$ 10 ⁻⁶)		δ ²³⁴ (Meas	⁴ U * sured)	²³⁰ Th/ ²³⁸ U (Activity Ratio)		
	53	2033	± 2	9218	± 47	3.64	±0.03	19	± 1	1.00	± 0.01	
	50	2038	± 2	9178	± 47	3.65	± 0.03	20	± 1	1.00	± 0.01	
JZn-1	52	2037	± 2	9185	± 47	3.64	± 0.03	17	± 1	1.00	± 0.01	
	53	2042	± 2	9189	± 47	3.64	± 0.03	20	± 1	1.00	± 0.01	
	57	2034	± 2	9207	± 47	3.64	± 0.03	19	± 1	1.00	± 0.01	
Mean		2037	±7	9195	± 33	3.64	± 0.01	19	± 2	1.00	± 0.01	

Table 5. U-Th contents and isotopic ratios for sulfide standard JZn-1 ($\pm 2\sigma$, absolute value).

 $\lambda_{230} = 9.17052 \times 10^{-6} a^{-1} [1], \\ \lambda_{234} = 2.82206 \times 10^{-6} a^{-1} [1], \\ \lambda_{238} = 1.55125 \times 10^{-10} a^{-1} [33]. \\ * \delta^{234} U = ([^{234}U/^{238}U]_{activity} - 1) \times 1000.$

We also selected a large iron sulfide mineral, QS-1, collected in the Indian Ocean with an intact crystal form as a work standard. QS-1 was observed for pyrite under a microscope (Figure 5). The XRD pattern indicated that the main component of sulfide QS-1 was 99% pyrite (FeS₂, Figure 6). Elemental analysis showed that the Fe content was approximately 33% (Table 6).

Figure 5. Pictures of sulfide QS-1. (a) Profile of the sample. (b) Micrographs of the pyrite.

Figure 6. X-ray diffraction pattern of sulfide QS-1.

Table 6. Element contents o	of	sulfide	QS-1.
-----------------------------	----	---------	-------

Element	Wt. %	100 Elt./Fe
Fe	33.0	100.0
Na	1.8	5.5
Mg	0.4	1.2
Si	0.4	1.2
Al	0.2	0.6
Ca	0.2	0.6
Cu	0.1	0.3
Zn	0.1	0.3

Using the developed method, the U and Th contents and isotopic ratios of QS-1 were measured eight times (Table 7). The age of this sample was determined to be from 701 to 715 yrs BP. All results were consistent with each other with an average value of 705 ± 10 yrs BP (n = 8, $\pm 2\sigma$).

Table 7. U-Th contents and isotopic ratios for sulfide QS-1 ($\pm 2\sigma$, absolute value).

Sample Number	238 (pj	⁸ U pb)	232 (p	Th pt)	$^{230}{ m Th}$ (AT $ imes$	/ ²³² Th 10 ⁻⁶) ^a	δ ² (Meas	³⁴ U ured) ^b	²³⁰ Th/ ²³⁸ U (Activity)		²³⁰ Th/ ²³⁸ U (Activity)		²³⁰ Th/ ²³⁸ U (Activity)		²³⁰ Th Age (yr, UC) ^c		²³⁰ Th (yr, (²³⁰ Th Age (yr, C) ^d		$\delta^{234} U_{\text{Initial}} c$ (C)		Age , C) ^e
1	4872	± 14	2780	± 56	223.4	± 4.7	146	± 2	0.0077	± 0.0001	738	± 5	723	± 11	147	± 2	703	±11				
2	4997	± 14	2621	± 50	246.0	± 4.9	144	± 2	0.0078	± 0.0001	749	± 5	735	± 11	144	± 2	715	± 11				
3	4853	± 13	2770	± 56	225.5	± 4.7	147	± 2	0.0078	± 0.0001	745	± 5	730	± 11	147	± 2	710	± 11				
4	5010	± 14	2739	± 55	231.6	± 4.8	144	± 2	0.0077	± 0.0001	735	± 5	721	± 11	144	± 2	701	± 11				
5	4921	± 14	3090	± 62	203.7	± 4.3	145	± 2	0.0078	± 0.0001	741	± 5	725	± 12	145	± 2	705	± 12				
6	5083	± 10	2895	± 79	225.2	± 6.4	147	± 2	0.0078	± 0.0001	742	± 6	728	± 12	147	± 2	702	± 15				
7	4980	± 12	3039	± 61	208.6	± 4.4	146	± 2	0.0077	± 0.0001	737	± 5	721	± 12	147	± 2	701	±12				
8	4933	± 11	2634	± 73	238.8	± 6.9	147	± 2	0.0077	± 0.0001	737	± 6	724	± 11	148	± 2	704	± 11				
Mean	4956	± 153	2821	± 347	225.4	± 28.3	146	± 3	0.0078	± 0.0001	740	± 9	726	± 10	146	± 3	705	± 10				

