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Zawadzki, D.; Strzelecka, A.; Baláž, P.;

Mianowicz, K.; Abramowski, T.;

Konečný, P.; Krawcewicz, A.

Chemostratigraphic and Textural

Indicators of Nucleation and Growth

of Polymetallic Nodules from the

Clarion-Clipperton Fracture Zone

(IOM Claim Area). Minerals 2021, 11,

868. https://doi.org/10.3390/

min11080868

Academic Editor: Maria Boni

Received: 7 June 2021

Accepted: 2 August 2021

Published: 11 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Marine and Environmental Sciences, University of Szczecin, 70-383 Szczecin, Poland;
lukasz.maciag@usz.edu.pl (Ł.M.); Dominik.zawadzki@usz.edu.pl (D.Z.);
agnieszka.strzelecka@usz.edu.pl (A.S.)

2 Interoceanmetal Joint Organization, 71-541 Szczecin, Poland; p.balaz@iom.gov.pl (P.B.);
k.mianowicz@iom.gov.pl (K.M.); t.abramowski@am.szczecin.pl (T.A.); a.krawcewicz@iom.gov.pl (A.K.)

3 Faculty of Navigation, Maritime University of Szczecin, 70-500 Szczecin, Poland
4 State Geological Institute of Dionýz Štúr, 817 04 Bratislava, Slovakia; patrik.konecny@geology.sk
* Correspondence: artur.skowronek@usz.edu.pl

Abstract: The detailed mineralogical and microgeochemical characteristics of polymetallic nodules
collected from the Interoceanmetal Joint Organization (IOM, Szczecin, Poland) claim area, Eastern
Clarion-Clipperton Fracture Zone (CCFZ, Eastern Pacific) were described in this study. The obtained
data were applied for the delimitation of nodule growth generations and estimation of the growth
ratios (back-stripping using the Co-chronometer method). The applied methods included bulk
X-ray powder diffraction (XRD) and electron probe microanalysis (EPMA), providing information
about Mn-Fe minerals and clays composing nodules, as well as the geochemical zonation of the
growth generations. The analyzed nodules were mostly diagenetic (Mn/Fe > 5), with less influence
on the hydrogenous processes, dominated by the presence of 10-Å phyllomanganates represented
by todorokite/buserite, additionally mixed with birnessite and vernadite. The specific lithotype
(intranodulith), being an integral part of polymetallic nodules, developed as a result of the secondary
diagenetic processes of lithification and the cementation of Fe-rich clays (potentially nontronite
and Fe-rich smectite), barite, zeolites (Na-phillipsite), bioapatite, biogenic remnants, and detrital
material, occurs in holes, microcaverns, and open fractures in between ore colloforms. The contents
of ∑(Ni, Cu, and Co) varied from 1.54 to 3.06 wt %. Several remnants of siliceous microorganisms
(radiolarians and diatoms) were found to form pseudomorphs. The applied Co-chronometer method
indicated that the nodules’ age is mainly Middle Pliocene to Middle Pleistocene, and the growth
rates are typical of diagenetic and mixed hydrogenetic–diagenetic (HD) processes. Additionally,
few nodules showed suboxic conditions of nucleation. Growth processes in the eastern part of the
CCFZ deposit might have been induced with the Plio-Pleistocene changes in the paleooceanographic
conditions related to the deglaciation of the Northern Hemisphere.

Keywords: polymetallic nodules; geochemistry; mineralogy; Clarion-Clipperton Fracture Zone;
Co-chronometer; intranodulith

1. Introduction

Polymetallic nodules, also called manganese nodules, are spheroidal-to-ellipsoidal
concretions found at the sea bottom. Polymetallic nodules are present in almost all
oceanic basins: the abyssal plains of the Pacific Ocean (Clarion-Clipperton Fracture
Zone (CCFZ) [1–5], Peru Basin [6], and Manihiki Plateau or Penrhyn Basin [7,8]); the
Indian Ocean (the Central Indian Ocean Basin [9]); and the Atlantic Ocean [10], as well as
marginal seas such as the South China Sea [11] and semi-landlocked seas such as the Baltic
Sea [12].
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Nodules are fragile and often fractured, with varying morphology and nuclei. Nodules
are usually completely or partly buried in the semi-liquid geochemically active layer
(GAL) of surface sediments, mainly in siliceous-clayey silts (e.g., [1]). GAL is the main
environment for polymetallic nodule development [13]. Hence, the sedimentary settings,
as well as the geochemical and biological processes in the layers up to several centimeters
thick [14], are the crucial factors determining the type of nodule growth generation. The
occurrence of nodules, buried up to 2.5 m in the sediment, should be mentioned [15].

Polymetallic nodules are composed of a nucleus (core) that is surrounded by con-
centric ore-bearing microlayers of Fe oxyhydroxides and Mn oxyhydroxides (laminae),
forming cauliflower-like colloforms and non-ore-bearing, irregular-shaped, admixtures of
detrital materials of various origins. The nodule nuclei can be clayey-zeolitic consolidated
sediment, bioclastic material (e.g., a piece of fish bone or tooth), volcanoclastic materials,
or fragments of older nodules (e.g., [2,16]). Microlayers (laminae) are highly enriched in a
variety of elements relative to their average abundances in the Earth’s crust and seawa-
ter. Compared to the crustal abundances, the concentrations of Mn, Co, Mo, and Th are
100 times higher, whereas those of Ni, Ag, Ir, and Pb are 50 times higher, and those of Cu,
Zn, Cd, Yb, W, and Bi are 10–50 times higher [17]. These high concentrations of metals
indicate that polymetallic nodules may be a prospective resource; however, currently, no
exploitation is being conducted. The main processes responsible for laminae formation
include: the hydrogenic precipitation of Mn and Fe oxyhydroxides and oxides under
oxic conditions directly from oceanic and pore waters (hydrogenic origin), precipitation
from hydrothermal waters (hydrothermal origin), and precipitation and reprecipitation
under suboxic conditions from pore waters, which are enriched with elements derived
from sediments and buried nodules (diagenetic origin) [5,18]. The factor controlling the
type of precipitation (hydrogenic vs. diagenetic) is the redox potential [1,5,15,16,19–22].
Until recently, little attention was paid to the non-ore parts of polymetallic nodules (see
references [15,23]). The general environmental conditions favoring nodules growth are
presented in Figure 1.
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Polymetallic nodules can be used in reconstructions of deep-water circulation and
continental weathering during the Plio–Pleistocene period. Combining magnetic profiling
with geochemical and isotopic data provides a useful tool for the estimation of the age and
growth generations of polymetallic nodules, in which fluctuations in the Earth’s magnetic
field are reliably stored [24,25].

2. Characteristics of Polymetallic Nodules from the CCFZ

In detail, the nodules from the CCFZ are characterized by the presence of two main
types of laminae composed of ore minerals precipitated directly from the solution: those
of hydrogenic and diagenetic origin [1,5]. The hydrogenic layers are characterized by
an Mn/Fe ratio < 3, Ni + Cu content < 1.5 wt %, and Co content of about 0.4 wt % [1,5].
Trace metals such as Co are enriched in the hydrogenic layer precipitating directly from
well-oxygenated seawater. The excellent sorption of trace metals results from the high
porosity and large surface area of the hydrogenic layers [20,26].

Diagenetic microlayers show a Mn/Fe ratio > 10, Ni + Cu content of ~4 wt %, and
a Co content of ~0.1 wt % [5]. The enrichment of most metals resulted from the sec-
ondary diagenetic mobilization and precipitation under oxic conditions and, further, the
reprecipitation–mobilization influenced by the sub- and anoxic conditions occurring un-
der the burial of the sediment cover [18]. Recently, an additional type of microlayer was
described as an Fe-Al-Si-rich type 3 layer [15]. This type of layers occurs, according to
reference [15], only in buried nodules. They are characterized by a high content of Si (~20%)
and Al (~2%); low Mn/Fe ratio (<0.5); and a very low concentration of metals such as Ni,
Cu, and Co.

Polymetallic nodules are classified by their morphotypes as diagenetic (“D” nodules)
and hydrogenetic (“H” nodules). They differ in sizes (the H type is smaller); the predom-
inance of the given type of microlayer (the H type is mostly hydrogenic); the chemical
and mineralogical compositions, which also depend on the ratio between the hydroge-
netic and diagenetic components; the geological setting; and the depth of occurrence
and geochemical barriers in the water column [27]. The dominant mineral phase in H
(hydrogenetic)-type nodules is vernadite, often associated with amorphous FeOOH; D-type
(diagenetic) nodules more frequently contain 10-Å phyllomanganates (todorokite/buserite)
and birnessite (7-Å manganate) [5,28,29]. In addition to manganese minerals, the minor
components include X-ray amorphous Fe oxyhydroxides (feroxyhyte, ferrihydrite, and
goethite), usually intergrown and overgrown with vernadite; detrital aluminosilicates; and
authigenic minerals such as zeolites, which are mainly phillipsites and clinoptilolites [26,30].
Increased contents of 10-Å vernadite and the lack of todorokite are often observed in older
suboxic–diagenetic colloforms, which usually indicate increased contents of the interlayer
cations, including Na, Ca, Mg, and K. The stability of vernadite is probably due to the
reorganization and incorporation of metals (Ni and Cu) within the interlayer of the crystal
structure [31].

The presence of higher contents of Fe-rich minerals (feroxyhyte δ-FeOOH or ferox-
yhyte transformed to goethite) was previously indicated in typically diagenetic nodules
from the CCFZ as a direct result of the upward migration of Fe2+ and Mn2+ from the upper
layers of sediments in the presence of increased Corg. Contents, as well as the lack of
oxidizing bacteria. According to reference [32], the precipitation of Fe3+ and Mn oxides
does not play an important role in the formation of ferromanganese nodules, and the
reductive processes need to be considered as a potential factor affecting the growth of
nodules. Higher contents of amorphous P-rich minerals (e.g., apatite) are often related to
diagenetic alterations, the presence of Fe oxyhydroxides, and potential Fe enrichment in a
highly oxidized sedimentary environment [33].

Several admixtures of Fe-rich clay minerals identified in hydrogenetic–diagenetic
polymetallic nodules and ferromanganese crusts (e.g., nontronite, the ferrous end member
of dioctahedral smectite) usually form cements and replace the pyroclastic material on
which Mn oxides and oxyhydroxides can be developed [34].
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The growth rate of polymetallic nodules can be determined by a number of isotopic
methods, including 230Th/232Th [35], tritium/3He [36], and 10Be/26Al [37], as well as with
biostratigraphic techniques [38]. The most commonly used method is the application of
230Th, which has the main limitation of a comparatively short half-life (7.52 × 104 years) [39].
Growth rates depend on the environmental conditions and the sources of the precipitated
components. The predominance of hydrogenetic components results in the slowest growth
rate (<5 mm/Myr). The larger the diagenetic input to nodules, the higher the growth
rate [26]. Under oxic diagenetic conditions, the growth rate is up to 16 mm/Myr [40], but
under suboxic diagenetic conditions, the growth rate increases up to 250 mm/Myr [35].
Notably, the growth rate is not a linear function, and individual generations of manganese
layers grow at different rates. The highest growth rate of nodules from the CCFZ (about
19.8 mm/Myr) indicates Pliocene generation, and the lowest (about 5.7 mm/Myr) indicates
a third Pleistocene layer [41].

3. Study Area and Geological Settings

In this study, we included samples of polymetallic nodules collected from 11 locations
in the Interoceanmetal Joint Organization (IOM) claim area in the tropical Eastern Pacific in
the eastern part of the Clarion-Clipperton Fracture Zone (CCFZ; Figure 2a). The CCFZ is an
abyssal area with a depth range from 3800 m in the east to 5600 m in the west, punctuated
with numerous seamounts of various heights [42,43]. The local seafloor morphology is
dominated by horst and graben structures [13,43,44]. The surface of the IOM license area is
located in water depths ranging from 2450 to 4750 m [45]. In the vicinity of the IOM site,
the regular structure of the seabed is diversified by two outstanding seamount chains (the
Acapulco Seamount chain to the northeast and the nameless chain to the south). These
features show typical conical shapes and a steepness of 3–6◦, with the largest diameter
30 km [46,47].

The presence of volcanic seamounts may have had a significant regional impact
on the sedimentation rate, the chemical characteristics of the sedimentary cover, and
the variability in the sedimentary conditions. Additionally, reference [43] suggested the
presence of contourite features associated with the sweeping of the sedimentary cover by
the water currents encountering topographic obstacles.

