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Abstract: There is a need within the production industry for digitalization and the development
of meaningful functionality for production operation. One such industry is aggregate production,
characterized by continuous production operation, where the digital transformation can bring
operational adaptability to customer demand. Dynamic process simulations have the ability to
capture the change in production performance of aggregate production over time. However, there is
a need to develop cost-efficient methodologies to integrate calibrations and validation of models. This
paper presents a method of integrating an experimental and data-driven approach for calibration and
validation for crushing plant equipment and a process model. The method uses an error minimization
optimization formulation to calibrate the equipment models, followed by the validation of the process
model. The paper discusses various details such as experimental calibration procedure, applied error
functions, optimization problem formulation, and the future development needed to completely
realize the procedure for industrial use. The validated simulation model can be used for performing
process planning and process optimization activities for the crushing plant’s operation.

Keywords: optimization; comminution; classification; digitalization; dynamic process; data-driven
modeling; aggregate production

1. Introduction

Crushing and screening processes in aggregate production are intended to produce
various sets of products based on size fraction. These products are used for different
construction activities such as roads, railways, and infrastructure. Managing and operating
a crushing plant to the need of market demands is a challenge for the industry, and there is
a need for a digital support system for operators and managers of aggregate production
processes. Despite the modeling and simulation development of the crushing plant [1–3],
there are barriers within the industrial operation to use simulations for daily operation
management. There is a constant need for maintenance of the validity of the underlying
simulation model for the gradual changes occurring in the daily operations.

To address the need for increased functionality for the simulation environments to
support daily operation, an optimization system for aggregate production is proposed,
as shown in Figure 1 [4–6]. To make the decision based on the simulation model of
equipment and process, referring to an aggregate crushing plant, there is a need to develop
a calibration and maintenance routine for process simulation to derive useful and reliable
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results from the optimization function [7–10]. Based on the choice of the equipment model
in the process simulation, a continuous validation routine for effective use of the process
simulation is required [6,11].
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Figure 1. Error propagation model for the implementation of the optimization functionality in
crushing plants [4].

This paper presents a methodological routine to calibrate and validate process simula-
tions for industrial aggregate crushing plants (see Figure 1, red box). The application of an
optimization method is presented to calibrate and tune equipment models based on the
controlled data obtained from experimental design and survey. The applied optimization
method uses an unconstrained gradient-based algorithm for calibration and tuning pur-
poses, which is a computationally viable solution. This is followed by the configuration and
validation of the dynamic process simulation based on mass flow data input, as captured
during the controlled experiment.

2. Process Modeling and Simulation Approach

There are various fidelities of models present for the comminution and classification
equipment. For example, a crusher performance is described in detail by mechanistic
principles by Evertsson [12], an empirical model by Whiten [13]. Similarly, multiple
empirical, phenomenological, and mechanistic screen models are described by Karra [14],
Whiten [15], and Soldinger [16,17], respectively. King [18] presented extensive work to
demonstrate the need for using a reliable simulation model for improving crushing plant
performance by using a case study of uranium production. The models are developed
based on certain underlying assumptions on process stability and utilize both laboratory
and industrial experimental data to be calibrated. With the current trends of increased
transition to online data management systems and data analytics [19,20], the opportunity
has emerged to utilize the existing knowledge within the models to adapt to the production
data available. Alternatively, one can also approach the path of machine learning models
to capture the behavior of the process performance using continuous time-series data
(production data), as demonstrated by Li et al. [21,22].

The development in the dynamic process simulation for crushing plants [1,23] pro-
vides opportunities to integrate equipment models into the continuous process performance
estimations. Integration of calibration methodologies for the dynamic process models to
the digital data collection system such as mass flow and power draw can be a powerful
and cost-efficient tool. The integration between the dynamic process simulation and on-
line data capturing techniques can eliminate or reduce expensive survey sampling and
laboratory test work. To address the abovementioned gaps, there is a need for developing
methodologies that can support such system integration.