 $\lambda_{230} = 9.17052 \times 10^{-6} a^{-1} [1], \lambda_{234} = 2.82206 \times 10^{-6} a^{-1} [1], \lambda_{238} = 1.55125 \times 10^{-10} a^{-1} [33].$ ^a *AT* = atomic. ^b δ^{234} U = ([²³⁴U/²³⁸U]_{activity} - 1) × 1000. ^c *UC* = uncorrected. The age is before present or chemical date. The corrected ²³⁰Th ages assume an initial ²³⁰Th/²³²Th atomic ratio of (4.4 ± 2.2) × 10⁻⁶, which is the value for a material at secular equilibrium, with a bulk earth ²³²Th/²³⁸U value of 3.8. The errors are arbitrarily assumed to be 50%. ^d *C* = corrected. δ^{234} U_{initial} was calculated based on ²³⁰Th age (T), i.e., δ^{234} U_{initial} = δ^{234} U_{measured} × e^{λ}_{234} ^{xT}. ^e *C* = corrected. BP denotes "before present", where "present" is defined as the year 2000 A.D.

The δ^{234} U and δ^{234} U_{initial} values of sulfide QS-1 ((146 ± 3)‰ and (146 ± 3)‰) were similar to the δ^{234} U of open ocean seawater ((144.9 ± 0.1)‰ [35]). The average U content was 4.956 ppm, slightly higher than seawater (~3 ppm). These results illustrated that the dating was reasonable. In addition, the ²³⁰Th age of QS-1 was 705 ± 10 yrs BP with a precision of 1.4%. Overall, these results indicated that the developed method could determine U-Th ages of sulfides in the seabed accurately. This method can be applied to dating samples younger than 600,000 years with a precision of better than 1% in theory.

4. Conclusions

²³⁰Th/U dating of hydrothermal sulfides provides an age estimate based on the measurement of uranium (²³⁸U and ²³⁵U), thorium (²³²Th) and certain intermediate daughter nuclides in the three naturally occurring radioactive decay series. The sulfide digestion and U-Th chromatographic separation protocols developed in this study are simple methods for the ²³⁰Th/U dating of sulfides with high precision. These methods are successfully applied to the reference material JZn-1 and a marine hydrothermal sulfide sample QS-1. The age of QS-1 is consistent at 705 ± 10 yrs BP (n = 8, ±2 σ), suggesting that it could potentially be a very good reference material. This method can be applied to dating samples younger than 600,000 years with a precision of better than 1% in theory. In addition, the developed method can be also applied to dating carbonates or phosphates in environmental tracer studies, assisting in building an ageing framework for the formation of minerals.

Author Contributions: L.-S.W. wrote the manuscript. L.-S.W., Z.-B.M. and J.-L.X. conceived the idea. L.-S.W. and X.-F.W. carried out the chemical and MC-ICPMS experiments. Z.-B.M., Y.-J.W. and J.Y. contributed to the collection of the standard materials and best samples for analysis. L.-S.W., Y.-J.W. and J.Y. arranged this research and provided the project support. Y.-J.W., J.Y. and J.-L.X. provided the methodology-improving suggestions in editing. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the China Ocean Mineral Resources R&D Association Project (Grant No. DY135-S2-2-07), the National Natural Science Foundation of China (Grant No. 41976076), and the Experimental Technology Innovation Fund of the Institute of Geology and Geophysics, Chinese Academy of Sciences (Grant No. T201802).

