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Abstract: Metallic mineral deposits represent natural geochemical anomalies of economically valu-
able commodities but, at the same time, their weathering may have negative environmental im-
plications. Cu-sulfide mineral deposits have been recognized as deposits with a particularly large
environmental footprint. However, different Cu deposits may result in significantly different environ-
mental impacts, mostly depending on weathering conditions, but also on geological characteristics
(mineralogy, geochemistry, host-rock lithology) of the Cu mineralization. This study presents new
mineral and geochemical data from the Repparfjord Tectonic Window sediment-hosted Cu deposits
and the Caledonian volcanogenic massive sulfides (VMS) deposits. The deposits share similar min-
eral features, with chalcopyrite and bornite as the main ore minerals, but they differ according to their
trace element composition, gangue mineralogy, and host lithology. The studied sediment-hosted Cu
deposits are depleted in most toxic metals and metalloids like Zn, As, Cd, and Hg, whereas the Røros
Caledonian VMS mineralization brings elevated concentrations of Zn, Cd, In, Bi, As, and Cd. The
conducted leaching experiments were set to simulate on-land and submarine weathering conditions.
A high redox potential was confirmed as the main driving force in the destabilization of Cu-sulfides.
Galvanic reactions may also contribute to the destabilization of minerals with low rest potentials, like
sphalerite and pyrrhotite, even under near-neutral or slightly alkaline conditions. In addition, the
presence of carbonates under near-neutral to slightly alkaline conditions may increase the reactivity
of Cu sulfides and mobilize Cu, most likely as CuCO3 (aq).

Keywords: Cu-sulfide ore; Nussir; Ulveryggen; Røros VMS deposit; leaching tests; submarine
weathering conditions; on-land weathering conditions

1. Introduction

Copper is one of the most widely used mineral commodities in modern society,
with a particular importance to electronics, electrical power generation, and the renew-
able energy sector, as well as in electric vehicle technologies [1–3]. In nature, Cu can
be found in various types of mineral deposits, but in addition to the Cu-porphyry type
(e.g., Chuquicamata, Chile [4]; El Teniente, Chile [5]; Ok Tedi, Papua New Guinea [6]),
deposits of volcanogenic massive sulfides (VMS) and Cu-sediment hosted types represent
the most important sources of Cu. Worldwide, 20 million tons (Mt) of copper was the total
mine production in 2020 [7]. This number decreased from 24.5 Mt in 2019 due to COVID-
19 lockdowns in April and May [8]. Chile remains the major copper producer (5.7 Mt)
followed by Peru (2.2 Mt), China (1.7 Mt), DR Congo (1.3 Mt), and the US (1.2 Mt) [9].
A range from 60% to 75% of copper is mined from porphyry-copper deposits [10], 20% from
sediment-hosted Cu deposits [11], and around 6% of Cu is mined from VMS deposits [12].

In this study, sediment-hosted Cu mineralization is represented by samples from the
Nussir and Ulveryggen Cu deposits, from the Repparfjord Tectonic Window, while the
Røros deposit, located within the Upper Allochthon of Scandinavian Caledonides, was
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selected as representative of VMS mineralization (Figure 1). All three deposits are charac-
terized by chalcopyrite and bornite as the main ore minerals, but they significantly differ
in trace element composition, gangue mineralogy, and host lithology. The Ulveryggen
Cu sediment-hosted deposit was mined in the period from 1972 to 1978/79, and tailings
were deposited subaqueously in Repparfjorden. The Nussir deposit has not been mined
yet, but there are plans for start-up mining of both the Nussir and Ulveryggen deposits
in the near future [13]. The mine tailings from this operation are designated to be dis-
posed of subaqueously in Repparfjorden as well. The Røros VMS deposit was mined from
1644 to 1977 [14], and similar to other historic VMS mines along the Scandinavian Cale-
donides, the mine waste material was disposed of on land, and still represents a significant
environmental threat [15].

Mining activities may result in negative environmental impacts due to the accumula-
tion of large quantities of mine waste material, generation of acid mine drainage (AMD),
and dispersion of heavy metals in aquifers, streams, and marine sediments and soils.
Copper has been recognized as a commodity with a particularly large environmental
footprint (e.g., [16–18]); the environmental impact of Cu mines mostly depends on tailings
disposal site conditions and the geological features of Cu mineralization, including mineral,
geochemical, and host lithology characteristics (e.g., [19–22]).