Figure 2 represents a schematic view of the pillars for the model calibration for equip-
ment and process simulation applicable for the crushing plants. The laboratory data refer
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to the material characterization data obtained by carrying out standard material tests,
for example, material density, compressive stress, moisture content, breakage, etc. The
experimental survey data refer to the controlled experiments performed at the crushing
plant site using full-scale equipment to collect belt-cut samples for mapping equipment
performance. This provides a snapshot indication of the process and equipment perfor-
mance. The production data refer to the controlled data collected from the process plant
operation, such as mass flow, power, process setpoints, and control signals. This delivers
continuous data based on the complete operation of the plant, which is influenced by
more than one equipment behavior. The transformation of the existing mechanistic or
phenomenological models to use and adapt to different data sources needs computationally
efficient optimization methods to fit the model to the data. There is a need to re-clarify the
assumptions based on the selected model type.
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Figure 2. Generalized view on the model and process calibration based on the sources of data.

2.1. Dynamic Process Simulation

The dynamic process modeling approach used in this study is based on the work by
Asbjörnsson [1], and the process model is configured in MATLAB/Simulink environment.
This modeling approach can capture discrete and gradual changes occurring in the physical
crushing plant operation, such as delays in material flow, start-up sequence, discrete events,
and wear. Each equipment model is based on the mathematical description of mass m and
properties γ in a derivative form with respect to time, as shown in Equations (1) and (2).

dm(t)
dt

= (
.

mi,in(t)−
.

mj,out(t)) (1)

dγi(t)
dt

=

.
mi,in(t)

m(t)
(γi,in(t)− γi(t)) (2)

The material flow is regulated using interlocks and regulatory controllers. The lag
and response of the process operation due to the hold up of material in equipment such as
conveyor and feeder is described by Equations (3) and (4), where t is the current time step,
θ is the delay time, τ is a time constant, K is a steady-state process gain, u(t) is the input
parameters, and y(t) is the system output.

y(t) = u(t− θ) (3)



Minerals 2021, 11, 921 4 of 19

τ
dy
dt

+ y(t) = Ku(t) (4)

2.2. Crusher Model

The model used for the crusher is a fast mechanistic model based on Evertsson [12]
and implemented into dynamic simulation by Asbjörnsson et al. [24]. Figure 3 represents
an overview of the interface of the crusher model. The model uses inputs such as material
feed stream (consisting of material properties, product size distribution, and mass flow),
crusher geometrical design and setting, material breakage, selection characterization, and
flow characterization. The model is called fast as compared to the full-scale mechanistic
model [12], as the recursive calculation of the flow model of the dynamic material inter-
action with the geometry is simplified with user-defined input (e.g., fixed compression
number). Furthermore, the force resolution for predicting pressure and corresponding
power calculation is simplified with the Bond equation [25].
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Figure 3. Overview of the fast-mechanistic crusher model implemented in Matlab/Simulink environment.

The property changes after each compression are sequentially calculated based on
the defined compression zones using the input from the dynamic module; see Figure 4.
The selection (S) and breakage (B) functions are based on the nominal response of the
compression tests carried out for a particular material type [12].
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2.3. Screen Model

The screen model used is based on the Whiten [15] expression (Equation (5)), and a
simplified model interface is shown in Figure 5. The model uses inputs such as material
feed stream, screen geometrical design and settings, model parameter (separation size
and sharpness), and outputs the separated material streams. Equation (5) represents
the reduced partition curve (Eoa) to calculate the oversize material stream, where α is
the sharpness of the separation, di is the geometric mean of the size interval i, d50 is the
separation size, E is the efficiency at the screen aperture, and A is the screen aperture. In
this work, the survey data are used to back-fit the model parameter and tune the screen
aperture based on the noted data. A modification in the α parameter is applied where
the value of the α is linearly dependent on the mass flow stream to capture the effect of
different loading conditions with respect to the partition of the stream.

Eoa =
exp(αxi)−1

exp(αxi)+exp(α)−2

xi =
di

d50

d50 = αA
ln[( 100

100−E−1) exp(α)+( 100
100−E−1)−2]

(5)
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3. Applied Experimental Method Description

A systematic method is applied to calibrate a full-industrial scale crushing plant
using physical experimentation and validated using production data. The methodology
consists of multiple steps, which include process mapping, experimental design, and data
collection, with a physical survey leading to laboratory data and production data. This is
followed by an applied optimization method for equipment calibration and validation of
the process simulation.