The oldest oceanic crust of the CCFZ is located in its western part and is associated
with the development of the East Pacific Rise (EPR) spreading zone formed about 80 Ma
ago. The age of the basaltic rocks in the IOM claim area is slightly over 20 Ma [41,48].
In the IOM claim area, the volcanic fundament is covered with pelagic sediments up to
100 m thick [45]; in the western part of the CCFZ, they reach up to 300 m [13]. This spatial
differentiation results from the high spreading rate in the area of the EPR and the seabed
bathymetry resulting from the step-and-block structure of the basement [41]. The dominant
types of the bottom sediments, covering approx. 80% of the CCFZ area, are siliceous silts,
clays, and oozes. Around 15% of the seafloor is covered with carbonate sediments, whereas
less than 5% is zeolitic clays and sediments rich in volcanogenic components [49]. The
sedimentation rate in the IOM site ranges between 0.2 and 1.15 cm·kyr−1 [50]. The supply
of particulate organic carbon (POC) to the seafloor in the IOM claim area is estimated as
~1.7 mg Corg m−2·d−1 [50–52]. The total organic carbon (TOC) content in the CCFZ surface
sediments is <0.5 wt % [50].
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Figure 2. The location of study area: (a) general view of the Clarion-Clipperton Fracture Zone and
(b) simplified relief of the seafloor and location of the IOM sampling sites within the CCFZ. The study
area is characterized by the presence of two major structural forms of the seafloor: (i) volcanic hills
located in the S and NE parts of the study area, and (ii) N–S-oriented blocky streaks and escarpments
covering the rest of the area. The relief data were collected using backscatter profiling.
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Despite the low carbon influx, the presence of a diverse substrate—soft sediments and
hard nodules—results in a relatively high abundance of benthic species [52]. The benthic
organisms’ activity plays an important role in sediment irrigation and ventilation, as well
as in the migration of the elements [13]. The bioturbation depth at the IOM site is up to
13 cm [50].

The redox potential plays a significant role in nodule formation (Figure 1). The bottom
mean oxygen concentration in the IOM area is estimated as 147 µM. In the upper 30 cm
of the sediments, the O2 content decreases to 30 µM; however, it can still be detected at a
depth of 3 m [50]. In addition, in the areas located in the vicinity of the seamount’s foothills,
the oxygen concentration in the pore waters, after an initial decrease along with the depth,
gradually increases toward the basaltic substrate, which is explained by the circulation
of oxygenated water in the pores and cracks of the seamount base [44]. Due to the low
growth rate of nodules, their formation and preservation correspond to the changes in
the redox conditions over time connected to glacial/interglacial shifts (fluctuations in the
redox boundary within the sediments) [53].

Mn2+ occurs below the oxygen penetration depth, where it is mobilized due to dis-
similatory reduction [50], probably with the participation of bacteria involved in metal
cycling [54]. In the Eastern CCFZ, the content of Mn2+ dissolved in the pore waters is
detected in the range from 0.2 to 25 µM. In the IOM claim area, Mn2+ appears at a depth of
3 m, where its content increases up to 13 µM [50].

4. Materials and Methods
4.1. Samples

Samples of polymetallic nodules were collected at the IOM sampling sites using a
Reineck box corer (Ocean Instruments, Fall City, WA, USA) during the IOM research
cruises at the IOM H22 polygons (in 2014 and 2019, respectively; Figure 2a,b). Eleven
nodules were selected for this study. The surface area of the box corer was 0.25 m2, and the
maximum penetration depth was 0.5 m. The nodules were separated from the uppermost
non-disturbed layer of soft surface sediments (represented mostly by siliceous-clayey silts).
The samples were recovered from a depth range of 4272–4511 m.

The recovered polymetallic nodules were friable and highly porous. To prevent
destruction during the cutting and grinding processes, the samples were impregnated with
resin under vacuum conditions. Most of the samples were prepared in a form of polished,
thin sections. A few small samples were cast in epoxy and prepared in the form of polished
sections (a circular diameter of 2.54 cm). The surfaces of the samples were coated with a
layer of carbon to ensure proper surface conductivity and quality using an electron probe
microanalyzer (EPMA) and backscattered electron (BSE) images.

4.2. Bulk X-ray Powder Diffraction (XRD)

The bulk mineralogical XRD analysis of all the samples was performed using a PANa-
lytical Empyrean diffractometer (Malvern Panalytical Ltd., Malvern, UK) at the Faculty
of Chemical Technology and Engineering, West Pomeranian University of Technology,
Szczecin, Poland (WPUT). The analytical settings were as follows: monochromatic Cu-Kα

radiation at 35 kV and 30 mA, scans from 5◦ to 80◦ (2θ), a step size of 0.024◦ (2θ), and
using a wide-angle detector (PIXcel 3D). For the qualitative and quantitative analysis
of the mineral compositions, Match!3 Software (version 3.8.1.143, Crystal Impact, Bonn,
Germany) [55] and the COD database of reference patterns (e.g., [56]) were used. For the
amount estimation, we used the Rietveld method and presented the results in a semi-
quantitative way.

4.3. Electron Probe Microanalysis (EPMA)

The samples were studied using a CAMECA SX 100 electron probe microanalyzer
(EPMA) equipped with four wavelength dispersive spectrometers (WDSs) at the State
Geological Institute of Dionýz Štúr, Bratislava, Slovakia. The data were collected using
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the WinEDS control system. As the measured area may be inhomogeneous, we chose
an electron beam diameter of 10 µm. The analyses were performed with an accelerating
voltage of 15 kV and a sample current of 35 nA. The following elements were analyzed:
F, Na, Si, Al, Mg, P, Cl, K, S, Ca, Ba, Ti, Pb, Fe, Mn, Cr, Cu, Zn, V, As, Sr, Co, Ni, and
Ag. The REE was not measured, since the concentrations were below the detection limit
(<0.02 wt %). Oxygen was recalculated after the stoichiometry of the other elements. Long
counting times were applied to achieve a higher analysis precision (~13 min for the single-
spot analysis). The average detection limit was about 200–500 ppm (expanded 3 sigma)
and varied for each element. Spots analyzed by the microprobe were noted in the BSE
images. Representative data spots were used to determine the types of minerals based on
stoichiometry and the chemical composition [57].

To assess the chemical variability in the nodules, we used the line profiling and X-ray
mapping methods. Profiles were planned across the nodules to capture the core and rim.
The noted counts were proportional to the concentrations of the elements and quantitatively
recalculated based on the spot analyses located at the profiles. Elements such as Mn, Cu, Ti,
Co, Fe, Ni, and Zn were measured on profiles of the 7 selected nodules, with each profile
consisting of 1024 analytical spots distributed over even and equal distances.

Samples with clear core–rim relationships were selected for X-ray mapping. Theis
method showed the changes in their relative concentrations in the selected areas. When the
concentrations of some of the elements were very low, the conditions for X-ray mapping
were set for a long acquisition time to achieve the necessary analytical precision. Around
8–12 h was required for an X-ray map.

4.4. Growth Rate and Age Back-stripping

The relative growth rates were estimated using the Cobalt chronometer method [58].
The bulk samples method provides reliable and comparable results to isotopic measure-
ments; however, the calculated growth rates need to be considered as the maximum ones
because of the lack of sensitivity to potential hiatuses. The growth rates R were calculated
based on the Co, Mn, and Fe content data obtained during EPMA profiling:

R = 6.8 × 10−1/(Con)1.67 (mm/Myr) (1)

where:
Con = Co × 50/Fe + Mn (2)

For the estimation of the growth rates and genetic types of colloform textures (hy-
drothermal, diagenetic, hydrogenic, and mixed), we used normalized profile data (mean
metal contents) and removed the highly siliceous layers indicating anomalously low total
contents of Fe and Mn (usually, <10% wt %), the presence of increased contents of clay
minerals, and extreme values of the growth rate R (thousands to hundreds of thousands
mm/Ma). We assumed that these layers were formed relatively rapidly in comparison to
ordinary Mn-Fe oxyhydroxides composing typical Mn-Fe colloform textures.
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For the estimation of the nodule age, the bulk and back-stripping methods were
applied. The latter is based on the recalculated and normalized data of EPMA profiling.
Back-stripping enabled distinguishing potential growth hiatuses visible in the samples and
removing them from the total age of the analyzed nodules.

5. Results
5.1. General Description of Samples

The collected polymetallic nodules are represented by three major types: (i) diagenetic
(D), (ii) hydrogenetic (H), and (iii) mixed hydrogenetic–diagenetic (HD) (Figure 3a–c). The
diagenetic nodules prevailed in the analyzed materials (Table 1).

Minerals 2021, 11, x FOR PEER REVIEW 9 of 37 
 

 

  

(a) (b) 

 

(c) 

Figure 3. Representative examples of 3 major types of polymetallic nodules collected in the area of the IOM CCFZ: (a) 
diagenetic (D), (b) hydrogenetic (H), and (c) mixed hydrogenetic–diagenetic (HD). All photographs are from reference 
[43]. 

5.2. Bulk XRD 
The analyzed samples are generally dominated by todorokite/buserite, with a lesser 

amount of birnessite and traces of vernadite. Additionally, the samples indicated the 
presence of Fe-rich clay minerals (potentially nontronite and Fe-smectite) and mixtures of 
quartz, barite, zeolites (potentially Na-phillipsite), apatite, and barite (Figure 4 and Table 
2). In some cases, the presence of buserite was reflected by a 9.62–9.59-Å reflection over-
lapping with todorokite. The presence of dual 2.39–2.45-Å peaks observed in a few sam-
ples suggested the presence of 10-Å phyllomanganates, as well as collapsed Mn oxyhy-
droxides (e.g., [59]). Some samples showed buserite dehydration to birnessite or even 
potentially defected (collapsed) todorokite to buserite, related to the drying process oc-
curring due to the long storage time under relatively warm conditions (cruises in 2014 
and 2019) (e.g., [31,33,60,61]). 

Figure 3. Representative examples of 3 major types of polymetallic nodules collected in the area of the IOM CCFZ:
(a) diagenetic (D), (b) hydrogenetic (H), and (c) mixed hydrogenetic–diagenetic (HD). All photographs are from
reference [43].



Minerals 2021, 11, 868 9 of 38

Table 1. General descriptions of the collected polymetallic nodules from the IOM claim area.

Sample ID Depth (m) Latitude Longitude XY Dimensions (cm) Growth Type 1

3529 4310 11◦13.180′ N 119◦38.751′ W 6.5 × 5.5 D
3535 4323 11◦14.863′ N 119◦40.850′ W 3.5 × 1.5 D
3537 4272 11◦18.090′ N 119◦34.017′ W 3.5 × 1.5 D-HD
3542 4363 11◦23.488′ N 119◦30.562′ W 4.0 × 2.5 H
3602 4511 11◦10.743′ N 119◦28.785′ W 4.5 × 3.0 D
3603 4439 11◦12.007′ N 119◦26.161′ W 3.5 × 4.0 D
3604 4402 11◦12.352′ N 119◦33.851′ W 5.0 × 2.5 D
3605 4378 11◦13.127′ N 119◦32.165′ W 4.5 × 3.0 D
3613 4475 11◦21.657′ N 119◦30.611′ W 5.0 × 1.0 HD
3614 4361 11◦21.561′ N 119◦28.868′ W 1.5 × 1.5 H-HD
3615 4369 11◦24.591′ N 119◦28.489′ W 4.5 × 3.0 H-HD

1 Morphotype from reference [56].

5.2. Bulk XRD

The analyzed samples are generally dominated by todorokite/buserite, with a lesser
amount of birnessite and traces of vernadite. Additionally, the samples indicated the
presence of Fe-rich clay minerals (potentially nontronite and Fe-smectite) and mixtures of
quartz, barite, zeolites (potentially Na-phillipsite), apatite, and barite (Figure 4 and Table 2).
In some cases, the presence of buserite was reflected by a 9.62–9.59-Å reflection overlapping
with todorokite. The presence of dual 2.39–2.45-Å peaks observed in a few samples
suggested the presence of 10-Å phyllomanganates, as well as collapsed Mn oxyhydroxides
(e.g., [59]). Some samples showed buserite dehydration to birnessite or even potentially
defected (collapsed) todorokite to buserite, related to the drying process occurring due
to the long storage time under relatively warm conditions (cruises in 2014 and 2019)
(e.g., [31,33,60,61]).

