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Abstract: 230Th/U dating can provide high-precision age constraints on Quaternary hydrothermal
sulfides. However, low content of U and Th often involves extraction chemistry for the separation and
enrichment of U and Th, but these chemical processes are very complex. We developed a simplified
procedure consisting of total sample dissolution and single-column extraction chemistry, which can
reduce the time and improve the accuracy of the dating. Concentrated HCl-HF followed by HNO3

was added to ensure complete dissolution. A single column filled with 0.4 mL of AG 1-X8 anion resin
was used, then 8 M HNO3, 8 M HCl and 0.1 M HNO3 were used to elute most of the matrix metals,
Th and U. This process provided more than 95% recoveries for U and Th, and negligible blanks.
Meanwhile, Pb and Bi interferences were tested and showed no effect on the U and Th isotope ratio.
The 230Th/238U activity of the Geological Survey of Japan geochemical reference material JZn-1 in
secular equilibrium was determined and showed a radioactive equilibrium (1.00 ± 0.01, n = 5, all
errors 2σ) and an in-house standard QS-1 was consistent to 0.0078 ± 0.0001 (n = 8, ±2σ) with an
average age of 705 ± 10 yrs BP (n = 8, ±2σ). The technique greatly shortens the sample preparation
time and allows more concise and effective analysis of U-Th isotopes. It is ideally suited for the
high-precision 230Th/U dating of Quaternary submarine hydrothermal sulfides and sulfides from
other settings.

Keywords: 230Th/U dating; quaternary hydrothermal sulfides; MC-ICPMS; extraction

1. Introduction
230Th/U dating, also called U-Th dating or 230Th-234U-238U dating, is a conventional

high-precision tool for dating Quaternary carbonate [1–4] and sulfides [4–9]. This process
can act as an accurate chronological control for submarine hydrothermal systems and
provides important time constraints for the formation mechanism, the history of transfor-
mation and the growth rate of large sulfide deposits [10–15]. The ages obtained may be
continuous or scattered and can provide information regarding hydrothermal metallogenic
evolution when combined with complimentary geochemical studies [5,11,15].

The 230Th/U dating method is based on measuring the degree of secular equilibrium
between 238U and its daughters, 234U and 230Th. As the abundances of 234U and 230Th are
low, the precision of 230Th/U dating is limited by counting statistics. Therefore, before anal-
ysis, it is necessary to enrich and purify the U and Th in the samples. In recent years, with
the development and application of high-precision mass spectrometry (multicollector in-
ductively coupled plasma mass spectrometry; MC-ICPMS), per mil and even epsilon-level
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(1 part in 10,000) precision of 234U and 230Th analysis have been widely achieved [1,16–22].
The dating range has also been extended from the modern age to 640,000 yrs BP [1,3].
At present, 230Th/U dating is mainly applied to carbonate materials, whereas its use for
sulfides is still limited.

As with authigenic carbonate, submarine Quaternary sulfides are known to meet the
two preconditions for 230Th/U dating, namely: (1) a large amount of highly soluble U
and almost no Th are taken up during mineral deposition; (2) after deposition, the system
remains closed to U and Th. According to the literature, the 238U content of most submarine
hydrothermal sulfide minerals ranges from several ppb to tens of ppm, whereas the 232Th
content is generally less than a few ppb [7–9,13,23,24].

U and Th separation and enrichment methods for sulfides have mostly been estab-
lished by modifying the chemical processes used for carbonate dating. For Quaternary
carbonate dating, these methods generally involve sample digestion, double spike addition,
coprecipitation and U-Th separation by ion-exchange chromatography. Compared with
carbonates, submarine hydrothermal sulfides have much more complex compositions.
Sulfides usually contain many metals (Fe, Zn, Cu, Pb, etc.) and sulfur, but lower uranium
contents; therefore, a larger sampling size is needed than for carbonates, which leads
to difficulties in sample complete dissolution or re-precipitation with the same chemical
conditions. Th tends to adsorb on the insoluble resistate minerals [25], resulting in a lower
Th content or poor data repeatability for incompletely dissolved samples.

