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Abstract: Bangladesh’s heavy minerals deposits in river systems remain largely unexplored with
past research restricted to beach placer deposits along the south-eastern coastline of the country.
In this study, 64 samples were collected from stable sand bars from the northern Brahmaputra
River. The average total heavy minerals (THM) from all sample sites was 10.73 wt%, with the
THM concentrations generally highest at the outermost edges of the river and lowest within the
mid-channel regions. There was no variation in THM content from north (upstream) to south
(downstream). Valuable heavy minerals (VHMs) magnetite, ilmenite, garnet and zircon made up
around 25–30 wt% of the THM content, with other heavy minerals including amphibole, pyroxene,
kyanite, sillimanite, monazite, apatite and xenotime making up the remaining 70–75 wt%. A VHM
distribution map showed that the upstream division of the studied area appeared to be the most
prospective for valuable heavy minerals. A bench scale heavy mineral sands beneficiation flowsheet
involving unit processes employing gravity, magnetic and electrostatic properties was designed and
based on a detailed characterisation and phase analysis of the resulting fractions, it was determined
that VHMs made up ~2 wt% of the material recovered. Of these, garnet and ilmenite made up the bulk
of the VHMs at levels of 0.88 and 0.51 wt%, respectively, with recoveries of >83%. Characterisation of
the concentrates showed that further refinement of the processing conditions is required to generate
concentrates that are potentially suitable for commercial applications.

Keywords: heavy minerals; distribution; separation; characterisation; Brahmaputra River sands

1. Introduction

Heavy mineral (HM) sands are occurrences of high specific gravity (SG > 2.9) detrital
minerals in siliclastic sediments that include minerals such as rutile, zircon, ilmenite,
magnetite, sillimanite, monazite, chromite, tin, tourmaline, garnet and staurolite. Some
heavy minerals are of more economic value than others due to their usefulness in industrial
products such as pigments (ilmenite, rutile and leucoxene), ceramics (zircon) or for the
recovery of high-value components such as rare earth oxides (monazite). Other heavy
minerals, of lesser value, such as garnet, magnetite and tin are also potentially recoverable
for commercial applications.

Bangladesh has HM sands in beach and river system placer deposits (Figure 1). Beach
sand occurrences are prevalent along the southern and south-eastern coast lines (Cox’s
Bazar, Teknaf and Kuakata beaches) and in offshore islands (Saint Martin’s, Kutubdia,
Nijhum Dweep and Maheshkhali islands) in the Bay of Bengal [1–3]. On average, the beach
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sand HM deposits contain 20–25 wt% total heavy minerals (THM) with mineralogical anal-
ysis indicating an average percentage of economically important valuable heavy minerals
(VHM) such as zircon (4.2 wt%), rutile (2.0 wt%), ilmenite (26.0 wt%), garnet (6.4 wt%),
kyanite (3.9 wt%), leucoxene (2.3 wt%), magnetite (1.9 wt%) and monazite (0.3 wt%) [4,5].
While the coastal sand deposits are high-grade, opportunities are limited with deposits
located in populated, environmentally sensitive areas. In addition, some of the contained
VHMs such as zircon and monazite have high levels of radioactivity [6–9]. Both make
exploitation problematic.
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The occurrence of large amounts of HMs in the bedload of Brahmaputra-Jamuna
River sediments has been known for decades [10–15]. Recent studies to examine the
potential for recovering VHM from sand bars of the northern Brahmaputra-Jamuna River
have been reported by Rahman et al. [16–18] and Khalil et al. [19]. Rahman et al. [18]
determined that the THM percentage of the Brahmaputra-Jamuna sand bars was lower
than the beach sand deposits, ranging from 4–17 wt%. The HM assemblage comprised
amphibole, epidote, garnet, pyroxenes and kyanite along with minor amounts of VHM
components ilmenite (4.7 wt%), magnetite (4.4 wt%), titanomagnetite (0.9 wt%), titanite
(0.9 wt%) and rutile (<0.1 wt%). Although lower grade, the uncertainty around future
mineral sands exploitation from beach sands means there is emerging potential for HM
sands mining and processing from river sand deposits in Bangladesh. While exploitation
of VHMs from river sand deposits is uncommon, primarily due to the typically low grades
encountered, the river systems in Bangladesh are constantly renewed through annual
transport of ~1800 tons/km2 of sediment resulting in an annual discharge of suspended



Minerals 2021, 11, 786 3 of 19

load of 540–1157 million tons/year [14]. The high annual sediment influx creates social
and environmental hazards in river systems such as the Brahmaputra which is used as a
key transport corridor. Annual dredging is therefore required to maintain open waterways
and capturing and recovering valuable HMs from waste dredge material may potentially
provide a cost-effective long-term source of VHMs—provided the recovered materials meet
market specifications.

Recently, the authors carried out mineralogical characterisation studies on northern
Brahmaputra River sand deposits [18]. The sediments were found to be low in clay content
and the HMs were found to be well liberated and angular to sub-rounded in texture and
mostly in the −125 + 63 µm size range. This size range is optimal for VHM recovery
via traditional mineral sands processing operations. Rahman et al. [18] also conducted
preliminary beneficiation studies that exploited the magnetic properties and compositional
variation within the iron- and titanium-rich components (magnetite, ilmenite, rutile) to
examine the feasibility of generating commercial products. The present investigation
extends these initial beneficiation investigations by conducting distribution and recovery
studies on other components of the VHM suite. A bench scale HM beneficiation flowsheet
utilising unit processes employing gravity, magnetic and electrostatic properties of the
minerals was used to separate the individual VHM for further characterisation. Results
from in-depth characterisation studies on four of the more valuable and commercially
exploitable components, ilmenite, zircon, garnet and magnetite are presented.