3.1. Process Mapping

Figure 6 shows the tertiary crushing process stage of an aggregate production site in
Sweden. The circuit consists of an H36 crusher followed by two consecutive double-deck
screens producing four sellable products. The equipment is interconnected with conveyors
which have mass flow measurement units installed. The mass flow units are also connected
to cloud-based data storage. The plant is manually controlled by operating the crusher
with the operator-defined settings, and the mass flow of the fresh feed (CV2) from the
stockpile is manually regulated.
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3.2. Experimental Design and Data Collection

To map the performance of the crusher, screens and process, an experimental design
was applied, as shown in Figure 7. The details of the observed process settings and belt-cut
points are shown in Table 1.
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Figure 7. Experimental sequence applied for mapping the circuit performance of the crushing plant.
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Table 1. Experimental noted values for the crushing plant.

Test ID CSS Setpoint
(mm)

CSS Calibration
(mm)

CSS Re-Check
(mm)

Operation Time
(min) Belt-Cut Sampling Point

T01 12 11.5 12.5 25 CV (3, 4, 5, 6, 7, 8, 9,10)
T02 15 15 15 25 CV4, CV5
T03 17 16.5 17.5 25 CV4, CV5
T04 19 18 19 25 CV (3, 4, 5, 6, 7, 8, 9,10)

• A series of four experiments were performed consisting of crusher closed-side setting
(CSS) calibration, crusher operation, crusher CSS re-check, followed by a crash stop
of the circuit for belt-cut sampling. The rationale behind the chosen incremental
crusher set points is based on the type of crusher, top size particle in incoming feed,
and the practical possibility of operation. The crusher CSS was calibrated and re-
checked using hard clay to observe the deviation in the setting before and after the
continuous operation.

• Continuous operation of the crusher at the choke feed condition and steady-state
process condition was performed to capture continuous data for mass flow. The
crusher was operated for 25 min to be able to capture a minimum of 20 min of the
steady-state performance condition.

• The circuit was crash-stopped to perform the belt-cut sampling at various conveyor
points based on the experimental plan. For all four test runs, crusher feed and
product were sampled. For the screen calibration, two experimental tests (T01 and
T04) captured the belt cut samples for screen feeds and products. The rationale behind
choosing these two tests was to capture the screens’ performance at two loading
conditions: low CSS (T01) created a high load on screen 2 (high generation of fine
material), while high CSS (T04) created a high loading condition in screen 1 (high
generation of coarse material).

• The belt-cut sampling lengths (1–3 m) were selected based on the top size of material
on the conveyor, uniformity of material distribution, and material weight required to
achieve statistical significance based on top size [15,26]. The samples were limited to
include replicates. Sieving analysis was performed on each sampled material using
SS-EN 933-1:2012 standard [26]. For the survey data, a basic check was performed if
the data set was in line with the knowledge of the equipment. For example, opening
the CSS of the crusher should lead to increased production of coarse products.

3.3. Applied Optimization Method

Based on the sieving analysis on the belt-cut sampled material at various settings,
an optimization method is applied to fit the model to the data. An illustration of the
applied calibration and validation process is demonstrated in Figure 8. In particular,
the crusher and screen models are calibrated to the experimental belt-cut data for which
the detailed optimization problem formulation is presented. The optimization problems
formulations presented for crusher and screen are solved using an unconstrained gradient-
based approach, the Quasi-Newton Method [27]. The advantage of using this approach is
that it is computationally efficient, although it can be sensitive to the start point if multiple
local minima exist. To address the limitation with the local minima, the optimization
problems were solved at multiple combinations of start-points to obtain the optimizer and
optimum value. The solution sets were evaluated based on the optimum values (sorted
with lower values) and corresponding optimizer values. For low optimum value solutions,
the optimizers were compared, and if they were found to be in close vicinity of other similar
solutions, the local minima were regarded as representing global minima. The application
at this stage is limited to evaluate the sensitivity of the optimizer to the optimum value.



Minerals 2021, 11, 921 8 of 19Minerals 2021, 11, 921 8 of 19 
 

 

 
Figure 8. The steps for calibration and validation of dynamic process simulation of the crushing 
plant. 