In typical literature procedures, several grams of sulfide are dissolved in concentrated
nitric acid at 85 ◦C for several days, during which any insoluble minerals are discarded [7,9].
Then, Fe3+ and OH− are added to the solution in sequence to form Fe(OH)3 precipitate. U
and Th are coprecipitated with Fe(OH)3 [6] and loaded directly into double columns packed
with AG 1-X8 and U/TEVA resins to separate the U and Th [7,9] using HCl and HNO3. The
separated U and Th fractions are analyzed using MC-ICPMS or thermal ionization mass
spectrometry (TIMS) [6,10,12,26–28]. However, our preliminary experiments showed that
such procedures do not completely dissolve sulfide samples and are subject to significant
matrix effects, resulting in poor precision. Therefore, the accuracy of dating could not be
guaranteed. For example, we obtained 249,630 ± 6025 yrs and 551 ± 65 yrs (unpublished
data) for the same sulfide sample.

For these reasons, it was necessary to develop one more simple, accurate and repro-
ducible method to reduce the sample mass, labor and time costs. To solve these problems,
a rapid extraction procedure using a single column for U and Th in sulfides was designed
using the AG 1-X8 resin. In our work, the dissolving efficiency performed better than oth-
ers [6,7,9]; the separation of U and Th could be completed within one day and the accuracy
and precision for the U and Th isotope ratios and the 230Th age were improved. Using
this method, repeated analyses of the Geological Survey of Japan geochemical reference
material JZn-1 (about 65 Ma) and an in-house hydrothermal sulfide standard QS-1 gave
very consistent results, which suggest that QS-1 is potentially a very good Quaternary
U-Th age reference material.

2. Materials and Methods
2.1. Reagents and Standards

Nitric acid (HNO3, ≈14 M) and hydrochloric acid (HCl, ≈12 M) (CMOS grade,
Sinopharm Chemical Reagent Co., Ltd., Shanghai, China) were purified three times us-
ing a Savillex DST-1000 sub-boiling system (Savillex, Eden Prairie, MN, USA) at 30 ◦C.
All reagents and standards were diluted with the purified acids and ultrapure water
(18.2 MΩ·cm; Milli-Q system, EMD Millipore, Billerica, MA, USA). The ultrapure hydroflu-
oric acid (HF, 46.0%–51.0%) and perchloric acid (HClO4) are from Kanto Chemical Co., Inc.
(Tokyo, Japan).

U and Th were separated from the sample matrix through an AG1-X8 column
(200–400 mesh, chloride form, Bio-Rad [29], Hercules, CA, USA) with a 0.4 mL resin
volume. S can form volatile H2S after dissolution, whereas most matrix and interfering
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elements exist as cations. So, a standard sulfide simulation solution (SS-1) without S was
prepared by mixing various standard solutions, including 100 ppm Cu, Fe, Zn and Pb
(plasma level, Alfa Aesar, Tewksbury, MA, USA); 1 ppm Na, K Ca and Mg; 140 ppb U;
100 ppb Th and a 10 ppb multi-element standard solution (Al, As, B, Ba, Be, Bi, Cd, Co, Cr,
Ga, Li, Mg, Mn, Ni, Sb, Sn, Sr, Ti, Tl and V, NCS, Beijing, China).

The accuracy of 235U/233U, δ234U (equal to (234U/238U)activity − 1) × 1000) and
230Th/232Th were determined by one work standard U (IU-1, prepared with NBS SRM
950a and 233U-236U double spike, 235U/233U = 13.01 ± 0.50 and δ234U = (−18.35 ± 2.00)‰)
and one Th isotopic standard (ITh-1). ITh-1 was prepared from the carbonate standard
GBW04412 and NCS 232Th, and the long-term mean value of 230Th/232Th for ITh-1 was
0.0085± 0.0001, which was calibrated by a gravimetric working standard Th-1 (230Th/232Th
= (51.68 ± 0.26) × 10−6) and Th-2 (230Th/232Th = (5.083 ± 0.008) × 10−6) [28].