2. Materials and Methods
2.1. Raw Materials

Samples were collected from sand bars within the northern Brahmaputra River, south
of its entry point into Bangladesh and north of its confluence with the easterly flowing
Tista River (Figure 1a). Sampling locations were in a grid pattern covering an area of
400 km2 extending 40 km in length and 10 km in width. The spacing between each of
the sample locations was approximately 2 km (Figure 1b). The depth of the samples was
from the surface to ~3 m and ~50 kg of sample was collected from each location for the
characterization and beneficiation studies. To assess potential variability in the THM and
VHM assemblages within the study area, the sampling region was divided into three
sectors, upstream, midstream and downstream, extending along the river from north to
south. In total, 64 samples were collected for analysis.

2.2. Beneficiation

Concentration of heavy mineral sands from the primary ore utilises the differences
in specific gravity (SG) and in the electrostatic and magnetic properties of the VHM. The
concentration is carried out in two ways: wet, utilising sizing and gravity differentiation
between THM, VHM, clay and quartz and dry, exploiting the magnetic, electrostatic and,
to a lesser extent, the specific gravity properties of the minerals of interest.

2.2.1. Preliminary Float/Sink Analysis

Prior to the beneficiation study, a 10 g sub-sample from each location was initially
subject to dense media gravity separation using the heavy liquid, bromoform (SG = 2.89),
to provide an indication of the THM content at each location. Following separation,
optical light microscopy-based point counting of polished THM grain mounts was used
to determine the abundance of the VHM—ilmenite, zircon, rutile and garnet—in each of
the samples.

2.2.2. Laboratory Scale Wet and Dry Processing

After the preliminary float/sink tests, the remaining sand sample from each location
was used for the separation of the VHM fractions by applying bench scale separation
techniques based on the physical properties of the minerals. A flow chart for the processing
to achieve the separations is shown in Figure 2.
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Figure 2. Flow chart showing the procedure for separation of VHM fractions from the bulk sand sample.

Initially, each sample was processed by wet gravity separation using a laboratory
model Shaking Table-800, supplied by Holman-Wilfley Ltd, Redruth, Cornwall, UK. The
wet separation was carried out at 30 wt% solids concentration, 12 L/min wash water and
20 kg/h throughput. This process separated each sample into a light and a heavy fraction.
The light fraction contained the lower SG mineral components such as quartz, feldspar and
micas and was not used in subsequent testing.

The heavy fractions were processed using an induced roll magnetic separator (IRMS—
Outotec MIH (13) 111-5, Jacksonville, Florida, USA) operating at 0.3 amp and a constant
rate of feed of 50 kg/h to recover the strongly magnetic heavies from the moderately mag-
netic heavies. Magnetite was concentrated using a hand magnet from the strongly magnetic
heavies leaving behind a fraction expected to be ilmenite-rich. The moderately magnetic
fraction was then further magnetically separated at 3.5 amp and at the same feed rate.
Ilmenite and garnet were the main minerals in the moderately magnetic heavies and zircon
and rutile were the main minerals in the non-magnetic heavies. An electrostatic plate sepa-
rator (ESPS) operated at 28–30 kV was used to further separate ilmenite (conductor) and
garnet (non-conductor) from the moderately magnetic heavies and zircon (non-conductor)
from the non-magnetic heavies. Before electrostatic separation, the fractions were heated to
about 200 ◦C to ensure the surfaces were free of moisture which could affect the separation.

The complete beneficiation process produced six fractions: a magnetite-rich fraction,
an ilmenite-rich fraction, a garnet-rich fraction, a zircon-rich fraction, a magnetic (others)
fraction and a non-magnetic (others) fraction (Figure 2). These fractions were subject to
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further characterisation with emphasis placed on the two most valuable concentrates,
ilmenite and zircon.

2.3. Characterisation of VHM

Chemical analysis of the beneficiated products was carried out using X-ray Fluores-
cence (XRF) spectroscopy while the minerals in the products were characterised using
Quantitative X-ray Diffraction (QXRD), Scanning Electron Microscopy (SEM) and Electron
Probe Microanalysis (EPMA).

2.3.1. X-ray Fluorescence (XRF) Spectroscopy

Chemical analysis of all six fractions was carried out using XRF. This involved milling
the samples then accurately weighing ~0.4 g of the finely ground, oven dried powders
into a 95% Pt/Au crucible with ~4 g (also accurately weighed) of 12:22 lithium tetraborate:
metaborate flux. Each mixture was then fused into a homogeneous glass disc over an
oxy-propane flame at a temperature of approximately 1050 ◦C and the molten material
was poured into a 32 mm diameter 95% Pt/Au mould pre-heated to a similar temperature.
The melt was then cooled by air jets for approximately 60 s. The resulting glass discs were
analysed on a Philips PW2404 XRF system using a control program developed by Philips
and algorithms developed in-house by CSIRO.