AMD is a major problem associated with mineral deposits, in which Cu occurs in
the form of sulfides (e.g., chalcopyrite, bornite, chalcocite, covellite) or if barren sulfides
(e.g., pyrite, marcasite, pyrrhotite) represent asignificant component in the ore mineral
assemblage (e.g., [23,24]). The consequences are often severe, leading to a lowering of the
pH of contaminated aquifers, and release of metals and metalloids into the environment
(e.g., [25–29]). Traditionally, tailings have been deposited in subaerial conditions, but sev-
eral countries including Norway, practice subaqueous deposition [30]. Since subaqueous
deposition in particular raises environmental concerns, we have tested the stability of
representative Cu mineral assemblages from two of the most common types of Cu-sulfide
deposits in Norway (sediment-hosted Cu deposits and VMS deposit) in a set of experiments
that simulated subaerial and subaquatic weathering site conditions.

Kinetic leaching tests represent a powerful and relatively inexpensive tool to predict
generation of AMD (e.g., [31]). They are designed to simulate sulfide-weathering processes
in different physicochemical conditions. Kinetic leaching tests can be industrial or per-
formed in the laboratory. Industrial tests are run in leaching columns, heaps, tanks, vats,
dumps, large bins or drums [32]. They are placed in the field and subjected to meteoric
waters, oxygen from the atmosphere, and changing temperature depending on the season.
These tests can be conducted for several months to several years and are infrequently
sampled for concentrations of dissolved metals and metalloids, sulfate, and changing pH
and Eh parameters [33]. The tests can be accelerated by adding additional water [32].

However, more often the leaching tests are performed in miniature versions and
run in laboratory size equipment—batch reactors, leaching columns, and humidity cells
(e.g., [34–42]). The results are later extrapolated or mathematically modelled for larger
volumes [33]. The tests are well-controlled and parameters such as water pH and Eh, metals
and metalloids concentrations are continuously measured. The tests are often accelerated
by increased temperature or the addition of hydrogen peroxide (e.g., [43]). The laboratory
leaching tests also allow determination of an acid neutralizing capacity of gangue minerals
and the acid producing potential of sulfides as well as to test remediation mechanisms,
(e.g., [34,44–46]). However, many authors (e.g., [47]) argue that laboratory tests cannot
be simply extrapolated to the field conditions. For example, a faster oxidation of pyrite
and chalcopyrite from the Aitik site in Northern Sweden was observed in the laboratory
compared to the field conditions [47].

The importance of characterization of ore parageneses and their host rocks was rec-
ognized as an important tool in the prediction of leaching of heavy metals from naturally
contaminated rocks during anthropogenic activities e.g., underground constructions [31].
The tests are designed around primary ore mineralization to observe the oxidation potential
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of major ore minerals, and aim to extrapolate the results of the study to apply to produced
mine tailings. The reactivity of the tailings with the surrounding environment will be
significantly higher due to particle size and an increase in surface energy.

Norway has a long shoreline, and the ore-bearing rocks are often subjected to weath-
ering by seawater. In addition, Norway is one of few countries where subaquatic mine
tailings deposition is permitted. In both cases, it is important to understand the role of
salinity on weathering of sulfides. Therefore, during the experiments seawater was used
together with meteoric water.

The aim of this study is to evaluate the potential environmental impact of the stud-
ied Cu mineralization, considering geological characteristics including mineralogy, geo-
chemistry, as well as the main physicochemical features of subaerial and subaquatic
disposal sites.