A geochemical reference material, zinc ore JZn-1, was obtained from the Geological
Survey of Japan at about 65 Ma (in secular equilibrium) [29]. JZn-1 is a crude ore from the
Kamioka Pb-Zn mine in Gifu Prefecture, Japan, consisting of hedenbergite, quartz, calcite,
sphalerite and epidote [29]. A marine hydrothermal sulfide sample QS-1 collected from the
Wocan Hydrothermal Field on the slow-spreading Carlsberg Ridge in the Indian Ocean [30]
was analyzed to verify the accuracy and precision of the method for 230Th/U dating.

2.2. Sample Digestion and U/Th Purification

After removing the surface dirt by a physical method, the fresh parts were selected to
be peeled off, pulverized using a tungsten steel crusher to 200-mesh powder and subjected
to U and Th elemental analysis.

All chemical procedures were performed in a class-100 clean hood at the Uranium
Series Chronology Laboratory, Institute of Geology and Geophysics, Chinese Academy of
Sciences (IGGCAS), Beijing, China.

For ample digestion, 20–50 mg of powder was placed in a pre-cleaned 7 mL PFA beaker
(Savillex, Eden Prarie, MN, USA). A total of 2 mL of mixed acid (12 M HCl/46% HF = 3:1)
was added into the beaker, seated for 1 h and then sealed tightly. Subsequently, the beaker
was heated on a hot plate at 120 ◦C for 12 h. After cooling, 0.5 mL of 14 M HNO3 was added
into the sample and the resealed beaker was heated at 120 ◦C for 6 h. After cooling, 0.1 mL
of HClO4 and a 0.1–0.5 mL U-Th spike with a known concentration (233U/236U = 1.006747
and 229Th) were added (to ensure identical mass bias, the optimum 235U/233U ratio in the
samples was 10–30 [31]). After drying on a hot plate at 180 ◦C, the sample was dissolved in
several drops of 14M HNO3 and then dried again. Finally, the sample was dissolved in
0.2 mL of 8 M HNO3 and loaded on the ion-exchange chromatography resin.

For the purification and separation of U and Th, a PFA column was filled with approxi-
mately 0.4 mL of AG 1-X8 resin (Table 1, column volume = 0.5 mL, liquid volume = 1.5 mL,
with a polyethylene frit at the bottom; see Wang et al. for details [6]) and pre-cleaned using
acid (Table 1). Then, 0.2 mL of digested sample in 8 M HNO3 was loaded on the resin. The
sample matrix elements were eluted using 1.0 and 0.5 mL of 8 M HNO3. Then, a > 95% Th
fraction was eluted using 1.0 and 0.5 mL of 8 M HCl and a > 95% U fraction was eluted
using 1.0 and 1.0 mL of 0.1 M HNO3.

Subsequently, 1 drop of HClO4 was added to both of the Th and U fractions to
remove the trace organic matter. They were then dried on a hotplate at 180 ◦C, dis-
solved in 2 drops of 14 M HNO3, dried and dissolved in 0.4 M HNO3 and 0.01 M HF for
MC-ICPMS measurements.

Two parallel chemical blanks for the entire process were 8.2 ± 0.4 pg for 238U,
0.3 ± 0.7 fg for 230Th and 2.5 ± 0.1 fg for 232Th, which were negligible for the measured
samples. The monitored recoveries (the ratio of the recovered to the total amount of known)
of U and Th were better than 95%.
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Table 1. U and Th separation using an AG 1-X8 resin column.