2.3.2. Quantitative X-ray Diffraction (QXRD)

Quantitative X-ray diffraction was carried on micronized samples of the magnetite-
rich, ilmenite-rich, zircon-rich and garnet-rich mineral products to determine their mineral-
ogy. Diffraction data were collected over the range 5–140◦ 2θ using a Panalytical Empyrean
instrument fitted with a Co X-ray tube operated at 40 keV and 40 mA. Data were collected
with a nominal step size of 0.0263◦ 2θ (~2 h per scan). Phase identification was performed
using Panalytical Highscore Plus© software (V4.8). Quantitative phase analysis (QPA) was
carried out via the Rietveld method [20] using TOPAS V6 software.

2.3.3. Scanning Electron Microscopy (SEM)

Scanning electron microscopy was used to examine the mineralogy and textures in
the samples. Back-scattered electron SEM images were obtained using a FEI Quanta 400
FEG-ESEM. The instrument was operated at high vacuum (<10−5 Torr), an accelerating
voltage of 15 keV and a beam current of 0.3 nA. The chemistry of individual phases was
determined by performing spot energy dispersive analyses with data collected using a
Bruker X-Flash 5010 ED detector.

2.3.4. Electron Probe Microanalysis (EPMA)

The high value ilmenite and zircon concentrates were mapped using a high resolution
field emission gun equipped EPMA (JEOL 8500F Hyperprobe) to examine the distribution
of major and minor mineral phases and to examine the chemical homogeneity of the grains.
Polished epoxy resin grain mounts were mapped over a grid of analysis points using a
combination of wavelength dispersive (WD) and energy dispersive (ED) spectroscopic
techniques. The element distribution data was then processed using the software package
CHIMAGE [21] which incorporates an automated clustering algorithm that identifies chem-
ically alike phases [22–24]. Groupings of elements identified via the clustering represent
statistically different chemical/mineral phases and these phases were overlaid onto the
mapped region to provide a phase-patched map.

3. Results and Discussion
3.1. Distribution of THMs and VHMs
3.1.1. Total Heavy Minerals

The total heavy minerals (THM) present in the sands collected from the sample loca-
tions are listed in Table 1. The average THM content across all sample sites was 10.73 wt%
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with the highest and lowest THM concentrations within the upstream, midstream and
downstream regions of the sampling area as follows: 20.40 wt% to 5.40 wt%; 23.47 wt% to
3.71 wt%; and 15.90 wt% to 4.69 wt%, respectively. To assess the variability in the THM
content across and along the river basin, transect plots are shown in Figure 3a,b, while a
plot showing the concentration of THM’s measured at all sample locations is shown in
Figure 3c.

Table 1. THM contents (wt%) from the sand samples determined by float-sink analysis using
bromoform. Samples were divided into upstream, midstream and downstream according to their
location within the sampled area (Figure 1). Numbers in bold represent the lowest and highest THM
contents within each sector.

Upstream Midstream Downstream

Sample ID THM (wt%) Sample ID THM (wt%) Sample ID THM (wt%)

A-1 5.40 A-10 10.19 A-15 4.69

A-2 12.54 A-12 23.47 A-16 6.61

A-3 9.30 A-14 10.25 A-17 9.11

B-1 6.90 B-9 9.22 A-18 10.50

B-2 11.60 B-10 15.70 A-19 12.80

B-3 10.82 B-11 11.50 A-20 15.90

B-4 8.51 B-12 10.29 B-15 9.70

B-5 20.40 C-8 11.22 B-16 10.79

B-7 9.10 C-9 3.91 B-17 12.70

C-1 7.21 C-12 7.50 B-19 15.60

C-2 9.62 C-14 3.71 B-20 8.87

C-3 17.20 D-9 10.59 C-15 12.01

C-4 5.41 D-11 11.30 C-19 13.20

C-5 5.84 D-14 15.13 C-20 5.40

C-6 15.22 E-10 20.20 D-15 8.11

C-7 11.70 E-11 10.13 D-20 10.30

- - E-12 9.81 E-15 14.90

- - E-13 8.02 E-19 12.32

- - E-14 7.20 - -

Average 10.42 Average 11.02 Average 10.75

Figure 3a shows the trend of THM concentrations across the river channel from west
to east, a distance of approximately 10 km in width. Results indicated that THM concentra-
tions were highest at the outermost edges of the river and lowest within the mid-channel
regions. The same pattern was observed for all three sample area divisions (upstream,
midstream and downstream). It is presumed that the THM distribution reflects higher
flow velocities toward the central part of the river system compared to the eastern and
western margins. The distribution of THM from north to south along the channel is shown
in Figure 3b. The data were taken from the mid-channel sample sites (sample locations
pre-fixed by B and C) as these provided the most complete set of data. Considerable
fluctuation was apparent in the data; however, the results in Figure 3b suggested there was
no significant variation in THM content from north (upstream) to south (downstream). We
speculate that the fluctuation in the data is likely due to the frequent shifting of stream
channel and sand bars along the river, typical characteristics of a braided river system.
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3.1.2. Valuable Heavy Minerals

