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Abstract: The northwestern Erguna Block, where a wide range of volcanic rocks are present, provides
one of the foremost locations to investigate Mesozoic Paleo-Pacific and Mongol-Okhotsk subduction.
The identification and study of Late Jurassic mafic volcanic rocks in the Badaguan area of north-
western Erguna is of particular significance for the investigation of volcanic magma sources and
their compositional evolution. Detailed petrological, geochemical, and zircon U-Pb dating suggests
that the Late Jurassic mafic volcanic rocks formed at 157–161 Ma. Furthermore, the geochemical
signatures of these mafic volcanic rocks indicate that they are calc-alkaline or transitional series with
weak peraluminous characteristics. The rocks have a strong MgO, Al2O3, and total alkali content, and
a SiO2 content of 53.55–63.68 wt %; they are enriched in Rb, Th, U, K, and light rare-earth elements
(LREE), and depleted in high-field-strength elements (HFSE), similar to igneous rocks in subduction
zones. These characteristics indicate that the Late Jurassic mafic volcanic rocks in the Badaguan
area may be derived from the partial melting of the lithospheric mantle as it was metasomatized by
subduction-related fluid and the possible incorporation of some subducting sediments. Subsequently,
the fractional crystallization of Fe and Ti oxides occurred during magmatic evolution. Combined
with the regional geological data, it is inferred that the studied mafic volcanic rocks were formed by
lithospheric extension after the closure of the Mongol-Okhotsk Ocean.

Keywords: Late Jurassic mafic volcanic rocks; Erguna Block; Mongol-Okhotsk Ocean; age and
geochemistry

1. Introduction

The northwestern margin of the Erguna Block underwent a complex tectonic evolution
during the Phanerozoic, including ancient Asia, the Mongol-Okhotsk subduction, and the
westward subduction of the Paleo-Pacific Ocean [1–5]. Multiple magmatic events resulted
in the widespread distribution of igneous rocks in the northwestern Erguna Block [6–9].
The widely exposed igneous rocks provide a useful tool for reconstructing the tectonic
evolution of this region and its surrounding areas. In recent years, with the increasing
focus on the Mesozoic volcanic rocks in the Da Xing’anling region, a large amount of
high-precision zircon U-Pb and 40Ar/39Ar age and geochemical data have been obtained.
These data indicate that most of the Mesozoic volcanic rocks in the Da Xing’anling region
formed during the Early Cretaceous [10,11], with most of the volcanic rocks consisting
of calc-alkaline and alkaline types in southern and northern Da Xing’anling, respectively.
Both derived from an enriched mantle [12]. Acidic volcanic rocks are divided into high Sr
rhyolite and low Sr rhyolite types; high Sr rhyolite types were formed by the differentiation
of calc-alkaline basaltic magma, and low Sr rhyolite types were produced by the partial
melting of lower crustal rocks [13]. The interpretation of Mesozoic volcanism in this area
remains controversial, with most focus placed on the mantle plume model [14–17], which is
associated with the subduction of the ancient Pacific Plate [18–20] and the evolution of the
Mongol-Okhotsk Ocean [18,21]. However, existing studies mainly focused on subduction,
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while understanding of the Late Jurassic–Early Cretaceous tectonic evolution after the
closure of the Mongol-Okhotsk Ocean remains limited [22–24]. This is of great importance
for understanding the tectonic evolution of Northeast China, especially the Da Xing’anling
region [25–27].

The Erguna Block is a key location for studying the characteristics of the Mongol-
Okhotsk Orogenic Belt. Furthermore, Late Jurassic–Early Cretaceous magmatism was most
active in the Erguna Block and its adjacent areas. Here, we investigate the zircon U-Pb ages
and whole-rock geochemistry of the Late Jurassic mafic volcanic rocks in the Badaguan
area of the northwestern Erguna Block. In combination with available chronological,
geochemical, and isotopic data, our results provide a basis for exploring the tectonic
evolution of Northeast China and its surrounding areas, and a deeper understanding of
the southward subduction of the Mongol-Okhotsk Ocean.