Acknowledgments: We are grateful to Jian-Xiong Ma, Ding-Shuai Xue, Bing-Yu Gao and Dan-Ping Zhang for their laboratory assistance.

Conflicts of Interest: The authors declare no conflict of interest.

References

- Cheng, H.; Edwards, R.L.; Shen, C.-C.; Polyak, V.J.; Asmerom, Y.; Woodhead, J.; Hellstrom, J.; Wang, Y.; Kong, X.; Spötl, C.; et al. Improvements in Th-230 dating, Th-230 and U-234 half-life values, and U-Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. *Earth Planet. Sci. Lett.* 2013, 371, 82–91. [CrossRef]
- 2. Edwards, R.L.; Chen, J.H.; Wasserburg, G.J. U-238 U-234-Th-230-Th-232 Systematics and the Precise Measurement of Time over the Past 500,000 Years. *Earth Planet. Sci. Lett.* **1987**, *81*, 175–192. [CrossRef]
- Shen, C.-C.; Wu, C.-C.; Cheng, H.; Edwards, R.L.; Hsieh, Y.-T.; Gallet, S.; Chang, C.-C.; Li, T.-Y.; Doan Dinh, L.; Kano, A.; et al. High-precision and high-resolution carbonate Th-230 dating by MC-ICP-MS with SEM protocols. *Geochim. Cosmochim. Acta* 2012, 99, 71–86. [CrossRef]
- 4. Lalou, C.; Brichet, E.; Hekinian, R. Age dating of sulfide deposits from axial and off-axial structures on the East Pacific Rise near 12°50'N. *Earth Planet. Sci. Lett.* **1985**, 75, 59–71. [CrossRef]
- 5. Lalou, C. Age of sub-bottom sulfide samples at the tag active mound. Proc. Ocean Drill. Program Sci. Results 1998, 158, 111–117.
- 6. Wang, L.; Wang, X.; Ye, J.; Ma, Z.; Yang, W.; Xiao, J. Separation of Uranium and Thorium for Th-230-U Dating of Submarine Hydrothermal Sulfides. *J. Vis. Exp.* **2019**, *147*, 1833–1850. [CrossRef]
- Nakai, S.; Takamasa, A.; Fujiwara, T.; Toyoda, S.; Ishibashi, J.; Yoshizumi, R.; Urabe, T. Influence of Th-rich mineral phases on U–Th radioactive disequilibrium ages of sulfide deposits from the Okinawa Trough. *Chem. Geol.* 2018, 486, 61–72. [CrossRef]
- Kuznetsov, V.Y.; Tabuns, E.V.; Cherkashev, G.A.; Bel'tenev, V.E.; Maksimov, F.E.; Kuksa, K.A.; Lazareva, L.I.; Levchenkoa, S.B.; Zherebtsov, I.E. 230Th/U Chronology and Geochemistry of Irinovskoe Hydrothermal Field (Mid-Atlantic Ridge). *Dokl. Earth Sci.* 2018, 478, 26–30. [CrossRef]
- 9. Takamasa, A.; Nakai, S.I.; Sato, F.; Toyoda, S.; Banerjee, D.; Ishibashi, J. U–Th radioactive disequilibrium and ESR dating of a barite-containing sulfide crust from South Mariana Trough. *Quat. Geochronol.* **2013**, *15*, 38–46. [CrossRef]
- 10. Lalou, C.; Brichet, E. On the Isotopic Chronology of Submarine Hydrothermal Deposits. Chem. Geol. 1987, 65, 197–207. [CrossRef]
- Wang, Y.; Han, X.; Jin, X.; Qiu, Z.; Ma, Z.; Yang, H. Hydrothermal Activity Events at Kairei Field, Central Indian Ridge 25°S. *Resour. Geol.* 2012, 62, 208–214. [CrossRef]
- Ishibashi, J.-I.; Shimada, K.; Sato, F.; Uchida, A.; Toyoda, S.; Takamasa, A.; Nakai, S.I.; Hyodo, H.; Sato, K.; Kumagai, H.; et al. Dating of Hydrothermal Mineralization in Active Hydrothermal Fields in the Southern Mariana Trough. In *Subseafloor Biosphere Linked to Hydrothermal Systems*; Springer: Berlin, Germany, 2015; Volume 23, pp. 289–300.
- 13. Yang, W.; Tao, C.; Li, H.; Liang, J.; Liao, S.; Long, J.; Ma, Z.; Wang, L. Th-230/U-238 dating of hydrothermal sulfides from Duanqiao hydrothermal field, Southwest Indian Ridge. *Mar. Geophys. Res.* 2017, *38*, 71–83. [CrossRef]