Table 2. Mineral compositions of the bulk polymetallic nodule samples from the IOM claim area, as determined by XRD.
The amount of minerals is shown semi-quantitatively based on the results of the peak comparisons and integration: ++++
dominating <50%, +++ 50–30%, ++ 30–10%, + 10–5%, and (+) traces <5%.

Sample ID Type Todorokite/Buserite Birnessite Vernadite Clays Barite Apatite Zeolites Quartz

3529 D +++ ++ (+) + (+) ++ + (+)
3535 D +++ +++ (+) + (+) + + (+)

3537A D-HD +++ + (+) ++ (+) (+) ++ +
3537B D-HD +++ ++ (+) ++ (+) + - +
3542 H +++ ++ (+) ++ (+) + ++ (+)
3602 D ++++ ++ (+) - (+) (+) + (+)
3603 D +++ ++ (+) ++ (+) (+) + +
3604 D ++++ ++ (+) + (+) (+) + (+)
3605 D +++ +++ (+) ++ + - - -
3613 HD +++ ++ (+) ++ (+) ++ + (+)
3614 H-HD ++++ ++ (+) + (+) - ++ (+)
3615 H-HD ++ ++ (+) ++ (+) - +++ (+)
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5.3. Textural Features 
The analyzed polymetallic nodules consist of a core concentrically overgrown by 

laminae (microlayers) and areas of lithified detrital materials. The core, the laminae, and 
the detrital material were considered separately. The core is composed of either frag-
ments of ancient nodules (here, Mn-Fe laminae are clearly visible) or fragments of rocks 
(an absence of laminae). 

The growth structures (laminae) overgrowing the core developed as colloforms 
composed of precipitated Mn-rich oxyhydroxides, mainly Ni–Cu-rich todorokite/10-Å 
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Figure 4. Bulk XRD diffraction patterns of the analyzed polymetallic nodules from the IOM claim area CCFZ. The identified
minerals are: Tod—todorokite/buserite), Bir—birnessite, Ver—vernadite, Cl—clays (potentially Fe-rich smectite/Mo—
montmorillonite and Non—nontronite), Na-Phi—Na-phillipsite, Ba—barite, Ap—apatite, and Q—quartz.

5.3. Textural Features

The analyzed polymetallic nodules consist of a core concentrically overgrown by
laminae (microlayers) and areas of lithified detrital materials. The core, the laminae, and
the detrital material were considered separately. The core is composed of either fragments
of ancient nodules (here, Mn-Fe laminae are clearly visible) or fragments of rocks (an
absence of laminae).

The growth structures (laminae) overgrowing the core developed as colloforms com-
posed of precipitated Mn-rich oxyhydroxides, mainly Ni–Cu-rich todorokite/10-Å phyllo-
manganates (buserite) and birnessite (Figure 5a–d). The number of laminae composed of
vernadite is relatively low (e.g., Figure 5d). The internal microstructure of the nodules is
also characterized by the presence of irregularly arranged Fe-rich clay minerals (potentially
Fe-rich smectite or nontronite) and zeolites (in the Na-phillipsite type), as well as admix-
tures of detrital minerals (e.g., authigenic barite, feldspars, pyroxenes, zoisite, ilmenite,
quartz, or chalcedony) and bioclasts. These components are often embedded in a Mn- or
Fe-containing matrix within irregular zones between the colloforms. In some cases, clays
and zeolites form massive infillings, as well as veins and veinlets (Figure 5e). In all the
samples, traces of biogenic input were visible in the form of pseudomorphs of siliceous
microfossils, mainly diatoms and radiolarians (Figure 5f).
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surrounding small clay aggregates, (10) as well as a pennate diatom. 

The growth structures adjacent to the nodule core differ in their microtextural fea-
tures from Mn-Fe microlayers forming botryoidal (microglobular) textures. These de-
veloped as parallel, thin laminae, separated by planar spaces, filled in with cement (Fig-
ure 6). Their architecture is far less complicated; no cauliflower-like protuberances were 
observed. The thickness of their sequence is very small compared to the thickness of the 
sequence of colloforms. Often, these are cut by fissures and cracks. 
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posed of microlayers of biogenic (microbial) origin. Sample 3604, IOM, CCFZ. 

Figure 5. Representative EPMA BSE images of the analyzed polymetallic nodules. Sample 3642: (a) massive bright and
well-developed colloforms composed of pure Mn oxyhydroxides enriched with Ni and Cu (9,10); no. 11 is an intraclast of
Fe-rich clay minerals. Sample 3602: (b) typical Mn-rich diagenetic colloforms enriched with metals (5,6) and bordering a
zone of veinlets and Fe-rich clay aggregates (4). (c) Typical Mn-colloforms enriched with metals. (d) Two generations of
columnar growth visible in the external group of colloforms: (13) grey massive colloforms of the vernadite type enriched
with Co (>0.6%) and (14) bright lamellar colloforms composed of Mn-rich oxyhydroxides and enriched with Ni and Cu
(>4.0%). Sample 3613: (e) columnar Mn oxyhydroxides enriched with Ni and Cu overgrown on massive clay minerals (14)
cut by several diagenetic veinlets composed of metal-rich Mn (Fe) oxyhydroxides. Sample 3535: (f) Mn-(Fe) colloforms
surrounding small clay aggregates, (10) as well as a pennate diatom.
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The growth structures adjacent to the nodule core differ in their microtextural features
from Mn-Fe microlayers forming botryoidal (microglobular) textures. These developed as
parallel, thin laminae, separated by planar spaces, filled in with cement (Figure 6). Their
architecture is far less complicated; no cauliflower-like protuberances were observed. The
thickness of their sequence is very small compared to the thickness of the sequence of
colloforms. Often, these are cut by fissures and cracks.
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Figure 6. BSE thin section across a nodule—contact zone between the core and colloforms composed
of microlayers of biogenic (microbial) origin. Sample 3604, IOM, CCFZ.

Massive (lithified) detrital matter, diagenetically altered, was observed in most of
nodules, filling in the spaces between the colloforms and often mixed with Mn-(Fe) oxyhy-
droxides (Figure 7b,c,f). Here, well-formed crystals of barite are clearly visible. Barite is
developed as loose euhedral crystals of a few micrometers in diameter trapped in hollows
and open cracks of cutting nodules or on the irregular surfaces of colloforms (Figure 7a,d,e)
often overgrown by reprecipitated Fe-Mn laminae.
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Figure 7. Mineral admixtures observed in polymetallic nodules from the IOM claim area CCFZ. Sample 3537: (a) massive 
lamellar vernadite-type (13) and bright columnar colloforms (15) with a number of small barite crystals and clay infillings 
(14). Sample 3642: (b) dotted irregular texture indicating a mixture of pure Mn oxyhydroxides enriched with Ni and Cu, 
as well as Fe-rich clays. Sample 3604: (c) Fe-rich clay aggregates (3) and bright veinlets rich in Mn and metals developed 

Figure 7. Mineral admixtures observed in polymetallic nodules from the IOM claim area CCFZ. Sample 3537: (a) massive
lamellar vernadite-type (13) and bright columnar colloforms (15) with a number of small barite crystals and clay infillings
(14). Sample 3642: (b) dotted irregular texture indicating a mixture of pure Mn oxyhydroxides enriched with Ni and Cu, as
well as Fe-rich clays. Sample 3604: (c) Fe-rich clay aggregates (3) and bright veinlets rich in Mn and metals developed as
diagenetic cementations. (d) Mn-Fe colloforms with irregular infillings extremely rich in barite (bright spots) and debris
minerals such as plagioclase (albite) (9), zoisite (10), and quartz/chalcedony (11). Sample 3642: (e) thick diagenetic vein
filled with Fe-rich clay minerals and barite. Sample 3542: (f) massive patchy texture composed of a mixture of Mn-(Fe)
oxyhydroxides and clays; in the upper-right corner, massive and crushed clays.
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The presence of biomorphic textures was observed in all the samples, mainly in
the sections composed of pure Mn-rich oxyhydroxides, as well as between colloforms
(Figure 8a–f). Single pseudomorphs and their groups occur especially frequently in the
sections composed of massive and pure Mn oxyhydroxides and of intermediate-to-low
contents of metals such as Ni, Cu, or Zn. The biogenic relics are usually well-preserved
and non-crushed. The interior of the phantoms is usually filled with highly porous and
well-crystallized nanoneedles of pure and metal-depleted Mn oxyhydroxides (Figure 7c);
however, massive bright colloforms rich in Cu and Ni are also associated with some organic
remnants (Figure 8f).
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primary structures of the individual laminae of colloforms as a separation plane (joint 
planes). Some of crevices are open, and the others are filled with fine, lithified, diagenet-
ically modified sediment and detrital matter; others have been healed (cemented) with 
Mn oxyhydroxides sprouting in the fissures. 

5.4. X-Ray Mapping 
The X-ray mapping conducted during the EPMA confirmed the diffusive metals 

redistribution amongst the various types of colloforms (Figure 9a–h). The highest con-
tents of the metals such as Ni and Cu were measured in the external Mn colloforms, as 
well as in some loose, internal, and well-developed colloforms (Figure 9c,e,f). The inter-
nal parts of growth structures usually show the highest concentration of Mn; however, 
the associated metal content is rather intermediate. The most external botryoidal layers 
are enriched with Fe, Ti, and Co, which is typically associated with Fe-rich Mn oxyhy-
droxides. The highest contents of Co were observed in the middle internal parts of the 
analyzed colloforms (Figure 9d,g). Zn is distributed rather uniformly in Mn-dominated 
colloforms; however, this also indicates increased contents toward the external layers 
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Figure 8. Representative examples of the biomorphic remnants discovered in the analyzed polymetallic nodules
from the IOM claim area CCFZ. Sample 3604: (a) porous relics of diatoms and radiolarians surrounded with mas-
sive Mn-rich oxyhydroxides, (b) a pseudomorph of symmetrical radiolarian filled with pure Mn-rich oxyhydrox-
ides, and a (c) remnant of cylindrical diatom composed of pure Mn-rich oxyhydroxides developed as fine nee-
dles and surrounded by other pseudomorphs and debris minerals (e.g., albite). Sample 3537: (d) siliceous rem-
nants of radiolarian surrounded by Mn (Fe) oxyhydroxides, clays, and barite. Sample 3642: (e) a globule (vitro-
clast) composed of ferro-aluminoceladonite (18), as a potential product of crystal-vitric tuff alterations. Sample 3615:
(f) radiolarian pseudomorph surrounded with Ni–Cu-rich colloforms of pure Mn oxyhydroxides.

The nodules are characterized by secondary fissures and microcracks. They either
appear parallel to the laminae (concordant) (Figure 5a–e) or cut through them at different
angles (Figures 6 and 7c–f). Some cracks are arranged radially from the center to the outer
edge of the nodule. They can be in the range of a few micrometers or can extend several
centimeters with a thickness of a few millimeters. Mostly, these are parallel-sided cracks
(sensu [62]), which can be straight or curved. In the latter case, they often reproduce
the primary structures of the individual laminae of colloforms as a separation plane
(joint planes). Some of crevices are open, and the others are filled with fine, lithified,
diagenetically modified sediment and detrital matter; others have been healed (cemented)
with Mn oxyhydroxides sprouting in the fissures.

5.4. X-ray Mapping

The X-ray mapping conducted during the EPMA confirmed the diffusive metals
redistribution amongst the various types of colloforms (Figure 9a–h). The highest contents
of the metals such as Ni and Cu were measured in the external Mn colloforms, as well
as in some loose, internal, and well-developed colloforms (Figure 9c,e,f). The internal
parts of growth structures usually show the highest concentration of Mn; however, the
associated metal content is rather intermediate. The most external botryoidal layers are
enriched with Fe, Ti, and Co, which is typically associated with Fe-rich Mn oxyhydroxides.
The highest contents of Co were observed in the middle internal parts of the analyzed
colloforms (Figure 9d,g). Zn is distributed rather uniformly in Mn-dominated colloforms;
however, this also indicates increased contents toward the external layers (Figure 9h).
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the nodules. Several of the measurement points were characterized by high concentra-
tions of Mn in relation to Fe and were assigned to the traditionally defined diagenetic 
morphotype (Mn/Fe ratio > 5; Figure 10). The measurements typical for hydrogenetic or 
mixed (hydrogenetic–diagenetic–biogenous) morphotypes, i.e., depleted in Mn in com-
parison to the diagenetic morphotype, were less frequent (Figure 10). The elevated con-
tents of Fe (plots near the Fe edge; Figure 10) measured for nearly 30 points in all the an-
alyzed nodules were associated with the intercalation of the clay minerals and other 
components of detrital origin (enriched with Si, Al, or alkali-alkaline metals). 