2. Geological Setting and Sample Descriptions

Northeast China is a patchwork of miniature continental blocks, including the Erguna,
Xing’an, Songnen, and Jiamusi Blocks from the northwest to the southeast (Figure 1a).
The Erguna Block and the Xing’an Block were assembled before 500 Ma [28,29]. As an
important component of the eastern Central Asian Orogenic Belt, the Erguna Block is
located in the northern Da Xing’anling Mountains, with the Tayuan-Xiguitu Fault to the
southeast, and the Mongol-Okhotsk tectonic belt to the northwest. Here, the substrate
mainly consists of Neoproterozoic metamorphic volcanic-sedimentary rocks, igneous rocks,
and a few Paleoproterozoic gneisses [21]. Granite, which is traditionally thought to have
formed during the Mesozoic [30], is widespread throughout the Erguna Block, although
recent investigations indicate that its formation occurred between the Late Triassic and the
Cretaceous [19,21,24]. Along with the Late Jurassic–Early Cretaceous volcanic rocks, the
granite in this region represents the largest magmatic episode in the Erguna Block [5].

Recent detailed chronological data further indicate that the Late Jurassic magmatism
was more intense over the Erguna Massif. For example, the andesites found in southern
Manzhouli formed during the period 156–158 Ma [13]; the basalts discovered in the Hailar
Basin formed during the Late Jurassic; the basaltic andesite found in Xinlinqu formed
during the period of 153–154 Ma [31]. Thus, a significant volcanic event is thought to have
taken place across the entire Erguna Block during the Late Jurassic.

The detrital zircon geochronology and geochemistry of the Early Paleozoic sedimen-
tary rocks of the Erguna Massif indicate that: (1) no uplift occurred during the Early to
Middle Ordovician; (2) an uplift began during the Silurian that fed the surrounding basins;
(3) the Erguna Massif was fully uplifted to the surface during the Early Devonian [32].

The study area is situated in the Badaguan area of the northwestern Erguna Block,
within the Derbugan Tectonic Belt (Figure 1b). Pre-Mesozoic strata are poorly exposed
in this area, with only a few metamorphic rocks of the Jiageda Formation visible near
the Erguna River. Late Mesozoic volcanism was intense and widespread. From bottom
to top, the volcanic rocks form an Early Jurassic–Early Cretaceous succession. Sedimen-
tary rocks are not present in the study area. The intrusive rocks are dominated by Late
Triassic syenogranite, granodiorite, and hornblende diorite [33]. The granites are closely
associated with mineralization features [34,35], especially the Badaguan porphyry-type
Cu-Mo polymetallic deposits. The genesis of these deposits is related to the evolution of
the Mongol-Okhotsk Ocean [34,35].
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Figure 1. (a) Geological sketch map of Northeast China and (b) simplified geological map of
Northwest Erguna block (modified after Li et al. [27]).

At present, there is still controversy about the opening of the Mongol-Okhotsk Ocean,
but the Late Paleozoic–Mesozoic evolutionary history is relatively clear. During this period,
the Mongol-Okhotsk Ocean likely subducted both northward and southward [4,34,35].

The Mongol-Okhotsk Ocean evolution can be roughly divided into seven stages: (1)
during the Devonian period, the Mongol-Okhotsk oceanic crust began to subduct at a low
angle beneath the Siberian plate, causing diffuse lithospheric extension and contributing to
the collapse of the Early Paleozoic orogenic belt; (2) during the Early–Late Carboniferous,
the subduction steepened, prompting a shift from an extensional to an extrusion regime;
(3) the Late Carboniferous–Early Permian subduction plate broke off and reversed, leading
to the extension of the continental lithosphere and the upwelling of mantle material; (4)
Late Permian–Middle Triassic igneous rocks provide evidence for both northward and
southward subduction polarity, a typical and active continental margin environment; (5)
in the Late Triassic, the western part of the Mongol-Okhotsk suture zone closed, but
the central and eastern oceans of the Mongol-Okhotsk Ocean were still open; (6) during
the Early–Middle Jurassic period, magmatic activity in Transbaikal and North-central
Mongolia weakened significantly, likely due to the subduction slowing down at its final
stage, and the eventual closure of the oceans to form orogenic belts; (7) in the Late Jurassic–
Early Cretaceous period, the eastern part of the Mongol-Okhotsk Ocean eventually closed,
causing the granites of this period to have intraplate granite features [36–38].
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The samples dated in this study were obtained from the northwestern Erguna Block.
The Late Jurassic mafic volcanic rocks in the study area are exposed over an area of
approximately 200 km2, broadly spreading in a northeast direction, and are dominated by
andesites and trachyandesites.