- 14. Yamaoka, K.; Ma, L.; Hishikawa, K.; Usui, A. Geochemistry and U-series dating of Holocene and fossil marine hydrothermal manganese deposits from the Izu-Ogasawara arc. *Ore Geol. Rev.* 2017, *87*, 114–125. [CrossRef]
- Kuznetsov, V.Y.; Tabuns, E.V.; Kuksa, K.A.; Cherkashov, G.A.; Bel'tenev, V.E.; Arslanov, K.A.; Maksimov, F.E.; Lazareva, L.I.; Zhuravleva, A.I.; Petrov, A.Y.; et al. Chronology of Hydrothermal Activity Within the Yubileynoye Ore Field (Mid-Atlantic Ridge, 20A degrees 08' N). Dokl. Earth Sci. 2018, 480, 700–704. [CrossRef]
- 16. Chiang, H.-W.; Lu, Y.; Wang, X.; Lin, K.; Liu, X. Optimizing MC-ICP-MS with SEM protocols for determination of U and Th isotope ratios and 230Th ages in carbonates. *Quat. Geochronol.* **2019**, *50*, 75–90. [CrossRef]
- Andersen, M.B.; Stirling, C.H.; Potter, E.K.; Halliday, A.N. Toward epsilon levels of measurement precision on U-234/U-238 by using MC-ICPMS. *Int. J. Mass Spectrom.* 2004, 237, 107–118. [CrossRef]
- 18. Shen, C.-C.; Lin, K.; Duan, W.; Jiang, X.; Partin, J.W.; Edwards, R.L.; Cheng, H.; Tan, M. Testing the annual nature of speleothem banding. *Sci. Rep.* **2013**, *3*, 1–5. [CrossRef]
- 19. Cheng, H.; Edwards, R.L.; Sinha, A.; Spoetl, C.; Yi, L.; Chen, S.; Kelly, M.; Kathayat, G.; Wang, X.; Li, X.; et al. The Asian monsoon over the past 640,000 years and ice age terminations. *Nature* **2016**, *534*, 640–646. [CrossRef]
- 20. Douville, E.; Salle, E.; Frank, N.; Eisele, M.; Pons-Branchu, E.; Ayrault, S. Rapid and accurate U-Th dating of ancient carbonates using inductively coupled plasma-quadrupole mass spectrometry. *Chem. Geol.* **2010**, 272, 1–11. [CrossRef]
- 21. Stirling, C.H.; Andersen, M.B. Uranium-series dating of fossil coral reefs: Extending the sea-level record beyond the last glacial cycle. *Earth Planet. Sci. Lett.* **2009**, *284*, 269–283. [CrossRef]
- 22. Hoffmann, D.L. Th-230 isotope measurements of femtogram quantities for U-series dating using multi ion counting (MIC) MC-ICPMS. *Int. J. Mass Spectrom.* **2008**, 275, 75–79. [CrossRef]
- 23. Kuznetsov, V.; Maksimov, F.; Zheleznov, A.; Cherkashov, G.; Bel'Tenev, V.; Lazareva, L. 230Th/U chronology of ore formation within the semyenov hydrothermal district (13°31′ N) at the Mid-Atlantic ridge. *Geochronometria* **2011**, *38*, 72–76. [CrossRef]
- 24. Cherkashov, G.; Kuznetsov, V.; Kuksa, K.; Tabuns, E.; Maksimov, F.; Bel'tenev, V. Sulfide geochronology along the Northern Equatorial Mid-Atlantic Ridge. *Ore Geol. Rev.* 2017, *87*, 147–154. [CrossRef]
- 25. Ivanovich, M.; Harmon, R.S. Uranium Series Disequilibrium: Applications to Environmental Problems; Oxford University Press: Oxford, UK, 1982.
- Kuznetsov, V.; Cherkashev, G.; Lein, A.; Shilov, V.; Maksimov, F.; Arslanov, K.; Stepanova, T.; Baranova, N.; Chernov, S.; Tarasenko, D. Th-230/U dating of massive sulfides from the Logatchev and Rainbow hydrothermal fields (Mid-Atlantic Ridge). *Geochronometria* 2006, 25, 51–55.
- Wang, L.; Ma, Z.; Cheng, H.; Duan, W.; Xiao, J. Determination of 230Th Dating Age of Uranium-Series Standard Samples by Multiple Collector Inductively Coupled Plasma Mass Spectrometry. J. Chin. Mass Spectrom. Soc. 2016, 37, 262–272.