In general, regardless of the internal differentiation of the nodules, the mean Mn and 
Fe contents varied from 19.6 to 38.9 wt % and from 3.2 to 8.3 wt %, respectively (Table 3). 
The mean Mn/Fe ratio was 5.37. The phosphatization level was low and varied from 0.11 
to 0.29 wt %. The mean Si and Al contents varied from 3.2 to 12.0 wt % and from 0.9 to 3.8 
wt %, respectively. The mean Si/Al ratio was 3.59. The low mean Ti admixtures (from 0.08 
to 2.8 wt %) were associated with the detrital components (titaniferous magnetite or il-
menite).

Figure 9. Representative example of the EPMA X-ray maps of the massive botryoidal textures observed in the polymetallic
nodules from the IOM claim area CCFZ: Sample 3602: (a) BSE image, (b) Ti distribution, (c) Mn distribution, (d) Fe
distribution, (e) Ni distribution, (f) Cu distribution, (g) Co distribution, and (h) Zn distribution. The total counts are
presented as a color scale unit.

5.5. EPMA Geochemistry

The results of the spot EPMA evidenced the nonuniform distribution of the metals in
the nodules. Several of the measurement points were characterized by high concentrations
of Mn in relation to Fe and were assigned to the traditionally defined diagenetic morpho-
type (Mn/Fe ratio > 5; Figure 10). The measurements typical for hydrogenetic or mixed
(hydrogenetic–diagenetic–biogenous) morphotypes, i.e., depleted in Mn in comparison
to the diagenetic morphotype, were less frequent (Figure 10). The elevated contents of
Fe (plots near the Fe edge; Figure 10) measured for nearly 30 points in all the analyzed
nodules were associated with the intercalation of the clay minerals and other components
of detrital origin (enriched with Si, Al, or alkali-alkaline metals).

In general, regardless of the internal differentiation of the nodules, the mean Mn and
Fe contents varied from 19.6 to 38.9 wt % and from 3.2 to 8.3 wt %, respectively (Table 3).
The mean Mn/Fe ratio was 5.37. The phosphatization level was low and varied from 0.11
to 0.29 wt %. The mean Si and Al contents varied from 3.2 to 12.0 wt % and from 0.9 to
3.8 wt %, respectively. The mean Si/Al ratio was 3.59. The low mean Ti admixtures (from
0.08 to 2.8 wt %) were associated with the detrital components (titaniferous magnetite
or ilmenite).
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Figure 10. Location of the EPMA spot data at the Fe-Mn-10 (∑(Ni, Co, and Cu)) ternary plot; 2.5–5.0 = Mn/Fe ratio
(reference [63] with further modifications). Coloring identifying major genetic types of analyzed colloforms.

Mg and Ca dominated among the alkaline earth metals; their concentrations ranged
from 1.8 to 2.5 wt % and from 1.2 to 1.8 wt %, respectively. The mean K and Na contents
were lower compared to those of Mg and Ca and ranged from 0.7 to 2.3 wt % and 0.8 to
1.4 wt %, respectively. The relatively high content of Ba was due to barite crystals (0.17 to
0.65 wt %). The mean Sr content was low and varied from 0.05 to 0.07 wt % (Table 3).

Among the economically critical metals, Ni and Cu dominated, with their mean
contents varying from 0.60 to 1.52 wt % and 0.64 to 1.42 wt %, respectively. The mean
EPMA contents of Ni and Cu were 1.15 and 1.08 wt %, respectively. The Co concentration
varied from 0.06 to 0.31 wt %, averaging 0.20 wt %.

The hydrogenetic and mixed hydrogenetic–diagenetic nodules showed lower contents
of ∑(Cu, Ni, and Co) compared to the diagenetic nodules, with concentrations varying
from 1.54 to 2.07 wt %. Additionally, low contents of Zn were identified (mean = 0.14 wt %,
varying from 0.07 to 0.19 wt %), as well as Pb, As, Cr, and V. The mean contents of S and Cl
varied from 0.05 to 0.15 wt %, averaging 0.07 wt %, and from 0.09 to 0.72 wt %, averaging
0.24 wt %, respectively (Table 3).
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Table 3. Mean EPMA data (N = 191) of the analyzed polymetallic nodules from the CCFZ IOM claim area. Contents of the chemical elements are given in wt %.

ID N1 Type 2 F Na Si Al Mg P Cl K S Ca Ba Ti Pb Fe Mn Cr Cu Zn V As Sr Co Ni Ag O- Total ∑(Ni,Cu,Co) Mn/Fe Si/Al Type 3

3529 13 D 0.00 0.99 6.10 1.50 2.05 0.27 0.24 1.19 0.07 1.19 0.44 0.21 0.03 5.25 30.96 0.00 0.93 0.10 0.05 0.07 0.05 0.26 0.86 0.00 27.75 80.55 2.04 5.89 4.06 D
3535 21 D 0.00 1.02 3.97 1.54 2.03 0.29 0.28 0.72 0.08 1.73 0.22 0.27 0.04 5.48 30.21 0.00 1.30 0.15 0.05 0.07 0.07 0.23 1.36 0.00 25.56 76.71 2.89 5.51 2.57 D
3537A 14 D-HD 0.00 0.98 8.13 2.29 2.07 0.27 0.10 1.16 0.07 1.79 0.18 0.16 0.03 6.08 30.52 0.00 1.42 0.19 0.04 0.07 0.06 0.23 1.38 0.00 31.41 88.64 3.03 5.02 3.56 D
3537B 9 D-HD 0.00 0.90 5.45 1.61 1.80 0.11 0.30 0.84 0.05 1.28 0.18 0.19 0.04 5.06 23.91 0.00 1.14 0.11 0.03 0.06 0.05 0.19 1.13 0.00 23.53 67.96 2.46 4.73 3.39 HD
3542 24 H 0.00 1.29 12.03 3.56 1.97 0.11 0.14 1.55 0.06 1.60 0.20 0.24 0.02 7.26 23.43 0.00 0.77 0.09 0.04 0.07 0.05 0.16 0.93 0.00 33.93 89.51 1.86 3.23 3.38 HD
3602 16 D 0.00 0.85 4.63 0.93 2.04 0.25 0.12 1.02 0.05 1.55 0.65 0.20 0.03 6.18 36.33 0.00 1.03 0.14 0.07 0.07 0.08 0.20 1.11 0.00 28.44 85.98 2.34 5.88 4.96 D
3603 18 D 0.00 1.41 5.02 1.36 2.11 0.28 0.15 1.06 0.05 1.64 0.28 0.11 0.03 5.90 35.20 0.00 1.41 0.19 0.05 0.07 0.06 0.13 1.52 0.00 29.06 87.10 3.06 5.97 3.68 D
3604 14 D 0.01 1.16 7.06 1.75 2.49 0.12 0.11 1.23 0.05 1.24 0.58 0.08 0.01 5.30 32.38 0.00 1.11 0.16 0.06 0.07 0.05 0.15 1.07 0.00 29.89 86.13 2.33 6.11 4.03 D
3605 21 D 0.01 0.92 3.18 1.10 2.10 0.16 0.13 1.04 0.07 1.42 0.47 0.10 0.03 3.16 38.87 0.00 1.39 0.17 0.07 0.07 0.07 0.20 1.47 0.00 26.78 82.94 3.05 12.32 2.89 sD
3613 15 HD 0.00 0.89 7.08 1.67 1.81 0.14 0.72 0.84 0.07 1.30 0.44 0.28 0.04 8.25 23.67 0.00 0.64 0.07 0.08 0.07 0.06 0.31 0.60 0.00 26.67 75.71 1.54 2.87 4.23 HD
3614 13 H-HD 0.01 1.25 9.82 3.26 1.85 0.17 0.66 1.63 0.15 1.15 0.17 0.28 0.04 8.13 19.57 0.00 0.76 0.09 0.04 0.06 0.05 0.25 1.06 0.00 29.86 80.30 2.07 2.41 3.01 HD
3615 12 H-HD 0.00 1.36 11.98 3.85 1.81 0.13 0.14 2.29 0.06 1.28 0.24 0.19 0.01 5.31 23.81 0.00 0.78 0.14 0.05 0.06 0.05 0.06 1.05 0.00 33.42 88.08 1.89 4.49 3.11 HD

Mean 0.00 1.09 7.04 2.04 2.01 0.19 0.26 1.21 0.07 1.43 0.34 0.19 0.03 5.95 29.07 0.00 1.06 0.13 0.05 0.07 0.06 0.20 1.13 0.00 28.86 82.47 2.38 5.37 3.57 -
Min 0.00 0.85 3.18 0.93 1.80 0.11 0.10 0.72 0.05 1.15 0.17 0.08 0.01 3.16 19.57 0.00 0.64 0.07 0.03 0.06 0.05 0.06 0.60 0.00 23.53 67.96 1.54 2.41 2.57 -
Max 0.01 1.41 12.03 3.85 2.49 0.29 0.72 2.29 0.15 1.79 0.65 0.28 0.04 8.25 38.87 0.00 1.42 0.19 0.08 0.07 0.08 0.31 1.52 0.00 33.93 89.51 3.06 12.32 4.96 -
SD 0.00 0.19 2.83 0.94 0.18 0.07 0.21 0.41 0.03 0.21 0.16 0.07 0.01 1.35 5.84 0.00 0.27 0.04 0.01 0.00 0.01 0.06 0.26 0.00 2.96 6.22 0.50 2.43 0.64 -

1 N–number of EPMA analytical points. 2 According to the morphology [2]. 3 According to the Mn/Fe ratio.
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The representative EPMA data of the recognized minerals and the mean EPMA
geochemistry are shown in Appendices A and B, respectively.

The statistical interrelations between all the analyzed elements are shown in the
hierarchical tree in Figure 11. Mn was related mostly to Ni, Cu, and Zn and to the alkali-
alkaline representatives (Na and Mg; seawater and seafloor basalt influences). Fe showed
close relations with Ag and Cr, as well as Si, Al, and K (associated with the clay and detrital
components). Ba showed the highest correlation with Sr and V (organic origin). Co had
important relationships with P, Pb, and Ti and less with Ca and As (influences related to the
presence of apatite, detrital matter, or potentially low hydrothermal input). S was related
mostly to Cl and F.
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Figure 11. Hierarchical tree plot indicating the relationships between the metals in the analyzed polymetallic nod-
ules. Agglomeration of the 25 variables using Ward’s method. The distances were scaled according to the equation:
D = (Dlink/Dmax) × 100.

5.6. Growth Generations and Age

According to the spot EPMA and Co-chronometer back-stripping of the Co, Mn,
and Fe data (Table 4), the described samples of the polymetallic nodules were aged
1.66–3.25 Ma (Early Pliocene to Middle Pleistocene). The mean age was 2.51 ± 0.71 Ma.
The EPMA profiling of the normalized data provided comparable results, with ages vary-
ing from 1.85 to 3.09 Ma (Late Pliocene to Early Pleistocene). The mean age was similar
(2.44 Ma) to that produced by the spot analysis; however, the standard deviation was
lower (±0.51 Ma), so the application of back-stripped Co-chronometer data may provide
more reliable results compared to a bulk estimation (e.g., by the control and removal of
anomalous data points). The mean growth rate R varied from 2.6 to 14.2 ± 3.3 mm/Myr.
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The mean age difference between both methods was 0.28 ± 0.11 Ma, with a relative error
of −3.7% ± 13.6%.

Table 4. Comparison of the Co-chronometer mean growth rate estimation and polymetallic nodule
ages using the EPMA spot data and back-stripping of the geochemical profiles.