3.3.1. Crusher Optimization Problem Formulation 
The crusher model is calibrated in two steps: Capacity Optimization and Product Size 

Distribution (PSD) Optimization. The fast-mechanistic model consists of 10 tuning varia-
bles (model parameters) corresponding to inter-particle breakage (x1, x2, x3, x4), single par-
ticle breakage (x5, x6, x7, x8), selection (x9), and nipping angle (x10). Depending on the choice 
of functions used inside each module in the model, the number of variables to be tuned 
can vary. The choice of the two sequential optimization problem formulations for the 
crusher is based on the representation of two distinct performance indicators (capacity 
and PSD) and their relationship with the model variables. In the Capacity Optimization 
(See Equation (6)), the objective function is to minimize the sum of the relative errors be-
tween the crusher-measured capacity (CapDi) and the simulated capacity (CapSi) for the n 
number of tested settings of CSS. 

1

0

*

( )
min

. . ,[ 10]
,

[x ] =[1]
4

  

n
Di Si

i Di

k

k

k

Cap Cap
Cap

w r t x k
where

n
Optimizer x

=

−

→ =

=
=



 (6)

In the PSD Optimization for the crusher (See Equation (7)), the objective function is 
to minimize the weighted (wj) sum of errors for the data (PSDfDji) and the simulation 
(PSDfSji) for the values of the n number of tested settings. The PSD values are in the fre-
quency domain for the m number of given sieve sizes (xsize), and mat represents the nom-
inal material characterization values for a given material type. The PSD in the frequency 
and the cumulative domain is in fraction passing for the sieve size. 

Equipment:
Crusher calibration based 
on experimental belt-cut 

data

Equipment:
Screens calibration based 
on experimental belt-cut 

data

Process Simulation Configuration:
Plant configuration based on survey data

Process Simulation Validation   
with respect to Production Data

Equipment:
Conveyors configuration 
based on measurements

Production Data Collection: Mass flow at various conveyors

Production Data Filtering and Quality: Data Outliers and Mass balanceCo
nt

in
uo

us
 

Pe
rfo

rm
an

ce
Sn

ap
sh

ot
Pe

rfo
rm

an
ce

Figure 8. The steps for calibration and validation of dynamic process simulation of the crushing plant.

3.3.1. Crusher Optimization Problem Formulation

The crusher model is calibrated in two steps: Capacity Optimization and Product
Size Distribution (PSD) Optimization. The fast-mechanistic model consists of 10 tuning
variables (model parameters) corresponding to inter-particle breakage (x1, x2, x3, x4), single
particle breakage (x5, x6, x7, x8), selection (x9), and nipping angle (x10). Depending on the
choice of functions used inside each module in the model, the number of variables to be
tuned can vary. The choice of the two sequential optimization problem formulations for the
crusher is based on the representation of two distinct performance indicators (capacity and
PSD) and their relationship with the model variables. In the Capacity Optimization (See
Equation (6)), the objective function is to minimize the sum of the relative errors between
the crusher-measured capacity (CapDi) and the simulated capacity (CapSi) for the n number
of tested settings of CSS.

min
n
∑

i=1

∣∣∣ (CapDi−CapSi)
CapDi

∣∣∣
w.r.t→ xk, [k = 10]

where,

[xk]0 = [1]

n = 4

Optimizer = x∗k

(6)

In the PSD Optimization for the crusher (See Equation (7)), the objective function is to
minimize the weighted (wj) sum of errors for the data (PSDfDji) and the simulation (PSDfSji)
for the values of the n number of tested settings. The PSD values are in the frequency
domain for the m number of given sieve sizes (xsize), and mat represents the nominal
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material characterization values for a given material type. The PSD in the frequency and
the cumulative domain is in fraction passing for the sieve size.

min
n
∑

i=1

m
∑

j=1
wj
∣∣(PSD fDji − PSD fSji)

∣∣
w.r.t→ xk, [k = 1, 2, . . . , 9]

where,

[xk]0= [1 1 1 1 1 1 1 1 1]

n = 4, m = 25

Optimizer= x∗k ·mat

(7)

The weighted function (wj) is given in Equation (8), which is a function of the sieve size
used in the simulation. The purpose of the weighted function is to steer and compensate
for the distribution of the number of data points available at different sieve size ranges.
The distribution is defined by the square root 2 series ranging from 63 µm to 360 mm. The
function weighs higher on the coarse end of the particle size compared to the fine end
of the particle size range. The weight on the smallest sieve size is set to 1 to prevent the
tail of the sieve size from under compensating for the fine sieve size range. A graphical
representation of wj is shown in Figure 9.