- 28. Wang, L.; Ma, Z.; Sun, Z.; Wang, Y.; Wang, X.; Cheng, H.; Xiao, J. U concentration and 234U/238 U of seawater from the Okinawa Trough and Indian Ocean using MC-ICPMS with SEM protocols. *Mar. Chem.* **2017**, *196*, 71–80. [CrossRef]
- Terashima, S.; Sato, K.; Taniguchi, M.; Okai, T.; Imai, N. The preparation and characterisation of two new Geological Survey of Japan geochemical reference materials: Copper ore JCu-1 and zinc ore JZn-1. *Geostand. Newsl. J. Geostand. Geoanal.* 2003, 27, 259–271. [CrossRef]
- Wang, Y.; Han, X.; Petersen, S.; Frische, M.; Qiu, Z.; Li, H.; Li, H.; Wu, Z.; Cui, R. Mineralogy and trace element geochemistry of sulfide minerals from the Wocan Hydrothermal Field on the slow-spreading Carlsberg Ridge, Indian Ocean. Ore Geol. Rev. 2017, 84, 1–19. [CrossRef]
- 31. Shen, C.C.; Edwards, R.L.; Cheng, H.; Dorale, J.A.; Thomas, R.B.; Moran, S.B.; Weinstein, S.E.; Edmonds, H.N. Uranium and thorium isotopic and concentration measurements by magnetic sector inductively coupled plasma mass spectrometry. *Chem. Geol.* **2002**, *185*, 165–178. [CrossRef]
- 32. Hiess, J.; Condon, D.J.; McLean, N.; Noble, S.R. U-238/U-235 Systematics in Terrestrial Uranium-Bearing Minerals. *Science* 2012, 335, 1610–1614. [CrossRef]
- Jaffey, A.H.; Flynn, K.F.; Glendenin, L.E.; Bentley, W.C.; Essling, A.M. Precision measurement of half-lives and specific activities of U-235 and U-238. *Phys. Rev. C* 1971, 4, 1889. [CrossRef]
- 34. Makishima, A.; Nakamura, E. High-resolution MC-ICPMS employing amplifiers with a 10 ohm resistor for bulk sulfur determination in biological and geological samples. *J. Anal. At. Spectrom.* **2012**, *27*, 891–895. [CrossRef]
- 35. Andersen, M.B.; Stirling, C.H.; Zimmermann, B.; Halliday, A.N. Precise determination of the open ocean 234U/238U composition. *Geochem. Geophys. Geosyst.* 2010, 11, 1–8. [CrossRef]