ID Age Spot
EPMA(Ma)

Age Profile
EPMA (Ma)

Mean R
EPMA

(mm/Myr)

Age Dif-
ference

(Ma)

Relative Age
Difference (%) Type 1

3529 3.99 - 3.8 - - D
3535 3.15 2.78 4.3 0.37 −11.7 D

3537A 1.70 2.03 5.0 0.33 +19.4 D
3537B 1.83 - 4.4 - - D
3542 2.80 - 6.4 - - D
3602 2.97 3.09 9.0 0.06 +2.0 D
3603 1.41 - 14.2 - - sD
3604 1.99 2.16 10.5 0.17 +8.5 sD
3605 2.70 2.29 8.3 0.41 −15.2 D
3613 2.57 2.25 2.7 0.32 −12.5 HD
3614 1.99 1.66 2.6 0.33 −16.6 HD
3615 3.05 3.25 6.5 - - sD

Mean 2.51 2.44 6.5 0.28 −3.7 -
St. dev. 0.71 0.51 3.3 0.11 12.9 -

1 According to reference [64]: D—diagenetic, HD—mixed hydrogenetic-to-diagenetic, and sD—suboxic diagenetic.

Figures 12 and 13 compiled information regarding the metal content, age estimation,
and calculated growth rate in the profiles through representative nodules. The fluctuations
in the metal contents and growth rates are the basis for the interpretation of the lithogenesis
of the nodule: the laminae of diagenetic origin significantly differ from those of the
hydrogenic and mixed types. Rapid changes can be assigned to potential local and regional
hiatuses and secondary cracks and fissures.

Figure 11 presents a nodule traditionally classified as the hydrogenetic/mixed mor-
photype collected from station 3614 (size and shape of a nut, with a smooth surface). Its
core is composed of mudstone (lithified clay) and surrounded by Fe-Mn laminae, of which,
in the oldest, interior part of the nodule, those of hydrogenic origin prevail, and, in the
outer parts, are replaced with diagenetic ones. A slightly asymmetrical internal structure
is clearly visible. Seven cracks cutting into the nodule are marked by rapid changes in
the metal concentrations. Metal content fluctuations provided the basis for the identifica-
tion of six generations of microlayers (II–VII) overgrowing the first generation of the core
here, represented by mudstone (I). The growth rate increases toward the outer parts of
the nodule.
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developed as a highly diagenetic, compacted, Fe-rich mudstone formed during the Early Pleistocene (Middle Matuyama 
MZ) when the productivity increased and sea surface temperature decreased. The growth rates increase toward the rim 
part of the nodule (pink trend line), followed by a distinctive increase in the contents of the analyzed metals, potentially 
due to the effects of a slight cooling, lower productivity, and elevation of the thermocline, which resulted in a lower Fe 
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Figure 13 represents the nodule traditionally classified as having a diagenetic mor-
photype collected from station 3535 (rough surface with cauliflower-like protuberances). 
Its core is extensive (18 mm in the longest axis) and inhomogeneous. Two generations of 
the core can be recognized: (i) an older generation composed of angular parts, broken in 
halves, and healed, with fragments of the ancient nodule composed of diagenetic laminae 

Figure 12. Representative example of EPMA complex chemostratigraphic back-stripping using Co-chronometer data in
relation to the geochemistry, magnetic anomalies of the seafloor, and selected palaeoceanographic parameters of the surface
seawater (productivity and temperature curves from reference [65]). Sample 3614, sD nodule. The analyzed nodule is
characterized by slightly asymmetric growth and a small number of internal cracks. The nucleus (1st generation) developed
as a highly diagenetic, compacted, Fe-rich mudstone formed during the Early Pleistocene (Middle Matuyama MZ) when the
productivity increased and sea surface temperature decreased. The growth rates increase toward the rim part of the nodule
(pink trend line), followed by a distinctive increase in the contents of the analyzed metals, potentially due to the effects of a
slight cooling, lower productivity, and elevation of the thermocline, which resulted in a lower Fe content (Bruhnes MZ;
generations V–VII). The potential hiatuses indicated in the figure are related to rapid changes in the lithology. The yellow
A–B line at the thin section photograph shows EPMA profiling line.
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Figure 13. Representative example of EPMA complex chemostratigraphic back-stripping using Co-chronometer data in
relation to the geochemistry, magnetic anomalies of the seafloor, and selected palaeoceanographic parameters of the surface
seawater (productivity and temperature curves from reference [65]). Sample 3535, HD nodule. The analyzed nodule is
characterized by a visible bimodality of the nucleation processes. The external layers show typical hydrogenic influences;
however, the middle and interior indicate the highest diagenetic input. The growth ratio decreases toward the rim. The Ti
content shows different trends and is negatively correlated with Mn. The highest content of the metals is observed in the
middle and core parts of the nodule. The highest content of iron (vernadite-rich colloforms) is indicated to be in the Late
Pleistocene (Early Matuyama MZ), affected by the increase in productivity and decrease in the sea surface temperature. The
yellow A–B line at the thin section photograph shows EPMA profiling line.

Figure 13 represents the nodule traditionally classified as having a diagenetic morpho-
type collected from station 3535 (rough surface with cauliflower-like protuberances). Its
core is extensive (18 mm in the longest axis) and inhomogeneous. Two generations of the
core can be recognized: (i) an older generation composed of angular parts, broken in halves,
and healed, with fragments of the ancient nodule composed of diagenetic laminae (highest
content of metals and the highest growth rate), and (ii) a younger generation of concentric
Mn-Fe microlayers (a decline in the total metal content and growth rate). Near the outer
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parts of the core, a portion of the hydrogenic component increases. The core is surrounded
by a relatively thin (6 mm thick) sequence of microlayers of mixed and hydrogenic origins,
characterized by the lowest growth ratio and the lowest total metal content. A group of
16 cracks is visible with rapid changes in the metal concentrations. The growth rate
decreases toward the outer parts of the nodule.

6. Discussion
6.1. Nodules Microtexture

Core (nucleus) growth structures precipitated from solutions (laminae, microlayers,
or colloforms) and admixtures of lithified detrital components were distinguished at the
microstructural levels of the investigated polymetallic nodules. The bodies of the nodules
were cut with cracks, fissures, and veins. These microstructural elements are discussed in
the subsections below.

Ancient, buried nodules can be an additional source of Mn. In this case, the mobi-
lization of Mn occurs under suboxic conditions, and Mn is reprecipitated on the nodule’s
surface being formed in the topmost geochemically active layer of the sediment under oxic
conditions at the sediment–water interface.

6.1.1. Laminae (Microlayers)

According to the EPMA data, all the samples of polymetallic nodules collected from
the CCFZ IOM claim area demonstrate the prevailing diagenetic influences, reflected in
the predominance of laminae of diagenetic origin. Here, dominant suboxic diagenetic
processes are evidenced by the high contents of the metals (Ni, Cu, Co, and Zn) in most of
the colloforms, related to the relatively pure birnessite transformed to todorokite-buserite.
Morphologically, these represent the D nodules and are, in bulk, characterized by increased
contents of Ni, Cu, and Co, especially in comparison to the hydrogenetic (H) or mixed
(HD) morphotypes. The portion of hydrogenic microlayers in some nodules is high enough
to classify these as H (hydrogenetic) and HD (mixed) nodules. In these morphotypes, a
slightly increased content of Co is related to a higher amount of Fe and is, consequently,
observed mostly in H and HD nodules. The contents of the other elements are comparable
in all types of the analyzed nodules; however, the D nodules show slightly higher contents
of Ba and Mg and a lower amount of Ti in relation to the H and HD types.

The highest contents of the metals such as Ni, Cu, Co, and Zn were observed in
thin and bright laminae composed of Mn (Fe) oxyhydroxides, mainly todorokite/buserite
and birnessite, and related to the structural admixtures of Fe with a predisposed Mn/Fe
ratio above 2.5. Laminae enriched with Ti dominated, with Fe usually developed as low-
crystalline δ-FeOOH. Amorphic Fe oxides and oxyhydroxides may be directly formed from
deep-sea muds, where diagenetic processes led to the transfer of the Fe and Mn metals in
the solution and their upward migration during the growth of the collomorphs (e.g., [32]).
Elevated contents of Ti and alkali or alkaline metals are also related to weathering sur-
faces (e.g., around basaltic debris remnants) composed of Fe-rich clays and amorphic Fe
oxyhydroxides (potentially feroxyhyte or ferrihydrite).

Microlayers adjacent to the cores, formed at the very first stage of nodule growth,
show biogenic influences. Their microstructures show similarities to microbial mats
(Figure 14). Microbial participation in nodule formation was first proposed and demon-
strated in the laboratory [66–68]. Additionally, Wang et al. [23] described two morphotypes
of microorganisms identified in nodules from the CCFZ and determined their role in the
biogenic accumulation of several metals, including Mn, Fe, Co, and Ni.
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Figure 14. Comparison of the microbial mats (left) [69] with laminae of biogenic (microbial) origin in a polymetallic nodule
(right, area between the white lines) in sample 3604.

6.1.2. Admixtures of Lithified Detrital Components

Euhedral crystals of barite were one of the most distinct admixture components
of the examined polymetallic nodules, visible as white, contrast-rich plates irregularly
arranged on the surface of the colloforms and overgrown by younger laminae or in between
colloforms in zones composed of the detrital matter of biogenic organism remnants; the
rubble of ore minerals (mainly basalt-derived Ti-rich magnetite and ilmenite); and grains
of quartz, feldspar, and clays. According to prior studies [70–72], these barite crystals are
of marine (or pelagic) origin, precipitated directly from seawater. The primary source of
Ba is the biomass. Their regular, euhedral shapes in the investigated polymetallic nodules
evidence their authigenic origins. Barite is stable under oxic conditions and, as a mineral
with a high density (4.5 g/cm3), tends to be trapped in hollows and open cracks cutting
into nodules or on the irregular surfaces of colloforms.

The chemical composition of the lithified detrital material containing barite crystals
shows high concentrations of Si, Al, and Fe and low concentrations of Mn and the accessory
metals. These areas of the Mn-Fe nodules, with their low metal contents, differ from the
ore-carrying microlayers of hydrogenic and diagenetic origins. Using the terminology from
the field of deposit geology, inclusions inside Mn-Fe nodules of non-ore minerals can be
defined as gangue.

To differentiate this nodule part from the ore-carrying ones, a new term is proposed:
intranodulith. Intranodulith shall be considered a specific lithotype being an integral part
of polymetallic nodules that developed as a result of the secondary diagenetic processes
of lithification and cementation of trapped materials within holes, microcaverns, or open
fractures in between ore colloforms (Figure 15). Its petrography, mineralogy, and geo-
chemistry can vary widely and is different from the host rock (colloforms) and from the
surrounding soft sediment of the ocean floor. Intranodulith sensu lato may correspond
to the Fe-Al-Si-rich type 3 layer in buried nodules described by reference [15] and the
interstitial material of the micronodules described previously [23].
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6.1.3. Core (Nucleus)

Most of the investigated nodules show cores composed of irregular, broken fragments
of ancient nodules (of first-generation nodules). Based on this observation, we assumed
that there must have been broken fragments of nodules available for the initiation of new
nodule growths. Their chemical compositions (high Fe but relatively low Mn and trace
metal contents) suggest a mixed hydrogenetic–hydrothermal origin of the broken nodules
of the first generation (according to the traditional Bonatti [63] classification compared to
Figure 10). The relatively high growth rates (>10 mm/Myr) of the individual layers in
the core may also indicate the strong influences of the diagenetic component (e.g., [73,74]).
Typical hydrothermal alterations of Fe-Mn oxyhydroxides seem to be negligible. Only
single traces of pyrolusite, hollandite, or braunite are potentially found in the EPMA data,
usually indicating a lower metal availability in the environment compared to the typically
associated Mn-Fe oxyhydroxides. The formation of proto-thermal braunite may occur only
at increased temperature and a lowered O2 partial pressure [75]; therefore, the influence of
thermal water in the active volcanic part of the CCFZ in the past cannot be precluded.

6.1.4. Cracks, Fissures and Veins

These questions remain: How did the first-generation nodules, forming the cores of
the investigated nodules, defragment? What factors influenced the mechanical breakdown
of the massive mineral objects? Most of the fissures in the sedimentary rocks arose as a
part of the post-sedimentary or diagenetic processes. During their entire existence, similar
physical properties such as a high hydrostatic pressure, low temperature, and rather stable
sedimentation rate prevailed. One can assume that only a few environmental factors could
fluctuate slightly over time, such as the oxygen saturation, temperature, redox potential, or
current regime. From a geological point of view, similar conditions prevailed during the
uninterrupted growth of the nodule.

To disintegrate well-solidified Mn-Fe nodules, considerable mechanical pressure on
the seabed would have to be assumed. This could have occurred as a result of gravitate
sediment rearrangements, such as underwater slides or turbidites triggered, e.g., by earth-
quakes or volcanic eruptions. In the CCFZ, with active volcanism, this explanation appears
plausible. Unfortunately, opposing this explanation of the mechanical crushing of the
nodules, there are no traces of significant mass flow deposits on the seabed. Whether the
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current energy, which led to the formation of the contourites (bottom current deposits)
described in the CCFZ, is sufficient for the destruction of the nodules remains questionable.