Step Acid Condition Volume (mL) Elements Eluted Fractions

Clean 8 M HNO3 1.0
0.5

8 M HCl 1.0
0.5

H2O (18.2 MΩ·cm) 1.0
1.0

Condition 8 M HNO3 1.0
1.0

Load Sample 8 M HNO3 0.2 a
Wash 8 M HNO3 1.0 matrix elements b

0.5 matrix elements c
Elute Th 8 M HCl 1.0 Th d

0.5 Th e
Elute U 0.1 M HNO3 1.0 U f

1.0 U g

2.3. Instrumental Analysis

The U and Th isotope analyses were performed using MC-ICPMS (Neptune, Thermo
Fisher, Waltham, MA, USA). The sample solution was introduced using a PFA 50 µL/min
Nebulizer on an Aridus II desolvating nebulizer system. The U and Th isotopes were ana-
lyzed in a peak-jumping mode, using one retarding potential quadruple lens (RPQ) system
with a secondary electron multiplier (SEM) to improve the abundance sensitivity in the fol-
lowing order: 233U-234U-235U-236U (238U was calculated from the measured 235U amount us-
ing a constant 137.818 [32]) and 229Th-230Th and 232Th (232Th was determined using a Fara-
day cup and calibrated by 238U(Faraday)/236U(SEM) and 238U(Faraday)/235U(SEM)) [1,27].
We estimated the tailing effect of 238U by measuring the ion counts at m/z positions
232.5-233.5-234.5-235.5-236.5 and 232Th at 228.5-229.5-230.5. The detailed information was
described by Cheng et al. [1] and Wang et al. [27]. The SEM/Faraday intensity conversion
factor was monitored by a 235U amount of 5–7 mv every other two or three samples and
the drift was less than 0.5‰ per hour with no effect on age accuracy.

We obtained transmission efficiencies of 1%–2% for the U and Th in routine measure-
ments by a peak-jumping mode with an SEM [1,27]. All tests were conducted in a block of
500 cycles, with each cycle having an integration time of 3 s. The typical internal precision
for one 234U/235U block was better than 5 × 10−5. Instrumental mass bias and shift were
corrected using a 233U/236U double spike and the standard deviation of the mass bias
factor for routine tests between adjacent ratios was less than 1%.

During daily analysis, the signal stability was monitored using standard NBS-CRM
112A, which spiked with 229Th-233U-236U with a known isotope ratio. The long-term
test results gave a mean value of (52.84 ± 0.03) × 10−6 (n = 12, ±2σ) for 234U/238U
and (−38.5 ± 0.03) ‰ (n = 12, ±2σ) for δ234U, which agreed with the reference values
(52.841 ± 0.082 and −38.7 ± 1.5 (n = 82) for 234U/238U and 234U) within 2σ error [28].

The U and Th isotope ratios were collected by MC-ICPMS, then isotope fraction
corrected, quality controlled (closely related to the precision and accuracy) and age calcu-
lated via the equation shown in Formulas (1) and (2) using Excel. The specific instrument
parameters and the cup configurations for data acquisition are shown in Tables 2 and 3.
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Table 2. Instrument parameters.

Instrument Parameter Setting

MC-ICPMS

RF power 1250 W
Cooling gas 16 L/min

Auxiliary gas 1.8 L/min
Sample gas 1 L/min

Extraction voltage −2000 V
Low resolution 300

CETAC Aridus II

Sample injection rate 50 µL/min
Ar sweep gas 2 L/min
Nitrogen gas 3 mL/min

Spray chamber temperature 110 ◦C
Membrane oven temperature 160 ◦C

Table 3. Faraday cup configurations for measurement of U and Th by MC-ICPMS.