The andesite samples are dark in color, show a porphyritic texture, and boast a massive
structure with a phenocryst content of 1–3%, with sizes ranging from 0.2 to 6 mm. The
phenocrysts are dominated by plagioclase with a small amount of hornblende. The matrix
comprises plagioclase microcrystals with an interwoven arrangement (Figure 2).
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3. Methods

We selected nine mafic volcanic rocks for whole-rock geochemical analysis. Among
them, we selected rocks with almost no alteration and moderate SiO2 contents (samples
Zr15 and ZRD17) for zircon U-Pb dating.

The whole-rock major and trace elements were analyzed at the No. 240 Institute of
Nuclear Industry. The main elements were analyzed using the X-ray fluorescence (XRF)
glass frit method with a relative error of <5%; trace and rare-earth elements were analyzed
on an inductively coupled plasma mass spectrometer (ICP-MS) (Elan 6100DRC, Perkin
Elmer, Waltham, MA, USA) alongside AVG-1 and BHVO-1 international standards, with a
relative error of <5%. Zircon sorting was performed at the Langfang Regional Geological
Survey Research Institute, Hebei Province, China. Zircon target making and microscopic
image acquisition were conducted at the Tianjin Geological Survey Center. Laser ablation
(LA) ICP-MS zircon U-Pb chronology testing was completed at the Northeast Asia Mineral
Resources Evaluation Key Laboratory, Ministry of Land and Resources, Jilin University.
Transmission, reflection, and cathodoluminescence images of the andesite samples were
acquired to determine the type of internal zircon genesis and structural composition. For
this, high-purity He gas was used as the carrier gas for the exfoliating material.

Zircon U and Pb were determined with a ComPex102 ArF excimer laser at 193 nm
wavelength on an Agilent 7500a ICP-MS machine. Instrument optimization was under-
taken using NIST610, a standard reference substance composed of synthetic, silicate glass
developed by the American Institute of Standards and Technology. Harvard University
International Standard zircon 91500 was used as an external standard. The laser beam spot
diameter used for the zircon determinations was 30 µm. Analytical data were calculated
using Glitter software (1999, GEMOC, Macquaric University, CSIRO, Sydney, Australia),
and ordinary Pb correction was performed following [39]. For detailed experimental test
procedure and instrument parameters, refer to [39].
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4. Results
4.1. Zircon U-Pb Ages

Two representative andesite samples from the Late Jurassic in the Badaguan region
were analyzed using zircon LA-ICP-MS dating. The measured isotope ratios and the ages
calculated from the zircon single-point analysis of the two samples are listed in Table S1.
Weighted mean age and concordance plots are also displayed. The zircons were well-
crystallized and columnar in shape (Figure 3), with oscillating growth rings and high Th/U
ratios (0.48–2.76) characteristic of their magmatic origin [40].

Sample ZRD17 (Figure 4a), an andesite, was collected in the southeast of Badaguan. A
total of 20 zircons were analyzed from this sample, 13 of which were located on or near
the U-Pb concordia. 206Pb/238U ages ranged from 145 to 159 Ma with a weighted average
age of 157 ± 3.4 Ma, and a mean squared weighted deviation (MSWD) of 4.5. Except for
seven older zircons dating from 218–377 Ma (captured age), these results indicated that
the granites formed during the Late Jurassic. For sample Zr15 (Figure 4b), an andesite
also collected from southeast of Badaguan, 20 zircons were analyzed, 15 of which were
located on or near the U-Pb concordia. Except for five older zircons dating from 190 to 205
Ma (captured age), the 206Pb/238U ages for this sample ranged from 152 to 168 Ma with a
weighted average age of 161 ± 4.4 Ma and an MSWD of 3.5.
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4.2. Whole-Rock Major and Trace Element Composition

Table S2 shows the whole-rock major trace element compositions of the nine an-
desite samples. These mafic volcanic rocks have SiO2 contents of 53.55–63.68 wt %, total
alkali (Na2O + K2O) contents of 4.94–9.05 wt % with CaO (1.39–4.86 wt %) and TiO2
(0.80–1.45 wt %), high Al2O3 (15.49–19.86 wt %), and MgO (0.53–2.37 wt %) contents, and
Mg# values of 14.93–47.06. In the 0.001 × Zr/TiO2 vs. Nb/Y diagrams, all samples except
two, which are somewhat more alkaline, form one single differentiation trend and plot in
the field of andesites (Figure 5).
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The chondrite-normalized REE patterns indicate that all of the mafic volcanic rock
samples are characterized by relatively low total REE contents (ΣREE = 90.18–264.13 ppm,
average = 135.6 ppm), but are enriched in LREE, with (La/Yb)N values of 8.57–17.79 and
display no negative Eu anomalies (Figure 6a). The primitive-mantle-normalized trace
element spider diagram (Figure 6b) further indicates that these rocks contain high Rb, Th,
U, K, and LREEs, and are depleted in Nb, which is similar to subduction zone igneous
rocks.