Mega- and macrofauna activities occur on the seabed of the CCFZ. Bioturbations play
an important role in sediment relocation, but it is unlikely that they can lead to the crushing
of polymetallic nodules, which are hard compared to the surrounding soft sediment.

In addition to mechanical shattering, there is another hypothesis of nodule
disintegration—internally initiated crystal wrecking. According to McMahon et al. [76],
salinity-related syneresis, loading or compaction, seismic activity, microbial processes, and
authigenic mineralization are considered potential explanations of subaqueous
crack formations.

We argue that the biogenic roles of microorganisms probably play a role in this process.
According to Wang et al. [23], microorganisms considerably influence the formation of
the nodules of the CCFZ (biomineralization processes). In polymetallic nodules from the
IOM claim area, some veins conformed to the Mn-Fe laminae (secondarily mineralized
with cement). We postulate that these veins arose as a result of the biogenic activity of
the microbes living on the surfaces of the nodules that were successively overgrown by
the subsequently formed ore microlayers. These planar biogenic separation planes were
then, at a later stage of nodule development, filled in with secondary Mn-rich cements
(compared, e.g., to Figure 8a–d).

Many veins (of different origins than the planar ones described before) cut through
the nodules at various angles or are arranged radially from the center toward the rim
zone. This type also includes the longest and thickest veins. We interpret this type of
extension process of the microcracks as generated due to the authigenic mineralization
of the cement crystals inside the fissures. Therefore, what caused the initial break within
the nodule and why? We argue that an increase in the volume during the diagenetic
lithification of the sediments trapped in cavities between colloforms (intranodulith) might
have been responsible for the initial impulse that ultimately led to cracks of the Mn-Fe
nodules. The further growth of the cement crystals within the initial fissure led to their
additional extension, which could have ultimately caused the breakage of the nodules
directly at the seafloor, being evidenced, e.g., in seabed photos or photo profiles. This
secondary diagenetic process can cause the disintegration of the whole nodule without the
influence of any external factors—the nodule disintegrates “by itself” (Figure 15). Even
today, on the seabed, one can find not only complete but, also, apparently crushed nodules
(Figure 16).
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We argue that, under constant pressure conditions during the entire period of existence
of the nodules (under almost the same hydrostatic water pressure), even the apparently
low forces of crystal growth can disturb the stability of the fragile equilibrium of the nodule
and cause a splitting (cracking) of its body.

6.2. Chemostratigraphy, Age and Growth Generations

The analyzed polymetallic nodules showed a growth rate typical for the D, sD, and
mixed HD nodules (Table 4). The highest growth rate was observed in the samples located
in the closest vicinity to extinct underwater volcanoes (Figure 2). The indicated age of
the nodules from the IOM claim area is almost twice younger compared to the nodules
collected in the extreme western part of the CCFZ (more than 3500 km from the IOM area),
which started from ~4.7 Ma [77].

According to the Co-chronometer back-stripping data, seven major groups/generations
of colloforms were distinguished in the representative nodules (Figures 12 and 13). The
analyzed nodules usually showed asynchronous growth, with no visible relationships
between age and the morphological or chemical type. As mentioned before, the HD, H,
and sD nodules (3542, 3613, 3614, and 3615) were located in the surrounding volcanic hills
in the NE part of the study area. All these samples showed a trend of a slight increase
in the growth rate toward the rim. The interior indicated the stronger influence of the
hydrogenous processes, evidenced by the presence of vernadite layers mixed with pure
Mn oxyhydroxides, as well as admixtures of clay minerals.

Most of analyzed samples indicated increased contents of Fe and Ti in the rim parts;
however, a positive relationship of these metals is not always visible (increase in the
hydrogenetic component toward the rim). Although Ti is usually associated with some
detrital input, some Mn-rich colloforms also show increased contents of Ti. It seems that the
nodules in this part of the IOM area started to form relatively slowly, and the growth ratio
increased gradually during the Plio–Pleistocene period. A shift in the forming conditions
was observed around 750–850 ka ago, evidenced by a rapid drop in thee Mn, Ni, and Cu
contents, as well as an increase in the Fe amount (e.g., 3614, Figure 12).

For the other typical diagenetic nodules, the growth rate trend is rather stable; however,
some of them show an increase in the growth rate, and others, a decrease. Similar to H,
in the HD and sD nodules, increases in the Ti and Fe contents were observed in the rim
colloforms. The slightly different geochemical characteristics of the nodules located near the
volcanic hills provide evidence of the influences related to the topography, the sedimentary
processes, the intensity of the sea bottom currents (e.g., [43]), or even the hydrothermal
processes related to the discharge of metals in the seamount areas (e.g., [78,79]).

The formation of polymetallic nodules in the study area shows potential relation-
ships with the Northern Hemisphere Glaciation, which induced a drop in the sea surface
temperature and the shoaling of thermocline [80]. Deglaciation processes increased the
water flow from the Northern Hemisphere, which might have affected the increase in the
productivity and, consequently, higher nutrient contents in the deep-sea sediments (Late
Pliocene–Early Pleistocene productivity maximum; 3–1.5 Ma). The intensification of the
Walker and Hadley circulations over the tropical Pacific might have helped at the onset of
the glaciations and the subsequent deglaciations during the late Plio–Pleistocene [81]. The
visible decline in productivity occurred between 1 and 2 Ma and followed the establishment
of an opal belt ~2 Ma [65]. Several examples in the analyzed polymetallic nodules from
the IOM area indicate a decrease in the Mn/Fe ratio, related to the decrease in the sea
surface temperature (SST), as well as the reduced productivity, especially in the group of
the middle-to-late Pleistocene colloforms. Older layers often indicate an increase in the Fe
content, related to productivity increases and drops in the sea surface temperature (SST).

In some nodules (3602, 3604, 3613, and, especially, 3614), we observed changes in
the geochemistry (increases in the Fe and Ti contents) around 750–900 ka, which may be
related to the mid-Pleistocene cooling events [81], increased Fe accumulation [82], and high
bioproductivity evidenced by a barite formation. On the orbital time scales, the export
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production of barite is generally higher during cold periods (glacial maxima) between
4.3 and 1.1 Ma [83]. The presence of a large amount of barite mixed with clays or pure Mn
oxyhydroxides might be evidence of its formation during this kind of cold event related
to the increased productivity of sea surface water (SSW). The potential hydrothermal
influences are related to the sediments and nodule alterations with basaltic lavas and
gas emanations. In this case, the presence of pure Mn and Fe oxides, as well as traces
of palagonized volcanic glass or admixtures of debris minerals (e.g., hydromicas or Fe
chlorite), might be related to weak hydrothermal seafloor alterations [84]. All the changes in
the palaeoceanographic conditions in this part of the CCFZ must be considered along with
the steady depth increase of the seafloor, which affected the location of the geochemical
barriers, current intensity, and sedimentation rates (e.g., [49]).

For the purposes of Co-chronometer data back-stripping, the best are small-to-medium
nodules with a lack of internal cracks and the presence of a relatively low number of admix-
tures (including clays, zeolites, or Fe-rich debris components). Contact zones between the
Mn-Fe colloforms and clays or zeolites led to the formation of cracks, which strongly affect
the data back-stripping process. In this case, the extreme growth rates and ages in loose or
partially filled spaces should be removed from the final results. The cracking processes can
also be induced by the aging and dehydration of nodules or the transformation of Mn-Fe
oxyhydroxides (e.g., [60,61,85]). Intranodulith in cracks includes pure Mn-oxyhydroxide
cement, clays, zeolites, barite, and other minerals. The formation of this kind of structure
might be an indicator of Mn excess in the solution, leading to conclusions regarding the
alterations and dissolutions of older Mn (Fe) oxyhydroxides and the recrystallization of
younger manganates (e.g., [86]).

According to the general comparison of the back-stripped chemostratigraphic data, the
highest contents of the metals are associated with Mn-rich colloforms, indicating diagenetic
formation under oxygen-rich seawater. The general increase in productivity observed
in the tropical Pacific following the Northern Hemisphere Deglaciation influenced the
changes in the thermocline position and related parameters, which strongly affected the
speciation of Fe and Mn. Diagenetic influences usually strongly rely on the oxic–suboxic
front transition observed in the uppermost layers of the sediments [13,53]. Notably, very
pure Mn-oxyhydroxides (e.g., birnessite or todorokite/buserite) do not always show the
highest contents of strategic metals, such as Ni, Cu, or Co, which means that admixtures
of Fe in the structures of manganates or intercalation with vernadite is needed for the
acquisition of metals. This rule might be associated similarly to growth ratios, where
intermediate values (4–8 mm/Myr) are preferred for the highest concentrations of metals.
The high content of Fe observed in the colloforms (vernadite admixtures) dated more than
2.4 to 2.5 Ma is associated with Late Pliocene to Early Pleistocene warming and the increase
in the global mean sea level. In several nodules, we observed the presence of intranodulith
developed in the cracks, Co-chronometerically dated 1.4–2.2 Ma (Middle Matuyama–
Olduvai magnetozones), which was a period of sea surface temperature decrease coupled
with productivity increase.

The observed short- (40–50 kyr and 100–200 kyr) and long-scale periodicity (~400–
500 kyr) of the Fe and Mn contents, as well as the growth ratio fluctuations, might also be a
new and potentially useful tool for tracing changes in the palaeoceanographical conditions
during the Plio–Pleistocene productivity increase (the presence of todorokite-birnessite,
as well as collapsed 10-Å phyllomanganates). This long-term periodicity was observed
especially in the layers formed after 1.8–2.0 Ma. Chemostratigraphic profiling data of the
polymetallic nodules using EPMA can also be correlated to the magnetosome and isotopic
methods of dating.

7. Conclusions

Polymetallic nodules collected in the eastern part of the CCFZ in the IOM claim area
showed complex internal textures reflecting multistage nucleation affected by potential
changes in the paleoproductivity and surface temperatures occurring during the Late
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Pliocene-to-Middle Pleistocene (Plio–Pleistocene) postglacial transition. Most of the ana-
lyzed samples showed distinctive diagenetic features evidenced by relatively high growth
rates (>5 mm/Myr), increased Ni + Cu + Co contents (>4 wt %), and admixtures of Fe-rich
clays or barite.

Intranodulith was proposed as a term describing the specific lithotype that is the
integral part of polymetallic nodules, which developed as a result of the secondary diage-
netic processes of lithification and cementation of trapped detrital materials within holes,
microcaverns, or open fractures in between ore colloforms.

The polymetallic nodules located in the nearest vicinity to underwater volcanic-shaped
areas usually showed higher inputs of the hydrogenic components (slow growth rates,
increased amount of Fe, and the presence of vernadite) compared to the nodules collected
in relatively flat, streaked, and meridian-oriented blocks of the seafloor.

A hypothesis of nodule cracking on the seafloor being caused by internal tension in
the vein created by crystal growth was proposed.
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Appendix A

Table A1. Representative EPMA data of the major minerals identified in the analyzed polymetallic nodules from the IOM area CCFZ (EPMA; N = 46). All data are given in wt %. The
mineral types were distinguished based on the stoichiometry [54].