2. Geological Settings
2.1. Sediment-Hosted Cu Deposits of Nussir and Ulveryggen, Repparfjord Tectonic Window

The Repparfjord Tectonic Window, Northern Norway, is composed of mafic metavol-
canics and carbonate-siliciclastic sequences that were compressed in a SE-NW direction
during the Svecofennian Orogeny at ca. 1.84 Ga [48,49]. The rocks are metamorphosed
under greenschist to lower amphibolite facies conditions, and [50] determined the age of
host volcanics to be about 2.1 Ga, with Nussir mineralization around 1.765 Ga. The Reppar-
fjord Tectonic Window contains numerous sites with Cu mineralization (e.g., [14,51]), of
which the Nussir (26.7 Mt at 1.13% Cu) and the Ulveryggen (7.7 Mt at 0.81% Cu) deposits
have the greatest implications for the local environment [14,52]. The Nussir deposit is
hosted by a thin (no more than 5 m thick) metadolostone layer that can be traced for several
kilometres (Figure 1A,C), intercalated with metasandstone, metasiltsone and metapelites.
The metasedimentary complex is overlain by a several hundred meters thick metavol-
canic sequence [49,50,53]. Despite the close geographical occurrence of the Nussir and
Ulveryggen deposits, they have different lithologies. The Ulveryggen deposit is hosted
by arkosic metasandstones, metasiltstones, and metaconglomerates with low carbonate
content. Mineralization can be traced for more than 1 km in the northeast direction and
is structurally confined to tight folds [48,49,54,55]. Chalcopyrite, bornite, sphalerite, and
minor pyrite are the main ore minerals at both deposits.

The Nussir mineralization is confined to a thin (up to 5 m thick) dolomitic marble layer
intercalated with metasiltstone, metapelites and metasandstones, localizing the mineralization
within quartz-carbonate veins as well as disseminated in mafic metavolcanics [49,50,54,55].
The major ore minerals at the Nussir and Ulveryggen deposits are chalcopyrite, bornite,
and chalcocite [49,50,54].
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Figure 1. Geological maps showing the locations of the mines in (A) the Repparfjord Tectonic Window: Nussir and
Ulveryggen sediment-hosted Cu deposits, and (B) the Røros area, drawn based on interactive online maps at [56] as well as
modified after [49,55]. The map of Norway in (C) shows the locations of the Nussir, and Røros areas.

2.2. Volcanogenic Massive Sulfide (VMS) Deposit Røros, the Upper Allochthon of
Scandinavian Caledonides

The Røros VMS mining area includes several hundreds of mineralizations in the south-
eastern part of the Upper Allochthon of the Scandinavian Caledonides [57], including the
Røros deposit studied herein. The mineralizations are characterized by predominately chal-
copyrite, sphalerite, pyrite, and galena hosted by interbedded metatuffite, metagraywacke,
and gabbroic sills and dykes [14,58,59].

The Upper Allochthon of Scandinavian Caledonides extends for about 1500 km, from
the Stavanger region in southern Norway to the Barents Sea region in northern Norway.
This first-order tectonostratigraphic unit is dominated by sedimentary and magmatic rocks
derived from the Iapetus Ocean, including ophiolite and island-arc complexes usually
associated with VMS type mineralization (Figure 1B,C; [60–62]).

The Røros mining area in Trøndelag County, south-eastern Norway, hosts numer-
ous occurrences of the VMS type (Figure 1B). Among the largest occurrences are found
at the Storwartz and Olav mines in the eastern sector, and the Kongens mine in the
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north-western sector (Figure 1), with average Cu and Zn contents of about 2.7% and
4.2–5%, respectively [59]. The mineralization is hosted by metagraywacke interbedded
with metatuffites, metabasalts and gabbroic sills and dykes [14,58,59], with major ore
minerals: chalcopyrite, pyrrhotite, sphalerite, and pyrite.

3. Materials and Methods

For this study, representative samples of the Cu sulfide mineralization were selected
from the Nussir and Ulveryggen sediment-hosted Cu deposits, and from the Røros VMS
deposit. Two main types of samples were analyzed: (1) Mineral assemblages composed of
ore and gangue minerals and (2) Individual Cu-sulfide minerals.

Twenty-seven polished thin sections of representative mineral assemblages were
prepared at the Department of Geosciences at UiT The Arctic University of Norway.
Three thin sections represented reference samples for the respective deposits. The ref-
erence samples were studied under a reflective polarizing light microscope and a Zeiss
Merlin Compact Field Emission Scanning Electron Microscope (FE-SEM) equipped with
an energy-dispersive X-ray spectrometer (EDS) at UiT The Arctic University of Norway, to
determine mineral and geochemical characteristics of the ore mineral assemblages prior
to and after the leaching tests. In order to investigate the primary ore, the SEM was run
in a high vacuum regime at 20 kV accelerating voltage, 20 s counting time, and with an
aperture of 60 µm.