The Late Jurassic mafic volcanic rock samples from the Badaguan area show an
obvious linear trend in the Harker diagram (Figure 7), suggesting that segregation and
fractional crystallization may have occurred during the evolution of the magma. The
negative correlation between SiO2 and TiO2 suggests that Fe and Ti oxides also separated
and crystallized.
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5. Discussion
5.1. Ages of Mafic Volcanic Rocks

Due to the lack of accurate age and biostratigraphic information, the age of the
volcanic-bearing strata in the Da Xing’anling area was mainly determined based on rock
assemblage features and regional stratigraphic correlations. The Late Jurassic mafic volcanic
rocks in the Badaguan area are similar to those of the Tamurangou Formation, which lack
isotopic age data. Some researchers consider these rocks as belonging to the Middle Jurassic
Tamurangou Formation [30]. However, our new U-Pb zircon data indicate otherwise. Our
derived ages (157–161 Ma) correspond to the Late Jurassic, which is younger than the
previously assumed Middle Jurassic age of these rocks.

5.2. Petrogenesis and the Nature of the Magma Source

Calc-alkaline, or transitional mafic volcanic, rocks are an essential part of orogenic
belts, and understanding their genesis is of great importance for revealing the formation,
growth, and crust–mantle interaction of the Earth’s crust [43]. Based on previous research,
the following processes have been proposed regarding the genesis of calc-alkaline or transi-
tional mafic volcanic rocks: (1) partial melting of the lithospheric mantle, metasomatized by
subduction-related fluids [4,24,44,45]; (2) separation and crystallization of mantle-derived
basaltic magma [46]; (3) mixing of crust-sourced feldspathic magma with mantle-sourced
basaltic magma [47]; and (4) the partial melting of subcrustal material due to the intrusion
of mantle-derived basaltic magma at the base [48,49].

The studied mafic volcanic rocks are relatively low in SiO2 content (53.55–63.68 wt %),
but high in Al2O3 (15.49–19.86 wt %) and MgO (0.53–2.37 wt %), and have Mg# values of
14.93–47.06. Furthermore, the crustal source magma has relatively high Lu/Yb (0.16–0.18)
and Rb/Sr (>0.5) ratios. In contrast, the Lu/Yb and Rb/Sr ratios of the Late Jurassic mafic
volcanic rock samples in the study area range from 0.20 to 0.29 and from 0.01 to 0.08,
respectively, which are significantly lower than those of crustal-sourced magmas. Indeed,
the Lu/Yb (0.14–0.15) and Rb/Sr (0.03–0.047) ratios are similar to those of mantle-derived
magma [50]. Therefore, our results indicate that the Late Jurassic mafic volcanic rocks in
the Badaguan area were not the product of the partial melting of the mafic lower crust.

In addition, the Late Jurassic volcanic rocks in the northern Da Xing’anling region are
dominated by andesites and rhyolites, with some inclusions, but contain no large-scale
basaltic magmatic rocks [5]. The characteristics of mafic volcanic rocks in the Badaguan
area imply that they are not the product of the differentiation of basaltic magma. The zircon
Lu-Hf isotopic system has a high confinement temperature, and when magma mixing
occurs, previously crystallized zircon can effectively record the Hf isotopic signature of the
mixed end elements [4]. Both Lu and Hf are incompatible trace elements and relatively
immobile; however, Hf is more incompatible than Lu and is relatively enriched in the
crust and in silicate melts. U-Pb and Lu-Hf isotope systems in zircon record crust–mantle
differentiation through time, i.e., fluid-assisted melt extraction from the mantle to form
juvenile crust. Negative epsHf values reflect enrichment with respect to the bulk Earth,
while positive epsHf values (0 to +15) reflect an origin from a source intermediate between
depleted mantle (DM) and bulk Earth. Therefore, when the value of εHf(t) is negative, it
usually represents the remelting of ancient crust or the mixing of ancient crust during the
formation of magma. When the value of εHf(t) is both positive and negative, it may mean
that the granite is of mixed crust–mantle origin. With positive εHf(t) values, the magma is
derived from the partial melting of new basal crustal material added from the depleted
mantle [4,5].