ID F Na Si Al Mg P Cl K S Ca Ba Ti Pb Fe Mn Cr Cu Zn V As Sr Co Ni Ag O- Total

Todorokite/Buserite-Birnessite (Alteration and Transformation Traces)
3615_5_12 0.00 0.95 0.88 1.47 3.00 0.20 0.07 1.15 0.06 1.45 0.14 0.08 0.00 0.58 46.16 0.00 2.06 0.35 0.03 0.08 0.05 0.04 2.89 0.00 27.73 89.41
3615_5_13 0.00 1.00 0.99 1.42 2.96 0.06 0.04 1.04 0.03 1.54 0.11 0.04 0.01 0.77 44.95 0.01 2.25 0.27 0.04 0.08 0.06 0.04 3.07 0.00 27.21 88.01
3614_1_3 0.00 2.16 1.09 1.46 2.38 0.07 0.12 0.87 0.03 1.46 0.19 0.13 0.00 1.37 43.16 0.00 1.93 0.17 0.04 0.07 0.06 0.07 3.16 0.00 26.78 86.78
3602_5_12 0.00 1.85 1.33 0.64 1.99 0.09 0.07 1.09 0.02 1.64 0.16 0.02 0.00 0.72 45.68 0.00 1.68 0.34 0.03 0.06 0.06 0.05 2.26 0.00 26.53 86.29
3535_2_9 0.00 2.04 1.17 1.38 2.12 0.08 0.13 0.95 0.04 2.02 0.12 0.11 0.00 0.64 43.43 0.00 2.50 0.27 0.06 0.07 0.06 0.09 2.90 0.00 26.75 86.93
3605_5_12 0.02 0.88 2.73 1.76 2.44 0.24 0.04 1.13 0.06 1.51 0.71 0.04 0.00 0.70 44.45 0.00 1.47 0.15 0.07 0.07 0.07 0.06 1.68 0.00 28.62 88.91
3529_1_1 0.00 0.93 2.90 2.00 2.62 0.75 0.06 0.95 0.06 2.24 1.00 0.34 0.03 1.30 42.07 0.00 1.35 0.13 0.10 0.08 0.08 0.16 1.47 0.00 29.48 90.08
3604_4_8 0.00 0.88 1.54 2.65 4.32 0.08 0.02 0.38 0.01 1.09 0.43 0.04 0.03 2.01 38.12 0.00 2.33 0.16 0.09 0.11 0.04 0.40 2.55 0.00 27.03 84.29
3535_2_7 0.00 0.82 1.09 2.57 3.84 0.18 0.05 0.30 0.04 1.66 0.13 0.25 0.00 2.89 38.48 0.00 2.40 0.17 0.05 0.10 0.07 0.31 2.50 0.00 27.10 85.02
3614_3_6 0.00 1.43 0.94 2.61 4.30 0.14 0.40 0.46 0.14 1.24 0.20 0.20 0.01 1.26 39.05 0.00 2.05 0.16 0.06 0.11 0.05 0.28 3.27 0.00 27.07 85.42
3605_1_1 0.00 1.11 0.37 0.72 2.13 0.08 0.10 0.81 0.04 1.28 0.78 0.10 0.02 1.51 41.90 0.00 1.38 0.16 0.10 0.08 0.08 0.43 1.65 0.00 23.87 78.73
3605_1_2 0.00 1.18 0.28 0.69 2.12 0.06 0.08 0.87 0.03 1.14 0.64 0.06 0.00 1.21 43.56 0.00 1.35 0.16 0.08 0.07 0.07 0.32 1.59 0.00 24.15 79.70
3613_8 0.00 0.93 2.67 1.15 2.09 0.08 0.43 0.82 0.04 1.28 0.64 0.09 0.02 3.60 38.43 0.00 0.97 0.08 0.08 0.07 0.07 0.46 0.67 0.00 25.74 80.41

3535_5_12 0.00 1.77 1.16 0.85 2.07 0.08 0.23 0.96 0.03 1.66 0.24 0.08 0.03 1.77 42.37 0.01 1.96 0.20 0.03 0.07 0.09 0.20 2.17 0.00 25.67 83.71
3613_5 0.00 0.66 2.26 1.49 2.57 0.11 0.68 0.64 0.07 1.46 0.94 0.14 0.03 2.56 36.06 0.00 1.12 0.07 0.12 0.08 0.08 0.43 1.24 0.00 24.71 77.52

Todorokite/Buserite-Birnessite (Impure Mixtures)
3529_3_6 0.01 0.66 7.09 1.43 1.76 0.66 0.29 0.83 0.23 1.29 0.32 0.13 0.04 8.65 24.86 0.00 0.60 0.08 0.06 0.07 0.05 0.27 0.34 0.00 27.73 77.47
3535_8_19 0.00 0.53 5.50 2.10 2.04 0.78 0.22 0.71 0.08 2.29 0.23 0.51 0.06 9.00 30.43 0.00 0.98 0.16 0.05 0.08 0.08 0.49 1.16 0.00 30.20 87.69
3537_7_13 0.06 0.67 4.22 1.01 1.26 1.25 0.17 0.58 0.29 3.20 0.41 0.23 0.07 12.96 30.52 0.00 0.37 0.08 0.06 0.09 0.11 0.83 0.38 0.00 29.85 88.66
3535_1_2 0.00 0.73 3.03 1.77 1.99 0.27 0.24 0.98 0.14 2.03 0.81 0.35 0.04 4.24 36.94 0.00 1.06 0.10 0.12 0.08 0.09 0.17 1.07 0.00 27.18 83.42
3537_4_8 0.00 0.61 2.40 1.55 2.67 0.45 0.06 0.60 0.11 2.32 0.35 0.43 0.04 4.96 39.43 0.00 1.67 0.13 0.06 0.08 0.06 0.22 1.67 0.00 28.62 88.50
3605_3_8 0.00 0.53 4.64 1.99 2.69 0.49 0.10 0.76 0.08 1.76 0.47 0.27 0.05 6.42 35.71 0.00 1.24 0.10 0.07 0.09 0.06 0.26 1.34 0.00 30.08 89.20
3537_1_3 0.00 1.23 4.57 1.41 2.33 0.06 0.09 0.53 0.06 1.55 0.27 0.16 0.00 1.10 40.67 0.00 1.96 0.16 0.05 0.07 0.04 0.33 2.30 0.00 29.01 87.95

Mn-Fe Vernadite (Partially Impure)
3602_7_16 0.00 0.63 7.37 1.25 1.56 0.54 0.31 0.86 0.10 2.13 0.32 0.36 0.12 12.61 25.86 0.00 0.26 0.06 0.06 0.07 0.10 0.62 0.48 0.00 30.10 85.76

3613_2 0.00 0.43 6.63 1.62 0.79 0.37 2.38 0.22 0.11 2.41 0.17 0.84 0.10 17.35 16.03 0.01 0.23 0.09 0.08 0.09 0.12 0.31 0.17 0.00 26.68 77.21
3613_13 0.00 1.23 6.50 0.91 0.77 0.34 1.91 0.33 0.11 1.70 0.16 0.54 0.12 23.26 14.84 0.00 0.29 0.08 0.10 0.09 0.08 0.22 0.24 0.00 27.70 81.52

3537_7_14 0.00 0.79 11.17 3.00 1.32 0.25 0.25 1.31 0.07 1.75 0.19 0.10 0.06 17.47 14.71 0.01 0.28 0.05 0.06 0.06 0.06 0.39 0.08 0.00 32.25 85.68
3535_7_15 0.00 0.52 7.46 1.91 1.59 0.80 0.13 0.70 0.04 2.21 0.33 0.51 0.14 14.72 24.44 0.00 0.66 0.11 0.09 0.09 0.10 0.62 0.38 0.00 31.50 89.03
3603_2_9 0.01 0.82 9.74 2.06 2.13 0.50 0.19 1.00 0.04 1.48 0.35 0.19 0.07 16.15 20.86 0.00 0.77 0.11 0.07 0.09 0.07 0.28 0.57 0.00 32.90 90.44
3537_2_7 0.01 0.23 8.01 1.80 1.24 0.29 0.19 0.55 0.08 2.04 0.25 0.36 0.08 15.36 20.61 0.00 0.41 0.10 0.06 0.08 0.10 0.50 0.22 0.00 29.35 81.93
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Table A1. Cont.

ID F Na Si Al Mg P Cl K S Ca Ba Ti Pb Fe Mn Cr Cu Zn V As Sr Co Ni Ag O- Total

Fe-Rich Clays (Intranodulith Mixtures: Potentially Nontronite and Fe-Rich Smectite)
3604_2_3 0.00 0.31 25.64 3.57 2.80 0.04 0.04 2.77 0.01 0.49 0.05 0.03 0.00 16.46 1.34 0.00 0.19 0.04 0.02 0.04 0.00 0.04 0.04 0.00 42.96 96.89
3604_2_4 0.00 0.30 25.92 3.54 2.85 0.04 0.03 2.71 0.01 0.49 0.03 0.04 0.01 17.41 1.33 0.00 0.18 0.06 0.03 0.05 0.00 0.04 0.03 0.01 43.70 98.82
3535_2_4 0.00 0.23 25.64 2.90 2.97 0.02 0.04 1.93 0.02 0.87 0.00 0.12 0.01 16.54 0.55 0.00 0.28 0.07 0.02 0.06 0.01 0.06 0.08 0.00 42.21 94.61
3605_6_14 0.00 0.27 24.83 2.76 2.24 0.07 0.03 2.27 0.01 0.83 0.00 0.11 0.01 17.39 1.04 0.00 0.37 0.07 0.02 0.05 0.01 0.05 0.05 0.00 41.39 93.88
3615_3_10 0.00 0.35 24.54 4.20 2.49 0.05 0.08 3.62 0.01 0.46 0.00 0.29 0.01 16.60 0.26 0.00 0.14 0.06 0.03 0.06 0.00 0.05 0.01 0.01 42.02 95.34
3529_3_8 0.00 0.57 24.55 1.93 2.42 0.04 0.10 1.72 0.02 0.78 0.02 0.03 0.00 18.11 0.55 0.00 0.18 0.07 0.00 0.07 0.00 0.07 0.02 0.00 40.40 91.66
3542_4_13 0.00 0.46 24.58 2.84 2.31 0.06 0.22 2.32 0.03 0.61 0.00 0.22 0.00 19.12 1.13 0.00 0.16 0.06 0.01 0.06 0.01 0.06 0.05 0.00 42.04 96.33
3613_14 0.00 2.26 20.47 2.18 1.80 0.04 0.18 2.62 0.02 0.34 0.04 0.07 0.00 17.02 3.65 0.00 0.19 0.06 0.02 0.05 0.00 0.09 0.06 0.00 37.09 88.24
3604_4_7 0.00 0.60 23.51 2.54 2.27 0.10 0.03 1.97 0.02 0.66 0.04 0.05 0.00 19.02 1.83 0.01 0.33 0.07 0.02 0.07 0.00 0.07 0.06 0.00 40.77 94.02
3602_5_10 0.00 0.27 23.75 1.54 2.29 0.04 0.07 1.74 0.02 0.69 0.00 0.03 0.01 20.34 0.70 0.00 0.15 0.06 0.00 0.07 0.00 0.08 0.03 0.00 39.95 91.85
3602_7_15 0.00 0.30 21.13 1.06 2.14 0.08 0.55 1.74 0.03 0.65 0.00 0.17 0.01 19.49 0.66 0.01 0.20 0.03 0.02 0.06 0.00 0.05 0.02 0.01 36.20 84.60

Zeolites (Impure Intranodulith: Na-Phillipiste)
3615_4_11 0.00 1.78 27.22 8.54 0.86 0.00 0.10 4.57 0.01 0.52 0.01 0.04 0.01 5.12 0.07 0.00 0.06 0.04 0.01 0.02 0.00 0.01 0.01 0.00 43.27 92.29
3542_3_11 0.00 2.06 28.11 7.37 1.37 0.02 0.08 3.60 0.03 0.27 0.06 0.29 0.00 7.49 0.32 0.01 0.17 0.04 0.01 0.04 0.00 0.01 0.05 0.00 44.76 96.16
3614_1_1 0.00 1.11 22.01 9.92 0.78 0.03 0.09 5.17 0.04 0.16 0.06 0.09 0.01 4.50 0.30 0.00 0.05 0.02 0.03 0.00 0.00 0.02 0.01 0.00 38.21 82.62
3615_2_6 0.00 3.15 25.60 8.66 0.33 0.03 0.05 5.09 0.01 0.40 0.10 0.07 0.00 1.44 3.87 0.00 0.09 0.02 0.01 0.01 0.00 0.01 0.09 0.00 41.88 90.90
3614_2_5 0.00 3.34 28.81 10.00 0.18 0.00 0.03 4.27 0.01 0.06 0.01 0.01 0.00 1.59 0.03 0.00 0.04 0.00 0.02 0.02 0.00 0.01 0.00 0.00 44.65 93.07
3542_5_20 0.00 3.50 29.82 9.92 0.08 0.00 0.00 4.68 0.01 0.24 0.00 0.02 0.00 0.39 0.58 0.01 0.05 0.01 0.00 0.02 0.00 0.02 0.07 0.00 45.63 95.05
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Appendix B

Table A2. Basic statistics of the analyzed polymetallic nodules from the IOM claim area CCFZ (EPMA; N = 191). All data are given in wt %.