In order to simulate weathering processes corresponding to the tailings disposal site
conditions, a set of leaching experiments were performed on the polished thin sections
(Figure 2). The experiments were designed to simulate (Figure 3): (1) Subaquatic vs. on-
land disposal site conditions; (2) Oxidative vs. reductive conditions; (3) Carbonate buffered
vs. carbonate free systems; and (4) Seawater infiltrated vs. meteoric water infiltrated sites
(Table 1). Each thin section was placed in an individual beaker of 400 mL with a height of
10.5 cm and diameter of 8.5 cm. The thin sections were then covered with a 4 cm thick layer
of quartz sand (200 g) for the simulations of on-land conditions, whereas natural marine
sediments (200 g) were used for the simulations of submarine conditions.

Figure 2. (A) Photograph of the test setup; (B) backscattered electron image of chalcopyrite (Cpy) in
assemblage with bornite (Bn) and inclusions of iron oxides (FeO) from unaltered reference sample
E-N-1 (Nussir); (C) backscattered electron image of chalcopyrite (Cpy) with small inclusions of
bornite (Bn) from unaltered reference sample E-U-1 (Ulveryggen); (D) backscattered electron image
of the Røros reference sample E-R-1 showing the mineral assemblage of chalcopyrite (Cpy), sphalerite
(Sph), pyrite (Py), and pyrrhotite (Po).
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Figure 3. Schematic presentation of test settings #1–#8 conditions. Eh and pH are measured in
sediments before the tests. See text for explanation.

The average organic content in the natural marine sediments was 0.82 wt.%
(Supplementary Table S1), whereas the quartz sand was free of organic matter. To test
the influence of redox potential, half of the beakers with quartz sand were doped with
~10 wt.% of organic matter and sealed with parafilm tape to prevent oxidation reactions.
The other half of the beakers were left open during the entire experiment and refilled
with circa 150 mL of meteoric water once per day to ensure oxidative conditions. Pure
calcium carbonate was used to buffer relevant solutions. The experiments were run for
three months, and in order to accelerate the reactions, the beakers were kept in a water
bath at 50 ◦C.

At the end of the experiments, the samples were carefully removed and investigated
under a reflective light microscope. The formation of secondary minerals was studied
by Raman spectroscopy, conducted at UiT The Arctic University of Norway in Tromsø.
A Renishaw inVia confocal Raman microscope equipped with a 532 nm (green) diode laser
was used to identify the mineral phases in the studied ore samples, as well as the degree
of weathering after simulation of weathering conditions under on-land and subaquatic
conditions. The identification was based on Raman spectra published in the literature [63].

Individual grains of Cu sulfides were handpicked under a binocular microscope,
washed in an ultrasonic bath and pulverized in an agate mortar. An amount of 0.5 g was
analyzed for bulk trace element composition at the AcmeLabs (Vancouver, B.C. Canada),
on an ICP MS instrument following the internal LF202 analysis code.
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Table 1. Experimental setups. The cross mark corresponds to the ingredient added to the composition of the mixture.
Sample last digits correspond to the experiment setup number.

Materials Used to Maintain the Designed Conditions

Sample # Condition
# Condition Description Marine

Sediment
Prefabricated

Sand Sea Water Meteoric
Water

Organic
Matter Carbonate

Env-1NS-1
Env-2Ulv-

1
Env-3RS-1

1

Marine sediments,
TOC = 0.82 wt.%.

Carbonate
buffered
Seawater

+
+
+

+
+
+

+
+
+

Env-NS-2
Env-Ulv-2
Env-RS-2

2

Marine sediments,
TOC = 0.82 wt.%.