Previously published data from the Erguna Block have also shown that the zircons
have a relatively homogeneous Hf isotopic composition (Figure 8). From these data, it
seems that there is a rough evolution through time toward more depleted mantle sources,
with εHf(t) values ranging between +0.7 and +11.0, and the corresponding second-stage
model (TDM2) ages ranging from 441 to 1156 Ma (Table S3 [51–55]). This implies that
magma mixing was not the main pathway of the mafic magma [5]. Slab melts and lower
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crust melts can also react with the mantle to form mafic magmas, which are characterized
by adakites with high Sr/Y ratios and low Y and Yb contents. The mafic volcanic rocks from
the Badaguan area have relatively low Sr/Y ratios and high Y and Yb contents (Figure 9a),
which differs from the adakites of subduction slab or subcrustal detachment but is similar
to typical arc volcanic rocks. These rocks are distinctly different from the magmas produced
by the partial melting of basal lower crustal material [49].
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Mantle-derived magma in the process of upward intrusion would have inevitably
experience crustal material mixing. Small amounts of captured zircon suggest that crustal
material mixing may have occurred.

Although some of the mafic volcanic rocks have high K2O/P2O5 ratios, and the
K2O/P2O5 ratios are positively correlated with their SiO2 content, the K2O/P2O5 ratios of
most of the samples show little variation, and do not increase with increasing SiO2 content
(Figure 9b). Combined with the references in Table S3 for the Erguna Block [51–55], these
observations imply that the mafic magma in this region did not undergo significant crustal
contamination during its ascent through the continental crust.

Nb/La-Ba/Rb diagrams can distinguish between crustal mixing and a single mantle
source. The evolution of mantle-derived magma via crustal mixing results in a wide
range of Nb/La values and a narrow range of Ba/Rb values; in contrast, the Ba/Rb
values of enriched mantle are variable, and Nb/La values are highly consistent [56–58].
The studied mafic volcanic rocks show a parallel trend in the Nb/La-Ba/Rb diagram
(Figure 9c), indicating that the magma is not mixed with crustal material. Furthermore,
the geochemical characteristics mainly reflect the magma source area. However, mafic
magma mixed with crustal material has high 87Sr/86Sr ratios positively correlated with
SiO2 content, whereas the 87Sr/86Sr ratios of the mafic volcanic rocks in the Manzhouli area
of the Erguna Massif show a low degree of variation, and do not increase with increasing
SiO2 content [58]. Thus, the degree of crustal material contamination in the study region is
likely low.
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The main mechanism of lithospheric mantle enrichment is subduction metasomatism,
involving fluids formed by dewatering of the oceanic crust, and melt accounting for
oceanic sediments. The influence of subduction-related fluids and sediment melt can
be determined based on trace element ratios. Fluid-mobile elements (e.g., Ba, Rb, and
Sr) are easily transported in aqueous fluids, while melt-active elements (e.g., Th and La)
easily enter the sediment melt. Accordingly, the ratio of fluid, sedimentary melt activity
elements, and weakly active HFSEs or heavy rare-earth elements (HRESs) indicates the
contribution of subduction fluids and sediment melts to the source region. The Late Jurassic
mafic volcanic rocks from the study region generally correspond to subduction-related
fluid, while individual samples have high Th/Yb ratios (Figure 9d) indicating the possible
addition of subducting sediments. Taken together, these results indicate that the Late
Jurassic mafic volcanic rocks in the Badaguan region are derived from the partial melting
of the lithosphere, metasomatized by subduction-related fluid, with the possible addition
of subducting sediments.