Point counting on the polished THM grain mounts was used to determine the abun-
dance of the valuable heavy minerals; magnetite, ilmenite, rutile, zircon and garnet in the
samples. Results for the average VHM contents for upstream, midstream and downstream
divisions are provided in Table 2. Overall, VHMs made up around 25–30 wt% of the
THM content with other heavy minerals such as amphibole, pyroxene, kyanite, sillimanite,
monazite, apatite and xenotime making up the remaining 70–75 wt%. Based on VHM
content data (not shown) determined at individual sample locations, a distribution pattern
showing the variation in VHM concentration was generated by plotting the coordinates
of the sample locations on a GIS map and then overlaying the VHM concentration per-
centages (Figure 4). Although the THM distribution (Figure 3c) revealed no preferential
concentration of heavy minerals, the VHM distribution map shows that the upstream
division of the studied area appears to be the most prospective for valuable heavy minerals.
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Table 2. The average THM concentration and abundance of VHM within the three stream divisions.

Sample ID THM
(wt%)

Magnetite
(wt%)

Ilmenite
(wt%)

Zircon
(wt%)

Garnet
(wt%)

Heavy Others
(wt%)

Upstream 10.42 2.6 5.41 2.02 8.04 81.93

Midstream 11.02 2.8 4.56 2.07 8.90 81.67

Downstream 10.75 2.3 4.29 2.32 7.73 83.36

Average 10.73 2.57 4.75 2.14 8.22 82.32
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3.2. Beneficiation Studies for Recovery of VHM

Bench scale separation techniques based on exploiting the physical properties of the
minerals were used to provide sufficient material for characterisation studies of the more
valuable ilmenite- and zircon-rich fractions. These included standard gravity, magnetic
and electrostatic separations, as practised in the heavy mineral sands industry.
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The sand samples from each location were processed by wet gravity separation using a
Wilfley shaking table for the separation of heavy and light fractions and recovery of VHMs.
The average amount of VHMs recovered via the shaking table were considerably less
than obtained via heavy liquid separation. This was because the heavy liquid procedure
recovered all minerals with a SG > 2.89 and therefore included additional non-valuable
heavy minerals such as amphibole, pyroxene, kyanite and sillimanite. In comparison,
the use of the shaking table allowed a better split between heavy and light minerals
ensuring that the concentrate was dominated by the VHM and there was greater rejection
of gangue minerals.

The individual concentrates recovered from the gravity separation tests on each
sample were insufficient to run further individual recovery tests. For this reason, the gravity
concentrates from all samples of each stream section (up-, mid- and downstream) were
combined and thoroughly mixed to make three composite samples. These concentrates
were each subjected to IRMS and then ESPS dry separation procedures for the recovery
of six separate VHM fractions according to the flowsheet in Figure 2. A summary of the
separation results is given in Table 3 while results for the average mass recovery to each
of the individual fractions is given in Table 4. Results indicate that garnet and ilmenite
make up the bulk of the HM in the Brahmaputra River sand at concentrations of 0.88 and
0.51 wt%, respectively, with recoveries of 83.6% for garnet and 92.6% for ilmenite. Magnetite
(77.6% recovery) and zircon (97.4%) were also recoverable but were present at much lower
levels of 0.28 wt% and 0.23 wt%, respectively. The lower magnetite recovery was attributed
to its finer particle size and presence as composite particles [18]. The physical properties of
garnet and other ferrosilicate minerals, such as amphibole and pyroxene group minerals,
are similar and the garnet tended to separate with these silicate minerals.

Table 3. Results of IRMS and ESPS separations conducted on the combined VHM concentrates from the Wilfley shaking
table.

Streamline
ID

VHM Concentrate
(wt%)

Composition of the Concentrate

Magnetite
(wt%)

Ilmenite
(wt%)

Zircon
(wt%)

Garnet
(wt%)

Magnetic
Others (wt%)

Non-Mag.
Others (wt%)

Upstream 2.75 8.87 20.16 8.32 31.80 25.06 5.79

Midstream 1.47 12.10 27.96 11.80 38.04 8.01 2.09

Downstream 1.76 11.21 22.96 13.48 41.20 8.97 2.18

Average 1.99 10.73 23.69 11.20 37.01 14.01 3.35

Table 4. Summary of results for the average recovery of VHM into the combined concentrate.

Mineral VHM Concentrate
(wt%)

Recovery
(%)

Grade
(wt%)

Calc. Head
(wt%)

Magnetite 0.21 77.6 95.80 0.28

Ilmenite 0.47 92.6 91.14 0.51

Zircon 0.22 97.4 98.05 0.23

Garnet 0.74 83.6 95.45 0.88

A larger scale test program was conducted on a bulk sand sample of 593 kg. The
sample was a combined sample made of ~9–10 kg of sand from each sample site. The
sand was processed according to the flowsheet in Figure 2 and results, including assay
results and mass recoveries, are shown in Figure 5. Weights for each of the recovered
fractions were as follows: Magnetite—1.0 kg (0.17 wt%); Ilmenite—0.5 kg (0.08 wt%);
Garnet—1.1 kg (0.19 wt%); Zircon—0.2 kg (0.03 wt%); Magnetic others—7.7 kg (0.76 wt%);
and Non-magnetic others—1.4 kg (0.24 wt%). This is a total mass recovery of VHMs of
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1.47 wt%. Further work to optimise the operating conditions of the separation equipment
can be expected to increase the mass recovery of VHMs.
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sand, Kurigram District, Bangladesh.