Carbonate
buffered

Meteoric water

+
+
+

+
+
+

+
+
+

Env-NS-3
Env-Ulv-3
Env-RS-3

3
Marine sediments,
TOC = 0.82 wt%,

non-buffered. Seawater

+
+
+

+
+
+

Env-NS-4
Env-Ulv-4
Env-RS-4

4

Marine sediments,
TOC = 0.82 wt.%,

non-buffered.
Meteoric water

+
+
+

+
+
+

Env-NS-5
Env-Ulv-5
Env-RS-5

5
Quartz sand, TOC=0 wt.%,

carbonate-buffered.
Meteoric water

+
+
+

+
+
+

+
+
+

Env-NS-6
Env-Ulv-6
Env-RS-6

6
Quartz sand, TOC=0 wt.%,

non-buffered. Meteoric
water

+
+
+

+
+
+

Env-NS-7
Env-Ulv-7
Env-RS-7

7
Quartz sand, TOC=10 wt.%,

carbonate-buffered.
Meteoric water

+
+
+

+
+
+

+
+
+

+
+
+

Env-NS-8
Env-Ulv-8
Env-RS-8

8
Quartz sand, TOC=10 wt.%,

non-buffered.
Meteoric water

+
+
+

+
+
+

+
+
+

1 NS—Nussir; 2 Ulv—Ulveryggen; 3 RS—Røros, “+”—present in the experiment

4. Results
4.1. Mineral Analyses
4.1.1. Nussir and Ulveryggen

Mineral analyses show that typical ore assemblages from the Nussir and Ulveryggen
sediment hosted Cu deposits consist of chalcopyrite, bornite, and chalcocite (Figure 2B,C).
The Røros VMS mineralization is represented by massive sulfide bodies predominantly
composed of chalcopyrite, sphalerite, pyrite and pyrrhotite (Figure 2D).

The Nussir dolomitic marble contains rhomboidal-shaped fragments of carbonates that
are up to 5 mm in diameter. The mineralization is confined to crosscutting quartz-carbonate
veins with euhedral to subhedral grains of vein carbonate, which are up to 0.1–0.3 mm
in diameter. Quartz grains are anhedral and about 0.1 mm in diameter. Chalcopyrite is
the dominant Cu mineral together with bornite; the minerals are intergrown and contain
abundant inclusions of pyrite and sphalerite (Figure 2B).

The Ulveryggen arkosic metasandstone contains fragments of quartz and feldspar up
to 0.2 mm in size. The ore minerals are disseminated and they have grown interstitially
between fragments of quartz and feldspar together with muscovite. The main ore minerals
are bornite and chalcopyrite (Figure 2C), with minor amounts of pyrite and chalcopyrite.

4.1.2. Røros

Since the Røros samples were prepared from pieces of massive ore, only ore miner-
als were observed under the microscope. The main ore minerals are pyrrhotite, pyrite,
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chalcopyrite and sphalerite, which show various intergrowth textures. Chalcopyrite,
which is the most abundant mineral, occurs as individual grains that are several cen-
timetres in diameter. Pyrite and pyrrhotite crystals also show large grain-sizes (several
centimetres in diameter), while sphalerite forms small inclusions of less than 0.1 mm in
diameter (Figure 2D).

4.2. Leaching Tests

Experimental conditions #1 (Marine sediments, TOC = 0.82 wt.%; carbonate buffered;
infiltrated with seawater (Figure 3); Ehsed = 239.7 mV, pHsed = 7.64, where Ehsed and pHsed
are values of redox potential and pH for pore water in sediments measured after initial stabi-
lization of conditions, i.e. 60 h after the experiment started) did not affect stability of mineral
assemblages from the Nussir and Ulveryggen deposits (Figures 4A and 5A). However, for the
sample from the Røros VMS deposit, small grains of sphalerite were weathered while some
pyrite grains remained well-preserved (Figure 6A; Supplementary Figures S3H and S4A,B).

Experimental conditions #2 (Marine sediments, TOC = 0.82 wt.%; carbonate buffered;
infiltrated with meteoric water; Ehsed = 247.9 mV, pHsed = 7.31; Figure 3) resulted in
partial oxidation of sulfides from the Nussir and Ulveryggen deposits (Figures 4 and 5B;
Supplementary Figures S1A–C and S2B). As for the experimental conditions #1, small
grains of sphalerite from the Røros VMS deposit were affected (Figure 6B;
Supplementary Figure S4D). Pyrite was partly oxidized along rims, while other parts
remained unaltered (Figure 6B; Supplementary Figure S4C–E). Pyrrhotite was weathered
significantly (Supplementary Figure S4D), and chalcocite was weathered while chalcopyrite
remained unaltered (Supplementary Figure S4C,E).