zj = log2(xsizej) + |log2(min(xsize)|

wj =

 zj/(max(z))∀(j = 1, 2, . . . , 24)

1, (j = 25)

where,

xsize = [360; 250; 125; 90; 63; 45; 31.5; 22.4; 16; 11.2; 8; 5.6; 4; 2.8; 2; 1.4; 1; 0.7; 0.5; 0.35; 0.25; 0.177; 0.125; 0.088; 0.063]

(8)
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Figure 9. Graphical representation of the weighted function used in the optimization problem formulation.
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3.3.2. Screen Optimization Problem Formulation

The screen model variables are tuned based on the objective to minimize the sum of
errors between measured product size distribution (PSDfDji) and simulated product size
distribution (PSDfSji) for p output material stream measured at n test settings for the m
sieve sizes. Equation (9) presents a generalized optimization problem formulation for a
double-deck screen. The aperture (Ad), efficiency at the aperture size (Ed), and sharpness
parameter (αd) are tuned based on the initial given values. The subscript d represents the
notation for the position of the deck (d = 1 for Deck 1 and d = 2 for Deck 2).

min
p
∑

s=1

n
∑

i=1

m
∑

j=1

∣∣∣((PSD fDji)s − (PSD fSji)s)
∣∣∣

w.r.t→ xk, [k = 1, 2, . . . , 6]

where,

[xk]0 = [αd, Ad, Ed]∀d

n = 2, m = 25, p = 3

Optimizer = x∗k

(9)

Depending on the loading condition of the screen, the sharpness parameter αd is
described as a linear function of the mass flow mdi(t) for each screen deck (d) and the
number of test settings (n); see Equation (10), where ad and bd are fitting parameters. In
the case of an over-utilized screen, the sharpness parameter αd can be assumed to also be
dependent on the mass flow and product size distribution composition due to the changes
in the incoming feed into the screen. In this case, the optimization problem shown in
Equation (9) needs to be solved independently for each value of the test setting n.

αdi = f (ad, bd) = ad·mdi(t) + bd

i = 1, . . . , n

d = 1, 2

(10)

3.3.3. Production Data Collection and Filtering

The plant was equipped with load-cell sensors (OJ1436 smart Belt Weigher Indicator)
for mass flow measurement at different conveyors (See Figure 6) [28]. The measurement
accuracy is ± 1% with normal maintenance according to the manufacturer’s specification.
The OJ1436 calculates a new mass flow rate every 50 ms (20 Hz) and updates the total once
per second (1 Hz) locally. This flow rate and total data are transferred to the online system
(smartTONNES) once per minute (0.0167 Hz). The flow rate is transferred to the online
system (average mass flow rate for the last minute based on the average of 60 readings)
using an inbuilt router with an internet connection. The data for the plant were accessed
using a custom-written code through API (Application Programming Interface). The data
collected were post-processed to eliminate outliers (e.g., negative values, conveyor rated
belt-scale values), and steady-state operation data were extracted. The mass balancing of
the average data was checked for the different experimental settings. If the error was within
the sensor variation, the data set was kept to the original; otherwise, data reconciliation
could be performed.

4. Results

The results present the calibration of the crusher and screen models to the experimental
belt-cut data. This is followed by the configuration and validation of the process simulation
results against filtered production data.
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4.1. Crusher Calibration

Figures 10 and 11 present the crusher calibration results for different tested CSS in
the frequency domain and cumulative domain, respectively, for the optimization problem
posed in Equation (7). The converged optimization solution resulted in an optimum value
of 0.387 and an optimizer value of x1 to10 as 0.60, 0.30, −0.14, 0.64, 1.55, 0.83, −0.77, 0.75,
1.06, 0.80. The variables of the crusher model are found to be sensitive to the objective
functions. It can be noted that the simulation is capable of representing the captured data.
The weight function applied in the optimization problem formulation (see Equation (7))
helped to balance-fit the model well within the coarse operational region (sieve size above
2 mm), which is required for the aggregate process plant compared to the overfitting
of the model in the fine region (sieve size below 2 mm) because of the multiple close-
spaced data points. It was also found out that it was crucial to work with the frequency
domain for optimization problem compared to the cumulative domain as the former avoid
accumulated error in different sieve size data. In essence, the problem was decoupled for
every sieve size fraction and test condition. The numerical application of the Quasi-Newton
method for solving the optimization problem as an unconstrained gradient-based approach
was found to be computationally efficient.
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Figure 10. Crusher calibration result to the belt-cut experimental data in the frequency domain.