3.3. Characterization of VHM Fractions Ilmenite, Zircon, Garnet and Magnetite
3.3.1. Chemical Analysis by XRF

The XRF data for the recovered VHM bulk samples representing the magnetite, il-
menite, garnet, zircon, magnetic others and non-magnetic other fractions, are listed in
Table 5.

The XRF results for the ilmenite fraction indicated the concentrate contained 30.4 wt%
TiO2 and 61.9 wt% Fe2O3. Other elements present included: silicon (4.82 wt% SiO2), alu-
minium (1.88 wt% Al2O3), calcium (1.00 wt% CaO), magnesium (0.59 wt% MgO) and
manganese (1.10 wt% Mn3O4). The low TiO2 content as well as the presence of these
oxides/elements as additional components in the concentrate suggest silicate and alumi-
nosilicate gangue phases were present while the high Fe2O3 (61.9 wt%) suggests a high
magnetite/hematite or titano-magnetite/hematite component, either in solid solution or as
separate contaminant grains.
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Table 5. Bulk chemical analysis results (XRF) determined for the ilmenite, zircon, magnetite, garnet, magnetic others and
non-magnetic other fractions.

Component
(wt%) DL * Ilmenite Zircon Magnetite Garnet Mag. Others Non-Mag. Others

TiO2 0.005 30.4 1.62 1.61 0.24 4.23 8.93

Fe2O3 0.005 61.9 0.22 99.7 31.5 19.82 2.05

SiO2 0.01 4.82 30.3 1.31 36.5 38.9 52.5

Al2O3 0.01 1.88 0.52 0.68 20.8 16.4 8.26

CaO 0.005 1.00 1.94 0.30 5.56 11.1 14.2

Cr2O3 0.005 0.180 <DL 0.300 0.023 0.060 0.030

K2O 0.005 0.10 0.034 0.037 0.066 0.490 0.480

MgO 0.01 0.59 <DL 0.21 3.64 4.90 0.78

Mn3O4 0.005 1.10 0.03 0.29 2.37 0.77 0.06

Na2O 0.01 0.10 0.33 0.01 0.16 0.84 1.01

P2O5 0.005 0.09 1.01 0.067 0.072 0.28 5.47

ZrO2 0.005 0.22 65.2 0.038 0.036 0.15 2.73

Th (ppm) 20 20 440 <20 140 150 140

U (ppm) 20 <20 700 <20 <20 <20 40

* DL = detection limit for each component. <DL = below detection limit.

The zircon fraction contained 65.2 wt% ZrO2 and 30.3 wt% SiO2 which was close to
stoichiometric zircon which contains of 67.2 wt% ZrO2 and 32.8% SiO2. Major impurities in
the concentrate included titanium (1.62 wt% TiO2), which was likely present as the mineral
rutile and calcium (1.94 wt% CaO) and phosphorus (1.01 wt% P2O5), oxides commonly
associated with apatite. Minor impurities included aluminium (0.52 wt% Al2O3), sodium
(0.33 wt% Na2O) and iron (0.22 wt% Fe2O3). Aluminium and sodium may be associated
with clays and/or weathered feldspars while iron may be associated with rutile and/or
ilmenite. Note that, compared to all other VHM fractions, zircon contains elevated levels
of uranium and thorium at values of 700 ppm U and 440 ppm Th. In terms of producing
a commercial zircon product, these levels are problematic as combined U+Th levels in
marketed zircon concentrates typically need to be below 500 ppm [25].

The magnetite fraction was characterised by high Fe2O3 (99.7 wt%) with minor impu-
rities being TiO2 (1.61 wt%) most likely as ilmenite or titanomagnetite components and
SiO2 (1.31 wt%). Examination of magnetite grains in Brahmaputra sediments by Rahman
et al. [18] showed that magnetite often formed complex intergrowths with silicate and
aluminosilicate gangue minerals and the presence of these grains is likely responsible for
the high SiO2 values and the contamination by aluminium (0.68 wt% Al2O3), calcium
(0.30 wt% CaO), magnesium (0.21 wt% MgO) and manganese (0.29 wt% Mn3O4). Minor
contamination by chromium (0.30 wt% Cr2O3) and vanadium (0.28 wt% V2O5) is primarily
due to solid solution of these oxides into magnetite (some Al2O3 may also be present as a
solid solution component).

The garnet fraction contained, on average 36.5 wt% SiO2 and 20.8 wt% Al2O3 which
is within the range of alumina and silica values typically observed for garnets within
the four end members of the almandine(Fe)-pyrope(Mg)-grossular(Ca)-spessartine(Mn)
isomorphous series. A garnet corresponding in composition with any one endmember is
rare, however and the name is usually ascribed according to the dominant ‘molecular’ type
present. Average Fe2O3 (31.5 wt%), CaO (5.56 wt%), MgO (3.64 wt%) and Mn3O4 (2.37 wt%)
assays indicate that the garnets present in the fraction are most likely almandine (i.e., Fe-
rich) with minor, in order of decreasing abundance, grossular, pyrope and spessartine
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components. The levels of CaO and Fe2O3 may also include contributions from calcium
and iron aluminosilicate heavy minerals such as amphibole and epidote.