Element L1 C(SEM) H1 H2 H3

U

233U
234U
235U 238U
236U 238U

Th
229Th
230Th 232Th

Equations (1) and (2) were used to calculate age t:[
230Th
238U

]
activity

= 1− e−λ230t +

(
δ234Ut

1000

)(
λ230

λ230 − λ234

)(
1 − e(λ234 − λ230)t

)
(1)

δ234Ut =


(

234U
238U

)
(

234U
238U

)
eq

− 1

× 103 (2)

where λ is the decay constant, t is the age, and eq is secular equilibrium. λ230 = 9.17052 ×
10−6 a−1 [1], λ234 = 2.82206 × 10−6 a−1 [1], λ238 = 1.55125 × 10−10 a−1 [33].

Mineralogical analysis of sample QS-1 was measured using X-ray diffraction (XRD)
by a D/max 2400 system with a Cu target tube and an X’Celerator detector (Rigaku
Corporation, Japan) under the conditions of a tube voltage of 40 kV and a tube flow
of 40 mA. The major elements were quantitatively determined by inductively coupled
plasma optical emission spectrometry (ICP-OES, Thermo Fisher, USA) and uncertainty was
within ±5%.

3. Results and Discussion
3.1. Impact of Dissolution Protocols on U and Isotopes

Various dissolution methods for submarine hydrothermal sulfides were evaluated.
Aqua regia [4–6,26], HNO3 [7,9] or HNO3 + HF were usually used in various references,
but insoluble residues, mainly including undissolved silicates, sulfur, the precipitation and
residual BaSO4, were rarely reported. Sulfur could be effectively oxidized by HNO3 + HBr
generating more toxic Br2 [34]. The modified dissolution method for the whole rock of the
hydrothermal sulfide deposit gave much better dissolving efficiency and took less time.
Using the HCl + HF and HNO3 protocol in this study (in Section 2.2), a less than 100 mg
sample can be completely dissolved with a total U ≥ 5 ng in one working day (see Table 4).
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Table 4. Dissolution conditions and resin types in sulfide dating.

No. Mass (g) Dissolution Acid Resin Dissolution
Time (Day) Instrument Reference

1 2.0–4.0 aqua regia AG 1 × 8 or
AV-17 >2 α-couting and

MC-ICP-MS

Lalou et al., 1985, 1986 [4,5];
Kuznetsov et al., 2006 [26];

Wang et al., 2019 [6]

2 1.0–2.0 HNO3 + H2O AG1-X8 and
U/TEVA 2–7 ICPMS and

MC-ICP-MS

Takamasa et al., 2013 [9];
Ishibashi et al., 2015 [12];

Nakai et al., 2018 [7]

3 <0.1 HCl + HF followed
by HNO3

AG 1-X8 <1 MC-ICP-MS This study

3.2. Yields of Th and U, and Leaching

The most abundant elements after digestion in sulfides were Fe, Cu, Zn and Pb, which
account for up to 95% of the total. Therefore, the elution efficiencies of Fe, Cu, Zn and
Pb were mainly to be considered during leaching. Usually, Fe(OH)3 precipitation was
used to adsorb most of the U and Th from carbonates or sulfides for removing most of the
Ca, Mg and other major elements [1,6]. We compared the element-selective adsorption
efficiencies of six elements (Fe, Cu, Zn, Pb, Th and U) during Fe(OH)3 precipitation to the
standard solution SS-1. It showed that the precipitation operation could not efficiently
remove Cu and Zn. The recovery rates of Pb, Th and U were similar to those of Fe (Figure 1)
and incomplete Fe precipitation could lead to low U and Th recoveries. Thus, Fe(OH)3
precipitation should be considered abandoned for Quaternary hydrothermal sulfides.
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Figure 1. Recovery efficiencies of six elements for SS-1 using Fe(OH)3 precipitation.

AG1-X8 is a common anion exchange resin used in the analysis of geological samples.
As shown in Figure 2, the separation of Th and U was investigated using 0.4 mL of
AG1-X8 resin for the standard solution SS-1 (see Section 2.1). Fe, Cu, Zn and Pb were
completely eluted by less than 3.0 mL of 8 M HNO3. Recoveries of Th and U (measured vs.
loaded) were greater than 95%. Therefore, we considered another separation step in the
reports [7,9,12] to separate omittable Pb.