Minerals 2021, 11, 921 11 of 19 
 

 

It was also found out that it was crucial to work with the frequency domain for optimiza-
tion problem compared to the cumulative domain as the former avoid accumulated error 
in different sieve size data. In essence, the problem was decoupled for every sieve size 
fraction and test condition. The numerical application of the Quasi-Newton method for 
solving the optimization problem as an unconstrained gradient-based approach was 
found to be computationally efficient. 

 
Figure 10. Crusher calibration result to the belt-cut experimental data in the frequency domain. 

 
Figure 11. Crusher calibration result to the belt-cut experimental data in the cumulative domain. 

4.2. Screen Calibration 
Screen 1 was calibrated for each test load condition (T01 = 110 t/h and T04 = 134 t/h), 

and the parameter α was linearized to the mass flow for each deck in the double deck 
screen (See Equations (9) and (10)). Figure 12 presents the screen 1 calibration result for 
test conditions a) T01 and b) T04 in the cumulative domain. The optimizer values obtained 
are a1 = −0.75, b1 = 37.9, a2 = −0.53, b1 = 26.64, A1 = 22.02, A2 = 10.03, E1 = 95, and E2 = 95. It 
was noted that the value of the aperture and efficiency at the aperture remained around 
the initial point while the variables associated with sharpness changed to fit the data due 
to the varied sensitivity of individual variables to the objective function. 

Screen 2 was calibrated for the combined test load condition (T01 = 54.66 t/h and T04 
= 39.90 t/h) as per Equation (9). Figure 13 presents the screen 2 calibration result for test 
conditions a) T01 and b) T04 in the cumulative domain. The optimizer values obtained are 
α1 = 9.30, α2 = 5.91, A1 = 7.70, A2 = 5.86, E1 = 94.50, and E2 = 94.69. Both the calibrated results 
of the screen 1 and 2 models show satisfactory mapping to the data. However, it should 
be noted that the sampling for the screen performance using the experimental belt-cut 

0.01 1 10 100 500
Seive Size [mm]

0

0.1

0.2

0.3

0.4

Fr
ac

tio
n 

Pa
ss

in
g 

[-
]

CSS ~ 12 mm

DATA - Feed
DATA - Product
SIM - Product

0.01 1 10 100 500
Seive Size [mm]

0

0.1

0.2

0.3

0.4

Fr
ac

tio
n 

Pa
ss

in
g 

[-
]

CSS ~ 15 mm

DATA - Feed
DATA - Product
SIM - Product

0.01 1 10 100 500
Seive Size [mm]

0

0.1

0.2

0.3

0.4

Fr
ac

tio
n 

Pa
ss

in
g 

[-
]

CSS ~ 17 mm

DATA - Feed
DATA - Product
SIM - Product

0.01 1 10 100 500
Seive Size [mm]

0

0.1

0.2

0.3

0.4

Fr
ac

tio
n 

Pa
ss

in
g 

[-
]

CSS ~ 18.5 mm

DATA - Feed
DATA - Product
SIM - Product

0.01 1 10 100 500
Seive Size [mm]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
um

ul
at

iv
e 

Fr
ac

tio
n 

Pa
ss

in
g 

[-
]

CSS ~ 12 mm

DATA - Feed
DATA - Product
SIM - Product

0.01 1 10 100 500
Seive Size [mm]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
um

ul
at

iv
e 

Fr
ac

tio
n 

Pa
ss

in
g 

[-
]

CSS ~ 15 mm

DATA - Feed
DATA - Product
SIM - Product

0.01 1 10 100 500
Seive Size [mm]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
um

ul
at

iv
e 

Fr
ac

tio
n 

Pa
ss

in
g 

[-
]

CSS ~ 17 mm

DATA - Feed
DATA - Product
SIM - Product

0.01 1 10 100 500
Seive Size [mm]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
um

ul
at

iv
e 

Fr
ac

tio
n 

Pa
ss

in
g 

[-
]

CSS ~ 18.5 mm

DATA - Feed
DATA - Product
SIM - Product

Figure 11. Crusher calibration result to the belt-cut experimental data in the cumulative domain.