The magnetic others fraction was, as expected, iron-rich (19.82 wt% Fe2O3) with
considerable amounts of SiO2 (38.9 wt%), Al2O3 (16.4 wt%), CaO (11.1 wt%) and MgO
(4.90 wt%). The analyses are consistent with the bulk of the magnetic others fraction
comprising heavy mineral aluminosilicates such as amphiboles, garnets, epidotes that are
typically present in Brahmaputra River sands [18]. The minor amount of TiO2 (4.23 wt%)
indicates possible incorporation of ilmenite in the fraction that could potentially be re-
covered with further refinement of the process flowsheet. Both Na2O and K2O were low
(<1 wt%) indicating low amounts of feldspar in the fraction. Quantitative XRD analysis
of the fraction indicated the sample mineralogy was dominated by amphibole (31 wt%),
epidote (25 wt%), garnet (24 wt%) and quartz (8 wt%). Minor phases included ilmenite
(4 wt%), titanite (5 wt%), mica (1 wt%) and trace amounts of chlorite and clay. In compari-
son, the non-magnetic others fraction was high in SiO2 (52.5 wt%), CaO (14.2 wt%) and
Al2O3 (8.26 wt%) implying the presence of quartz, felspars and aluminosilicates, while
high TiO2 (8.93 wt%) suggests possible rutile incorporation. High P2O5 (5.47 wt%) suggests
the presence of apatite and/or monazite and 2.73 wt% ZrO2 indicates likely zircon grains.
The QXRD analysis of the fraction indicated 55 wt% quartz, 15 wt% plagioclase, 10 wt%
fluorapatite, 7 wt% titanite, 5 wt% epidote and 4 wt% potassium-rich feldspar. Minor to
trace amphibole (2 wt%), mica (2 wt%) and chlorite (<1 wt%) were also present.

In the following sections, a more detailed examination of the four fractions ilmenite,
zircon, garnet and magnetite, which contain the VHM, is provided with discussion aimed
at improving their overall recovery.

3.3.2. Ilmenite Fraction

The results of the phase identification and QPA (relative crystalline wt%) indicated a
high proportion of the Fe-rich phases, ilmenite (44.9 wt%) and hematite (42.5 wt%), consis-
tent with the high Fe2O3 and the low TiO2 assays reported in Table 5. Both minerals are
susceptible to recovery to the magnetic fraction; however, it is unclear from the QXRD re-
sults as to whether these phases are present as discrete phases or composite particles. Minor
rutile (2.1 wt%) and zircon (0.3 wt%), other potentially recoverable valuable minerals, were
also present. It is possible these represent mineral entrainment or minerals occurring as
composite phases or inclusions. Given rutile and zircon inclusions are typically associated
with ilmenite, we suggest it is most likely the latter. Amphibole (4.1 wt%), mica (2.5 wt%),
feldspar (1.7 wt%), quartz (1.1 wt%) and kaolinite (0.7 wt%) were the main gangue mineral
phases. These contribute significantly to the elevated SiO2 and Al2O3 levels reported for
the bulk assay. Based on previous work by Rahman et al. [26] there is also likely to be
minor garnet present (although if present, it is below the detection limit of QXRD). The
gangue mineral suite is also consistent with the observed assays for the minor elements
CaO (amphibole, plagioclase feldspar, garnet), K2O (mica, feldspar), MgO (amphibole,
garnet) and Na2O (plagioclase feldspar).

Examination of the ilmenite fraction by BSE imaging confirmed the Fe-Ti oxide and
gangue mineralogy indicated by QXRD. Typical textures of the Fe-Ti oxide phases are
shown in Figure 6a,b. In these images, homogeneous hematite (Figure 6b), titanohematite
(Ti-Hemss) and ilmenite grains were all observed; however, a universal feature was the
abundance of grains exhibiting complex exsolution of ilmenite in Ti-Hemss hosts and of
hematite or Ti-Hemss exsolution in ilmenite hosts. These grains were characterised by thick
bands of either ilmenite (dark bands -Figure 6c) or Ti-Hemss (light bands) which contain
tiny droplets, lenses or rod-like bodies and lamellae of hematite in the ilmenite matrix,
or ilmenite in the Ti-Hemss matrix (see Figure 6a,b). As discussed recently by Rahman
et al. [26] at temperatures above 800 ◦C there is complete miscibility (solid solution) between
ilmenite and hematite; however, during crystallisation and cooling, hematite and ilmenite
become segregated forming titanohematite, which is characterised by lamellae of hematite
in varying amounts intercalated with ilmenite.
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Figure 6. Back-scattered electron (BSE) images of the bulk ilmenite sample showing textures of the various Fe-Ti oxide
particles as well as images showing grains with inclusions of potentially valuable heavy minerals. (a–c) show typical
ilmenite textures with grains showing examples of titanohematite (Ti-Hemss) exsolution (banded grains), homogeneous
ilmenite grains (also in (e,f)) as well as homogeneous hematite grains (c). The presence of primary, unaltered inclusions (e.g.
quartz in the highly porous-looking ilmenite towards the top left of (a)) and sphene (titanite) and garnet incorporation in
the exsolved ilmenite shown in (d). Inclusions of other valuable minerals typically associated with heavy mineral Fe-Ti-
oxides such as rutile (e), zircon (small, bright spots in (a,c) and monazite (f) were also noted. Key to abbreviations used:
Ilm = ilmenite; Ti-Hemss—solid solution between titanohematite and hematite; Hem = hematite, Rut = rutile, Gar = garnet,
Zir = zircon and Mon = monazite. Note that the small very high contrast grains associated with monazite in (f) represent
ThO2 grains.