3.3. Impact of Pb and Bi on U-Th Isotopes

As many studies have found, Pb and Bi can produce peaks at the masses ranging from
U to Th [7,9], but the studies have been not very clear about the interfering species. So, we
performed Pb and Bi interference tests. Eleven standards were prepared with compositions
similar to the separated U fractions of the sample, but with different amounts of Pb and Bi
(no addition, 50 ppb and 100 ppb). The measured 235U/233U atom ratios and δ234U of the
standards are shown in Figure 3. 235U/233U isotopic ratios and δ234U were all within 2σ
error, indicating that there was little interference from Pb and Bi. The 230Th/232Th isotopic
ratios in the twelve standards are shown in Figure 4 and are also close to the standard
value (within ±2σ error).
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3.4. High-Precision 230Th/U Dating of Sulfide Standard and Geological Sample

Until now, there has been no international sulfide standard for 230Th/U dating. There-
fore, we chose the Geological Survey of Japan geochemical reference material JZn-1 (a
sulfide ore powder) to determine the technical reliability. As shown in Table 5, the five
independent measurements were consistent within ±2σ error. The 238U content varied
from 2033 to 2042 ppb; the 232Th from 9178 to 9218 ppb and the δ234U from 17 to 20‰. The
230Th/238U activity ratio was the same value, 1.00 ± 0.01 (n = 5, ±2σ) within ±2σ error.
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Table 5. U-Th contents and isotopic ratios for sulfide standard JZn-1 (±2σ, absolute value).

Standard
Mass 238U 232Th 230Th/232Th δ234U * 230Th/238U
(mg) (ppb) (ppb) (AT × 10−6) (Measured) (Activity Ratio)

JZn-1

53 2033 ±2 9218 ±47 3.64 ±0.03 19 ±1 1.00 ±0.01
50 2038 ±2 9178 ±47 3.65 ±0.03 20 ±1 1.00 ±0.01
52 2037 ±2 9185 ±47 3.64 ±0.03 17 ±1 1.00 ±0.01
53 2042 ±2 9189 ±47 3.64 ±0.03 20 ±1 1.00 ±0.01
57 2034 ±2 9207 ±47 3.64 ±0.03 19 ±1 1.00 ±0.01

Mean 2037 ±7 9195 ±33 3.64 ±0.01 19 ±2 1.00 ±0.01

λ230 = 9.17052 × 10−6 a−1 [1], λ234 = 2.82206 × 10−6 a−1 [1], λ238 = 1.55125 × 10−10 a−1 [33]. * δ234U = ([234U/238U]activity − 1) × 1000.

We also selected a large iron sulfide mineral, QS-1, collected in the Indian Ocean with
an intact crystal form as a work standard. QS-1 was observed for pyrite under a microscope
(Figure 5). The XRD pattern indicated that the main component of sulfide QS-1 was 99%
pyrite (FeS2, Figure 6). Elemental analysis showed that the Fe content was approximately
33% (Table 6).
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Using the developed method, the U and Th contents and isotopic ratios of QS-1 were
measured eight times (Table 7). The age of this sample was determined to be from 701 to
715 yrs BP. All results were consistent with each other with an average value of 705 ± 10 yrs
BP (n = 8, ±2σ).

Table 7. U-Th contents and isotopic ratios for sulfide QS-1 (±2σ, absolute value).