Statistics ID F Na Si Al Mg P Cl K S Ca Ba Ti Pb Fe Mn Cr Cu Zn V As Sr Co Ni Ag O-

Mean 3529 0.00 0.99 6.10 1.50 2.05 0.27 0.24 1.19 0.07 1.19 0.44 0.21 0.03 5.25 30.96 0.00 0.93 0.10 0.05 0.07 0.05 0.26 0.86 0.00 27.75
Min. N = 13 0.00 0.35 0.31 0.58 0.79 0.02 0.03 0.36 0.01 0.48 0.02 0.03 0.00 0.48 0.55 0.00 0.18 0.04 0.00 0.04 0.00 0.07 0.02 0.00 19.06

Max. 0.04 1.76 24.55 4.23 2.65 1.00 0.76 4.51 0.23 2.51 1.00 0.83 0.10 18.11 45.91 0.00 1.68 0.18 0.12 0.09 0.08 0.55 1.59 0.00 41.55
St. dev. 0.01 0.47 8.00 0.88 0.48 0.33 0.25 1.02 0.07 0.58 0.25 0.26 0.03 5.37 14.87 0.00 0.44 0.04 0.03 0.01 0.02 0.15 0.53 0.00 6.62

Mean 3535 0.00 1.02 3.97 1.54 2.03 0.29 0.28 0.72 0.08 1.73 0.22 0.27 0.04 5.48 30.21 0.00 1.30 0.15 0.05 0.07 0.07 0.23 1.36 0.00 25.56
Min. N = 21 0.00 0.23 0.19 0.35 0.97 0.02 0.04 0.30 0.02 0.59 0.00 0.02 0.00 0.27 0.55 0.00 0.28 0.06 0.01 0.06 0.01 0.03 0.08 0.00 12.71

Max. 0.04 2.33 25.64 2.90 3.84 1.00 1.16 1.93 0.25 3.16 0.81 0.99 0.14 16.54 46.70 0.02 2.50 0.34 0.12 0.10 0.13 0.62 2.90 0.00 42.21
St. dev. 0.01 0.58 5.21 0.65 0.64 0.28 0.25 0.38 0.06 0.72 0.17 0.24 0.04 5.08 11.23 0.00 0.67 0.07 0.03 0.01 0.03 0.17 0.79 0.00 6.61

Mean 3537A 0.00 0.98 8.13 2.29 2.07 0.27 0.10 1.16 0.07 1.79 0.18 0.16 0.03 6.08 30.52 0.00 1.42 0.19 0.04 0.07 0.06 0.23 1.38 0.00 31.41
Min. N = 14 0.00 0.46 0.12 0.93 1.17 0.03 0.02 0.53 0.01 0.65 0.00 0.04 0.00 0.71 0.11 0.00 0.13 0.05 0.00 0.05 0.00 0.02 0.03 0.00 26.07

Max. 0.06 1.80 26.62 5.98 3.23 1.25 0.25 2.63 0.29 3.20 0.41 0.43 0.07 17.47 46.90 0.01 2.95 0.56 0.07 0.09 0.11 0.83 3.24 0.01 43.23
St. dev. 0.02 0.41 8.53 1.41 0.63 0.33 0.06 0.63 0.07 0.63 0.12 0.11 0.02 5.33 15.48 0.00 0.88 0.14 0.02 0.01 0.03 0.23 1.01 0.00 5.11

Mean 3537B 0.00 0.90 5.45 1.61 1.80 0.11 0.30 0.84 0.05 1.28 0.18 0.19 0.04 5.06 23.91 0.00 1.14 0.11 0.03 0.06 0.05 0.19 1.13 0.00 23.53
Min. N = 9 0.00 0.22 0.40 0.44 1.06 0.06 0.04 0.32 0.02 0.79 0.00 0.04 0.01 0.58 0.19 0.00 0.20 0.03 0.00 0.05 0.02 0.03 0.05 0.00 15.68

Max. 0.01 1.81 25.85 4.21 3.51 0.29 0.84 2.86 0.08 2.04 0.29 0.36 0.08 15.36 43.92 0.03 2.52 0.24 0.06 0.09 0.10 0.50 3.16 0.00 42.71
St. dev. 0.00 0.49 7.52 1.05 0.74 0.07 0.25 0.73 0.02 0.47 0.10 0.11 0.02 5.43 13.79 0.01 0.90 0.09 0.02 0.01 0.02 0.14 1.05 0.00 8.48

Mean 3542 0.00 1.29 12.03 3.56 1.97 0.11 0.14 1.55 0.06 1.60 0.20 0.24 0.02 7.26 23.43 0.00 0.77 0.09 0.04 0.07 0.05 0.16 0.93 0.00 33.93
Min. N = 24 0.00 0.21 0.15 0.23 0.06 0.00 0.00 0.26 0.00 0.13 0.00 0.02 0.00 0.32 0.08 0.00 0.01 0.01 0.00 0.01 0.00 0.01 0.02 0.00 24.53

Max. 0.07 3.88 29.82 14.27 3.25 0.39 0.44 5.28 0.35 7.57 0.71 0.94 0.07 21.79 46.77 0.01 2.26 0.26 0.10 0.10 0.13 0.65 3.29 0.01 46.98
St. dev. 0.01 0.98 11.71 3.61 0.92 0.11 0.11 1.39 0.07 1.43 0.19 0.25 0.02 6.82 19.57 0.00 0.68 0.06 0.03 0.02 0.04 0.20 1.06 0.00 8.11

Mean 3602 0.00 0.85 4.63 0.93 2.04 0.25 0.12 1.02 0.05 1.55 0.65 0.20 0.03 6.18 36.33 0.00 1.03 0.14 0.07 0.07 0.08 0.20 1.11 0.00 28.44
Min. N = 16 0.00 0.27 0.04 0.05 1.16 0.03 0.04 0.25 0.01 0.65 0.00 0.00 0.00 0.12 0.66 0.00 0.15 0.03 0.00 0.05 0.00 0.02 0.02 0.00 24.63

Max. 0.01 1.85 23.75 1.75 2.90 0.75 0.55 1.74 0.11 2.88 3.69 0.90 0.13 20.34 50.82 0.01 1.83 0.34 0.18 0.11 0.16 0.62 2.26 0.01 39.95
St. dev. 0.00 0.41 7.11 0.49 0.48 0.24 0.13 0.40 0.03 0.65 0.86 0.26 0.04 7.14 15.45 0.00 0.57 0.07 0.05 0.01 0.04 0.19 0.76 0.00 4.02

Mean 3603 0.00 1.41 5.02 1.36 2.11 0.28 0.15 1.06 0.05 1.64 0.28 0.11 0.03 5.90 35.20 0.00 1.41 0.19 0.05 0.07 0.06 0.13 1.52 0.00 29.06
Min. N = 18 0.00 0.37 0.04 0.07 1.20 0.01 0.04 0.58 0.01 0.39 0.00 0.00 0.00 0.25 0.41 0.00 0.08 0.03 0.01 0.05 0.00 0.01 0.04 0.00 24.39

Max. 0.05 2.55 25.32 3.28 3.71 1.08 0.34 2.54 0.14 2.48 0.80 0.28 0.15 20.87 47.62 0.04 2.90 0.35 0.13 0.09 0.13 0.56 3.15 0.00 41.39
St. dev. 0.01 0.60 6.78 0.79 0.64 0.29 0.08 0.53 0.04 0.56 0.21 0.09 0.04 7.29 13.42 0.01 0.72 0.09 0.03 0.01 0.03 0.13 0.93 0.00 4.54

Mean 3604 0.01 1.16 7.06 1.75 2.49 0.12 0.11 1.23 0.05 1.24 0.58 0.08 0.01 5.30 32.38 0.00 1.11 0.16 0.06 0.07 0.05 0.15 1.07 0.00 29.89
Min. N = 14 0.00 0.30 0.10 0.22 1.64 0.04 0.02 0.38 0.01 0.49 0.03 0.01 0.00 0.18 1.33 0.00 0.18 0.04 0.02 0.04 0.00 0.04 0.03 0.00 22.89
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Table A2. Cont.

Statistics ID F Na Si Al Mg P Cl K S Ca Ba Ti Pb Fe Mn Cr Cu Zn V As Sr Co Ni Ag O-

Max. 0.04 2.94 25.92 3.57 4.32 0.49 0.68 2.77 0.26 2.40 2.83 0.39 0.07 19.02 48.01 0.01 2.33 0.39 0.16 0.11 0.15 0.48 2.55 0.01 43.70
St. dev. 0.01 0.69 9.51 1.05 0.68 0.11 0.17 0.73 0.07 0.59 0.80 0.09 0.02 6.66 16.81 0.00 0.61 0.11 0.04 0.02 0.04 0.13 0.87 0.00 6.82

Mean 3605 0.01 0.92 3.18 1.10 2.10 0.16 0.13 1.04 0.07 1.42 0.47 0.10 0.03 3.16 38.87 0.00 1.39 0.17 0.07 0.07 0.07 0.20 1.47 0.00 26.78
Min. N = 21 0.00 0.27 0.08 0.18 1.39 0.05 0.03 0.60 0.01 0.68 0.00 0.01 0.00 0.31 1.04 0.00 0.37 0.07 0.02 0.05 0.01 0.04 0.05 0.00 16.29

Max. 0.04 1.51 24.83 2.76 3.23 0.56 0.45 2.27 0.24 2.41 0.84 0.29 0.11 17.39 47.40 0.01 2.27 0.30 0.12 0.09 0.10 0.56 2.82 0.00 41.39
St. dev. 0.01 0.35 5.47 0.66 0.42 0.14 0.10 0.36 0.07 0.43 0.23 0.08 0.03 4.12 10.95 0.00 0.39 0.06 0.03 0.01 0.02 0.14 0.70 0.00 4.51

Mean 3613 0.00 0.89 7.08 1.67 1.81 0.14 0.72 0.84 0.07 1.30 0.44 0.28 0.04 8.25 23.67 0.00 0.64 0.07 0.08 0.07 0.06 0.31 0.60 0.00 26.67
Min. N = 15 0.00 0.16 1.18 0.71 0.77 0.02 0.15 0.22 0.02 0.34 0.00 0.06 0.00 2.17 0.33 0.00 0.14 0.03 0.00 0.05 0.00 0.03 0.00 0.00 15.90

Max. 0.00 2.26 20.47 3.12 2.57 0.37 2.38 2.62 0.15 2.83 1.18 1.00 0.12 23.26 44.87 0.01 1.18 0.16 0.12 0.10 0.13 0.53 2.15 0.01 37.09
St. dev. 0.00 0.47 6.73 0.70 0.55 0.11 0.61 0.57 0.04 0.67 0.39 0.28 0.04 6.72 13.78 0.00 0.38 0.03 0.04 0.01 0.04 0.16 0.57 0.00 5.02

Mean 3614 0.01 1.25 9.82 3.26 1.85 0.17 0.66 1.63 0.15 1.15 0.17 0.28 0.04 8.13 19.57 0.00 0.76 0.09 0.04 0.06 0.05 0.25 1.06 0.00 29.86
Min. N = 13 0.00 0.27 0.94 0.72 0.18 0.00 0.03 0.30 0.01 0.06 0.00 0.01 0.00 1.26 0.03 0.00 0.04 0.00 0.02 0.00 0.00 0.01 0.00 0.00 19.66

Max. 0.04 3.34 28.81 10.00 4.30 0.55 1.60 5.17 0.39 2.08 0.52 0.60 0.11 17.32 43.16 0.01 2.05 0.19 0.08 0.11 0.11 0.65 3.27 0.01 44.65
St. dev. 0.01 0.83 10.30 3.07 1.05 0.15 0.59 1.71 0.12 0.67 0.15 0.21 0.03 5.52 15.28 0.00 0.74 0.06 0.02 0.03 0.04 0.22 1.23 0.00 8.44

Mean 3615 0.00 1.36 11.98 3.85 1.81 0.13 0.14 2.29 0.06 1.28 0.24 0.19 0.01 5.31 23.81 0.00 0.78 0.14 0.05 0.06 0.05 0.06 1.05 0.00 33.42
Min. N = 12 0.00 0.35 0.88 1.22 0.09 0.00 0.01 0.62 0.01 0.13 0.00 0.02 0.00 0.53 0.07 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 26.22

Max. 0.00 3.15 28.97 9.42 3.27 0.71 0.57 5.62 0.25 2.58 0.68 0.54 0.05 16.60 46.16 0.01 2.25 0.35 0.12 0.09 0.12 0.19 3.07 0.01 43.99
St. dev. 0.00 0.88 10.69 3.02 0.99 0.18 0.15 1.79 0.07 0.71 0.22 0.17 0.01 4.87 17.48 0.00 0.74 0.12 0.04 0.03 0.04 0.05 1.06 0.00 6.82
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