4.2. Screen Calibration

Screen 1 was calibrated for each test load condition (T01 = 110 t/h and T04 = 134 t/h),
and the parameter α was linearized to the mass flow for each deck in the double deck
screen (See Equations (9) and (10)). Figure 12 presents the screen 1 calibration result for
test conditions a) T01 and b) T04 in the cumulative domain. The optimizer values obtained
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are a1 = −0.75, b1 = 37.9, a2 = −0.53, b1 = 26.64, A1 = 22.02, A2 = 10.03, E1 = 95, and E2 = 95.
It was noted that the value of the aperture and efficiency at the aperture remained around
the initial point while the variables associated with sharpness changed to fit the data due
to the varied sensitivity of individual variables to the objective function.
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Figure 12. Screen 1 calibration results for (a) T01 and (b) T04 in the cumulative domain.

Screen 2 was calibrated for the combined test load condition (T01 = 54.66 t/h and
T04 = 39.90 t/h) as per Equation (9). Figure 13 presents the screen 2 calibration result
for test conditions a) T01 and b) T04 in the cumulative domain. The optimizer values
obtained are α1 = 9.30, α2 = 5.91, A1 = 7.70, A2 = 5.86, E1 = 94.50, and E2 = 94.69. Both
the calibrated results of the screen 1 and 2 models show satisfactory mapping to the
data. However, it should be noted that the sampling for the screen performance using
the experimental belt-cut method captures a snapshot of the screen performance. It was
also noted that a discretization error could exist in the model, which is a function of the
selected sieve size range. The fitting behavior of screen 1 (Figures A1 and A2) and screen 2
(Figures A2 and A4) calibration results for test conditions T01 and T04 in the frequency
domain is presented in Appendix A.
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Figure 13. Screen 2 calibration results for (a) T01 and (b) T04 in the cumulative domain.
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Figure 14 presents the partition curves for (a) screen 1 and (b) screen 2 (see Equation (5)).
As mentioned earlier, the screening sharpness of screen 1 is dependent on the incoming
mass flow, which is the function of the crusher product for the two-test condition (T01 and
T04). T01 is the minimum setting in the crusher CSS, producing a high proportion of fines
with low mass flow condition, while T04 is operating at maximum CSS, producing a low
proportion of fines and higher mass flow. These two outputs first interact with the top deck
of Screen 1, which results in screen performance variation with the loading condition. To
further investigate this, the product quality of the screened material is plotted in Figure 15. It
is evident from Figure 15a that the recirculating product (P16+ mm) and product P8/16 mm
have a higher carryover of the oversize material from the test T01 compared to the test T04
condition, while the product P0/8 mm has the vice versa response. This is the evidence where
the two screening curves in Figure 14a are moving in the opposite direction with the loading
condition change. On the contrary, the response of screen 2 is similar for both loading
conditions (See Figures 14b and 15b). It can be noted that the product P2/4 mm consists of a
high proportion of undersize and oversize, which is a common phenomenon at this fraction
size that can be caused due to screen clogging, wear, and moisture issues. The product is
sometimes certified as P2/5 mm depending on the market need and product quality.
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Figure 14. Screening partition curves for the two screens. (a) Screen 1 and (b) Screen 2.
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Figure 15. Product quality of the screened products at different test conditions of (a) screen 1,
(b) Screen 2, where RS—Regular Size, OS—Over Size, and US—Undersize for the particular product
specification.
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4.3. Process Validation

Figure 16 presents the comparison of various product streams from the dynamic
process simulation to the production data captured from the mass flow system for the
four test conditions (T01–T04: left to right). It can be observed that the process simulation
captures the right trend, phase, and magnitude of the production for different product
fractions, while certain discrepancies exist with the mass flow values.
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Figure 16. Dynamic simulation process results compared with the online production data for the four test conditions.
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Table 2 presents the root mean square error (RMSE) values for each product stream
and test condition. As can be noted from the RMSE, values are low for most cases, except
Product P8/16 mm and P16+ mm. The origin of the error can be either associated with
the crusher model, screen model, or production data. The crusher and screen models
were calibrated to the snapshot performance captured from the experimental samples,
and despite the controlled procedure, inherent variations exist in the process performance,
which could result in such deviation. Up to 8–12% RMSE values, together with the visual
scrutiny, have been shown to be acceptable for minerals processing application for a
particular product flowrate [11]. Overall, the process performance prediction is satisfactory
to use such models for process optimization and process planning for aggregate production.