Many of the Fe-Ti oxide grains were angular to sub-angular in appearance consistent
with proximity to source. Further evidence for little weathering/degradation includes the
presence of primary, unaltered inclusions (e.g., quartz) and sphene (titanite) and garnet
(Figure 6d). Inclusions of other valuable minerals typically associated with heavy mineral
Fe-Ti oxides such as rutile (Figure 6e) zircon (small, bright spots in (Figure 6a,c) and
monazite (Figure 6f) were also noted.

Results from EPMA mapping are provided in Figure 7. They confirm the main
impurities in the ilmenite fraction included amphibole, mica, feldspar and quartz. These
were typically present as discrete grains indicating that further separation may be possible
to generate a purer ilmenite concentrate. The results also show that the current beneficiation
procedure leads to a mixed Fe- and Fe-Ti oxide concentrate that has low TiO2 and high
Fe2O3 (reflecting the high proportion of hematite and complex Ti-Hemss particles). There
is a need, therefore, to refine the beneficiation procedure, if possible, to separate hematite
from ilmenite and from Ti-Hemss (which could be used in a different stream that would
recover both Ti and Fe, separately). The suggested separation testing procedure would
likely be based on low intensity magnetic separation (LIMS) using equipment such as a
Davis tube apparatus. If complete separation was not achievable, it is likely that the Fe-Ti
concentrate would need to be processed in a high temperature smelting (slag) process that
would generate pig iron and TiO2-enriched slag products [27].
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Figure 7. EPMA map results for the bulk ilmenite sample showing (a) the phase patched map with the distribution of
all phases present in the sample and (b) a map with the distribution of Fe- and Fe-Ti oxide phases and rutile. Operating
conditions for the microprobe during mapping were an accelerating voltage of 20 keV, a beam current of 80 nA, a step size
of 2 µm (in x and y) and a counting time of 25 ms per step.

3.3.3. Zircon Fraction

The QXRD results for the zircon fraction indicated the sample comprised 95.6 wt%
zircon, 2.0 wt% apatite, 1.3 wt% quartz and 1.1 wt% rutile. The latter three phases contribute
to the elevated levels of CaO, P2O5, TiO2 and SiO2 observed in the XRF results in Table 5.
Results from EPMA mapping are provided in Figure 8. The map results confirm the
sample comprised >95% (by area) of zircon particles with apatite and sillimanite being
the main impurity phases along with minor titanomagnetite, rutile and quartz. Trace
phases present (not all shown) included feldspar, mica, ilmenite and titanite. Many of
the extraneous impurity phases are present as discrete grains and so could potentially be
removed through further processing. For example, in some operations, zircon concentrate
can be passed through an additional gravity separation circuit (spirals) to remove the lower
SG material (quartz, sillimanite, apatite) from the higher SG zircon. Further electrostatic
separation after gravity separation removes residual conductors from the zircon and traces
of monazite/xenotime (if present) are removed with induced roll magnets. A final pass
across an air table can remove fine quartz and residual sillimanite that has not been rejected
by the gravity separation circuit. Note, however, there are also a considerable number of
zircon grains that contain small inclusions of phases such as apatite (dominant inclusion
phase), quartz, mica and ilmenite. These would not be removed through additional dry
processing procedures.

3.3.4. Garnet Fraction

QXRD analysis results for the garnet fraction indicated the sample contained 79 wt%
garnet, 9 wt% amphibole, 8 wt% epidote, 3 wt% quartz and 1 wt% mica. EPMA mapping
results are shown in Figure 9. The data indicate the sample comprised over 81.1% (by
area) garnet and with minor amounts of, in order of relative abundance, amphibole (4.6%),
epidote (4.4%), Ce-allanite (3.6%) and quartz (1.8%). Element distribution plots (not shown)
indicated the garnets varied considerably in composition although in general, most were
Fe-rich. Compared to XRD, the EPMA analysis was capable of identifying a significant
number of minor mineral phases including biotite, ilmenite, titanate, magnetite, apatite,
feldspar, sillimanite and zircon, plus trace sulphides. Only the presence of phases with
abundance >1% are shown in Figure 9. For the most part, the garnet grains exhibited a
high degree of angularity and were largely inclusion free. Where inclusions were observed,
these tended to be dominated by phases such as quartz, amphibole and epidote.
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Figure 9. EPMA map results for the garnet concentrate showing the phase patched map with the distribution of all phases
present in the sample. Only phases with an abundance of >1% by area are shown. Trace phases are labelled as ‘Other’.
Operating conditions for the microprobe during mapping were an accelerating voltage of 20 keV, a beam current of 80 nA, a
step size of 2 µm (in x and y) and a counting time of 15 ms per step.
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Approximately 126 individual garnet grains were analysed by quantitative WD-based
EPMA. The Brahmaputra River garnets contained, on average, SiO2 (34.1–38.7 wt%),
FeO (10.9–38.8 wt%), Al2O3 (20.5–24.3 wt%), CaO (0.4–23.4 wt%), MgO (0.1–7.9 wt%)
and MnO (0.1–15.7 wt%). The compositional data were re-cast into the end-member
molar components almandine (Alm), pyrope (Pyr), spessartine (Spess) and grossular (Gro)
and the data plotted on a ternary Alm-Pyr-(Spess+Gro) plot in Figure 10. In addition
to, a few (Spess+Gro)-rich garnet outliers, most of the data plot toward the Almandine-
rich apex. Based on all measured garnet compositions the average composition was
Alm68Pyr13Gro13Spe6.
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Almandine-rich garnet is the principal abrasive for industrial applications [28] be-
cause of its high melting point (~1320 ◦C), high specific gravity (4.3) and high hardness
(7–7.5 Mohs scale). Spessartine- and pyrope-rich garnets have also been used as industrial-
grade garnet abrasives such as air-blasting [29]. Garnet is the main substitute for quartz
sand which is becoming less used for air-blasting because of the silicosis risk. The aver-
age compositional data for the garnets from the northern Brahmaputra River sands are
almandine-rich suggesting good potential for air-blasting applications. Most commercial
garnet abrasives are within the size range 180–250 micron [30] which is towards the upper
limit of the Brahmaputra River garnets based on data in Rahman et al. [18] and additional
characterisation test work will be required to determine the grainsize distribution in a
fully separated garnet concentrate. As well, further beneficiation will likely be required to
remove the additional quartz and aluminosilicate gangue phases (amphibole and epidote)
to ensure the concentrate meets commercial specifications.