Sample 238U 232Th 230Th / 232Th δ234U 230Th/238U 230Th Age
(yr, UC) c

230Th Age
(yr, C) d

δ234UInitial
c

(C)

230Th Age
(yr BP, C) eNumber (ppb) (ppt) (AT × 10−6) a (Measured) b (Activity)

1 4872 ±14 2780 ±56 223.4 ±4.7 146 ±2 0.0077 ±0.0001 738 ±5 723 ±11 147 ±2 703 ±11
2 4997 ±14 2621 ±50 246.0 ±4.9 144 ±2 0.0078 ±0.0001 749 ±5 735 ±11 144 ±2 715 ±11
3 4853 ±13 2770 ±56 225.5 ±4.7 147 ±2 0.0078 ±0.0001 745 ±5 730 ±11 147 ±2 710 ±11
4 5010 ±14 2739 ±55 231.6 ±4.8 144 ±2 0.0077 ±0.0001 735 ±5 721 ±11 144 ±2 701 ±11
5 4921 ±14 3090 ±62 203.7 ±4.3 145 ±2 0.0078 ±0.0001 741 ±5 725 ±12 145 ±2 705 ±12
6 5083 ±10 2895 ±79 225.2 ±6.4 147 ±2 0.0078 ±0.0001 742 ±6 728 ±12 147 ±2 702 ±15
7 4980 ±12 3039 ±61 208.6 ±4.4 146 ±2 0.0077 ±0.0001 737 ±5 721 ±12 147 ±2 701 ±12
8 4933 ±11 2634 ±73 238.8 ±6.9 147 ±2 0.0077 ±0.0001 737 ±6 724 ±11 148 ±2 704 ±11

Mean 4956 ±153 2821 ±347 225.4 ±28.3 146 ±3 0.0078 ±0.0001 740 ±9 726 ±10 146 ±3 705 ±10

λ230 = 9.17052 × 10−6 a−1 [1], λ234 = 2.82206 × 10−6 a−1 [1], λ238 = 1.55125 × 10−10 a−1 [33]. a AT = atomic. b δ234U = ([234U/238U]activity −
1) × 1000. c UC = uncorrected. The age is before present or chemical date. The corrected 230Th ages assume an initial 230Th/232Th atomic
ratio of (4.4 ± 2.2) × 10−6, which is the value for a material at secular equilibrium, with a bulk earth 232Th/238U value of 3.8. The errors are
arbitrarily assumed to be 50%. d C = corrected. δ234Uinitial was calculated based on 230Th age (T), i.e., δ234Uinitial = δ234Umeasured × eλ234

xT.
e C = corrected. BP denotes “before present”, where “present” is defined as the year 2000 A.D.

The δ234U and δ234Uinitial values of sulfide QS-1 ((146 ± 3)‰ and (146 ± 3)‰) were
similar to the δ234U of open ocean seawater ((144.9 ± 0.1)‰ [35]). The average U content
was 4.956 ppm, slightly higher than seawater (~3 ppm). These results illustrated that
the dating was reasonable. In addition, the 230Th age of QS-1 was 705 ± 10 yrs BP with
a precision of 1.4%. Overall, these results indicated that the developed method could
determine U-Th ages of sulfides in the seabed accurately. This method can be applied to
dating samples younger than 600,000 years with a precision of better than 1% in theory.

4. Conclusions
230Th/U dating of hydrothermal sulfides provides an age estimate based on the mea-

surement of uranium (238U and 235U), thorium (232Th) and certain intermediate daughter
nuclides in the three naturally occurring radioactive decay series. The sulfide digestion and
U-Th chromatographic separation protocols developed in this study are simple methods for
the 230Th/U dating of sulfides with high precision. These methods are successfully applied
to the reference material JZn-1 and a marine hydrothermal sulfide sample QS-1. The age of
QS-1 is consistent at 705 ± 10 yrs BP (n = 8, ±2σ), suggesting that it could potentially be
a very good reference material. This method can be applied to dating samples younger
than 600,000 years with a precision of better than 1% in theory. In addition, the developed
method can be also applied to dating carbonates or phosphates in environmental tracer
studies, assisting in building an ageing framework for the formation of minerals.
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