Table 2. RMSE calculation between process simulation and production data.

Product Stream T01 T02 T03 T04

Crusher Product 6.42 3.90 3.22 3.40
P8/16 mm 14.38 6.05 4.20 8.75
P16+ mm 5.10 8.40 11.38 7.72
P4/8 mm 2.56 0.70 1.77 1.48
P2/4 mm 2.06 0.78 1.28 1.01
P0/2 mm 1.90 2.42 2.22 1.50

Figure 17 presents product yield for different product streams obtained from experi-
mental data of the absolute crusher performance compared to the values obtained from the
production data. It can be commented that the dynamic screen performance is causing the
difference between the values, especially at the coarser end of the products. To achieve a
better production rate, it is important to consider both the crusher and screen process and
their interaction effects, which can be simulated in a well-calibrated process simulation.
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5. Discussion

The methodology for utilizing the existing model capabilities (crusher and screen)
to adapt to the experimental data of an industrial scale crushing plant is shown. The use
of mechanistic [12] or well-established phenomenological models [15] helps to generate
knowledge about the equipment and process relations, rather than treating the process
as a black-box system. This is needed to carry out process improvement and process
optimization and interpret the appropriateness of the results for practical application. The
operational strategy of the crushing plant operation can play an important role in the
utilization of the dynamic process simulation capabilities. The plant under consideration
was manually operated, which limited the inclusion of a feedback control loop in the
process simulation.

Optimization problem formulation for product size distribution in the frequency
domain is utilized for both the crusher and screen model, which resulted in a low error in
model fitting. The choice of the optimization algorithm was based on the simplicity of the
application, although other algorithms can also be applied to solve the defined problem.
It is important to understand the sensitivity of each variable towards the output of the
model as it helps in interpreting the optimization results in the model calibration. Usually,
the algorithm is not supplied with the gradient values, and the gradient in the problem
solution is estimated using numerical methods using the model response. One needs to be
aware of these responses to understand optimizers in relation to the physical meaning of
the model.

The experiment performed in this paper used two different sources of data (belt-
cut samples and online production data) for calibration and validation of the process
simulations. Knowing the limitation and applicability of the individual equipment model
can pave the way to utilize the production data for the process calibration. The optimization
problem can then be posed as a constrained-based optimization. This will be investigated
to develop a method to calibrate the process simulation based on the production data
(see Figure 8), which can further eliminate the costly experimental belt-cut sampling
procedure. This development is needed for the easy use of the process simulation for
industrial applications for daily operation. Further equipping the physical process with
different sensors (power, mass flow, product size distribution) and connecting it to the
cloud system for easy access are needed to completely utilize the benefits of the digital
transformation. Further inclusion of the full-mechanistic crusher and screen model into the
process simulation can lead to studies for the effect of major equipment level change (e.g.,
crusher liner, screen cloth) into production performance change.

6. Conclusions

A method consisting of controlled experimental design including belt-cut sampling
together with the production data collection and application of an optimization approach
to calibrate the dynamic process simulation for a crushing plant are presented. This was
followed by validation of the process simulation with respect to the production data. A
novel unconstrained optimization problem formulation for different crusher and screen
models was presented. The use weighting function to generate a good fit of the crusher
model was shown together with the application gradient-based algorithm (Quasi-Newton
Method) to solve the optimization problem. The configured process model using calibrated
equipment models was compared with the production data, which showed a low error
value. The interaction effect between the crusher performance and screens performance
was demonstrated, and one needs to consider a systems perspective to effectively utilize
the process simulation capabilities.
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Figure A1. Screen 1 calibration results for T01 in the frequency domain.
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Figure A2. Screen 1 calibration results for T04 in the frequency domain.
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Figure A3. Screen 2 calibration results for T01 in the frequency domain.
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Figure A4. Screen 2 calibration results for T04 in the frequency domain.
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