3.3.5. Magnetite Fraction

The QXRD analysis results for the magnetite fraction showed the sample consisted
of 93 wt% magnetite, 3 wt% ilmenite, 1 wt% amphibole, 1 wt% quartz and minor mica,
hematite, epidote, feldspar and zircon. EPMA map results (Figure 11) confirm the high
content of magnetite (86.1% by area) along with minor phases such as Fe oxide (3.6%, most
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likely as hematite), ilmenite (3.0%), amphibole (1.6%), a Cr-rich Fe oxide (1.3%, possibly
chromite) and epidote (0.8%). Phases lower in abundance than ~0.8% included quartz,
garnet, biotite, feldspar, apatite, titanite, zircon and sulphides.
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Figure 11. EPMA map results for the magnetite concentrate showing the phase patched map with the distribution of all
phases present in the sample. Only phases with an abundance of >1% by area are shown. Trace phases are labelled as
‘Other’. Operating conditions for the microprobe during mapping were an accelerating voltage of 20 keV, a beam current of
80 nA, a step size of 2 µm (in x and y) and a counting time of 15 ms per step.

The magnetite particles in the river sands occurred as a mixture of fully liberated
particles to particles that formed complex intergrowths with silicate gangue minerals.
Most of the magnetite particles were angular in appearance indicating a resistance to
abrasion during transport. Individual magnetite particles exhibited textures varying from
optically homogeneous, Ti-poor and without discernible zoning or exsolution, to particles
dominated by exsolution of ilmenite lamellae (elongated parallel to 0001 planes). Rare
titanomagnetite particles were also present. Similar textures among magnetite grains in
Brahmaputra River samples were noted previously by Rahman et al. [18]. Separation of the
magnetic-rich particles versus the more complex particles with exsolved ilmenite lamellae
in order to generate a pure magnetite concentrate for commercial application may be
difficult; however, LIMS testing is recommended as an initial starting point. Similar to the
complexities of the mineral assemblage observed in the ilmenite fraction, it is recommended
that further work be undertaken to determine the optimum conditions for separation of
all components.

4. Conclusions

Analysis of samples collected from sand bars within the northern Brahmaputra River
sands indicated the average THM content across all sample sites was 10.73 wt%. The THM
concentrations were highest at the outermost edges of the river and lowest within the
mid-channel regions while there was no variation in THM content from north (upstream)
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to south (downstream). The VHM made up around 25–30 wt% of the THM content and a
VHM distribution map showed that the upstream areas appeared to be the most prospective
for VHM.

Bench scale separation techniques were used to provide sufficient material for char-
acterisation studies of the more valuable ilmenite-, zircon- and garnet-rich fractions. The
ilmenite fraction was composed of three main grain types: homogeneous ilmenite; grains
exhibiting complex exsolution of ilmenite in Ti-Hemss hosts and of hematite or Ti-Hemss
exsolution in ilmenite hosts and hematite. There is a need to refine the beneficiation proce-
dure to separate these three grain types. The zircon fraction comprised 95.6% zircon with
minor apatite, sillimanite, quartz and rutile. The impurity phases were largely present as
discrete grains so could potentially be removed through further processing. Mineralogical
analysis of the garnet fraction indicated the sample contained 79% garnet, with 9% amphi-
bole, 8% epidote, 3% quartz and 1% mica. Compositions determined on >100 individual
garnet grains indicated the garnets were mostly almandine-rich with ~68% almandine
component. Further beneficiation will be required to remove the additional quartz and
aluminosilicate gangue phases (amphibole and epidote) to ensure the concentrate meets
commercial specifications.

This study has demonstrated that it is possible to recover VHM components from the
Brahmaputra River sands but more in-depth studies with samples from different regions
in the basin are necessary to identify prospective areas and further work is necessary to
develop more efficient beneficiation processes for the VHMs.
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