5.3. Tectonic Background of Andesite Formation

Late Jurassic volcanic rocks are mainly distributed in the Da Xing’anling Mountains
on the south side of the Mongol-Okhotsk suture zone; volcanism was largely absent during
this period in the Songliao Basin and eastern Jihei [4,60,61]. As the subduction direction of
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the ancient Pacific Plate relative to Eurasia was northward during this period, the spatial
and temporal distribution of the volcanic rocks suggests that their formation was mainly
related to the evolution of the Mongol-Okhotsk Ocean. In recent years, the detailed study of
the Early Mesozoic granites and porphyry copper-molybdenum deposits in the Manzhouli-
Erguna area [62,63] has confirmed the southward subduction of the Mongol-Okhotsk
Ocean. The formation of the Late Triassic Taipingchuan and Badaguan porphyry copper-
molybdenum ores and the Early Jurassic Unugtushan porphyry copper-molybdenum
ores reflects the tectonic background of the active continental margin during this period.
Furthermore, the coeval granites are mainly granodiorite diorite granite assemblages,
which are similar to those forming at active continental margins, supporting the southward
subduction of the Mongol-Okhotsk Ocean.

Based on our analyses of the Mesozoic igneous rocks of the Erguna Massif, the calc-
alkaline or transitional igneous rock assemblages are Early–Late Jurassic in age. The
development of bimodal volcanic rocks in the Early Cretaceous and the change in mag-
matism characteristics record the transition from the Early Jurassic oceanic subduction to
the Late Jurassic post-orogenic extension of the Mongol-Okhotsk Ocean [2,64]. Most of
the Late Mesozoic igneous rocks of the Erguna Massif are of type A and A2 [64], formed
by lithospheric extension after the closure of the Mongol–Okhotsk Ocean. At the same
time, the igneous rocks from this period tend to change from adakites to calc-alkaline
igneous rocks, indicating that the granite source rocks formed by partial melting during
the extensional collapse and crustal thinning of the Mongol-Okhotsk Orogenic Belt [65,66].

The Late Jurassic mafic volcanic rocks in the Badaguan area of the northern section of
the Da Xing’anling region have typical geochemical characteristics of subduction-related
fluid, which are enriched in large ionic lithophile elements (e.g., Rb, Th, U, and K) and
depleted in HFSEs and HREEs. These rocks also have high Nb contents. Our samples are
plotted in the continental arc region of the Th/Yb-Nb/Yb diagram (Figure 10a), suggesting
that they formed in an active continental margin environment. Indeed, the samples have
high La/Yb and Th/Yb ratios similar to Andean-type active continental margin andesites
(Figure 10b). All studied rocks plotted within the field of subduction-related IAB series,
forming a mixing trend toward more depleted mantle sources (Figure 10c).

The Late Jurassic mafic volcanic rocks in the Badaguan area may be derived from the
partial melting of the lithosphere, metasomatized by subduction-related fluid, with the
possible addition of subducting sediments. This tectonic background is closely related to
the evolution of the Mongol–Okhotsk Ocean. This interpretation is consistent with the
tectonic context displayed by the bimodal volcanic rocks at Tamurangou (160–164 Ma)
and Manketourbo (159–162 Ma), as well as the A1 rhyolite of the Baiyingaolao Formation
(139–142 Ma) [12,13,50]. This is broadly consistent with the timing of the formation of mafic
volcanic rocks in the study region. Finally, the northwest part of the Erguna Massif is very
close to the Mongol-Okhotsk suture zone; the Middle–Late Jurassic volcanic rocks only
occur in the western part of the Songliao Basin, and tend to be younger and deeper in the
source area from west to east [13]. These rocks likely derived from the partial melting of the
lithosphere, previously metasomatized by subduction-related fluid, with some contribution
of subducted sediments; these sediments belonged to a Late Jurassic–Early Cretaceous
suite of magmatic rocks that evolved from a typical calc-alkaline “active margin” type
toward a more depleted or, alternatively, more alkaline type during post-collisional crust
delamination.
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6. Conclusions

Based on the chronology and geochemistry of the mafic volcanic rocks in the Badaguan
area combined with existing research, we draw the following main conclusions:

(1) The mafic volcanic rocks of the Badaguan area in the northern part of the Da Xing’anling
Mountains region formed during the Late Jurassic (157–161 Ma).

(2) These rocks likely derived from the partial melting of the lithosphere, previously
metasomatized by subduction-related fluid with some contribution of subducted
sediments.

(3) The studied mafic volcanic rocks likely formed by lithospheric extension after the
closure of the Mongol-Okhotsk Ocean.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/min11091010/s1, Table S1: Zircon U–Pb isotopic data for the Badaguan andesite in the Erguna
Block. Table S2: Major (wt %) and trace element (ppm) data for mafic volcanic rocks in the Erguna
Block. Table S3: Age and Hf isotopic data of Late Jurassic igneous rocks in the Erguna Massif.
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