Experimental conditions #3 (Marine sediments, TOC = 0.82 wt.%; no added carbonates;
infiltrated with seawater; Ehsed = 211.1 mV, pHsed = 7.29; Figure 3) did not affect the samples
from the Nussir and Ulveryggen deposits (Figures 4C and 5C; Supplementary Figure S2D),
but sulfides from the Røros VMS deposit went through extensive oxidation reactions
(Figure 6C; Supplementary Figure S4F,G). Pyrrhotite was oxidized significantly, however
chalcopyrite crosscutting pyrrhotite remained well-preserved (Figure 6C). Pyrite was partly
oxidized along the rims. Covellite was observed along cracks in the pyrite.

Experimental conditions #4 (Marine sediments, TOC = 0.82 wt.%; no added carbonates;
infiltrated with meteoric water; Ehsed = 231.2 mV, pHsed = 7.63; Figure 3) partly affected
the Nussir and Ulveryggen samples: fine-grained fragments were significantly oxidized
(Figures 4D and 5D; Supplementary Figures S1D–F and S2E), while larger grains were partly
oxidized. Chalcopyrite obtained oxidized rims while bornite remained well-preserved
(Supplementary Figures S1D–F and S2E). Chalcocite from the Nussir deposit was partly
oxidized, while chalcocite in contact with pyrite from Ulveryggen remained well-preserved
(Supplementary Figure S2E). The Røros samples were weathered significantly (Figure 6D;
Supplementary Figure S4H). Notably, bornite was weathered to a higher degree than
chalcopyrite. The latter was found in veins within bornite and remained well-preserved
(Supplementary Figure S4H). Oxidized rims were formed around pyrite grains, whereas
pyrrhotite and sphalerite had undergone significant weathering (Figure 6F).

Experimental conditions #5 (quartz sand, TOC = 0 wt.%; carbonate buffered, infiltrated
with meteoric water; Ehsed = 222.6 mV, pHsed = 8.76; Figure 3) affected the sulfides from
all three studied deposits to different degrees. Chalcopyrite and bornite from Nussir were
extensively weathered (Figure 4E; Supplementary Figure S1G), whereas for the Ulveryggen
sample, chalcopyrite and chalcocite were partly weathered while most of the pyrite and
bornite remained well-preserved (Figure 5E; Supplementary Figures S2F–H and S3A). Sul-
fides from Røros were more oxidized in comparison to sulfides from Nussir and Ul-
veryggen. In contrast to pyrite and chalcopyrite, which remained well-preserved or
only partly oxidized, pyrrhotite and sphalerite were significantly weathered (Figure 6E;
Supplementary Figure S5A–C).
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Figure 4. Microphotographs of samples under the reflected light microscope from the Nussir test
runs after 90 days of the weathering experiment. The photographs are taken in crossed polars
and correspond to test setups from 1 to 8 in Table 1. (A) reductive condition #1: well-preserved
chalcopyrite (Cpy) grain (sample ENV-NS-1); (B) reductive condition #2: secondary minerals (SM)
on top of chalcopyrite (Cpy) (sample ENV-NS-2d); (C) reductive condition #3: well-preserved
chalcopyrite, secondary minerals are possibly forming in the cavities in the grain (Sample ENV-
NS-3); (D) reductive condition #4: secondary minerals formed on the surface of chalcopyrite (Cpy,
sample ENV-NS-4); (E) oxidative condition: secondary minerals on the surface of Cpy (ENV-NS-5);
(F) oxidative condition #6: Cpy grain is partly oxidized (ENV-NS-6); (G) oxidative condition #7: well-
preserved assemblage of Cpy and bornite (Bn) (ENV-NS-7); (H) oxidative condition #8: intensively
oxidized chalcopyrite grain (#ENV-NS-8).

Experimental conditions #6 (quartz sand, TOC = 0 wt.%; no added carbonates; infil-
trated with meteoric water; Ehsed = 245.7 mV, pHsed = 7.54; Figure 3) resulted in exten-
sive oxidation of the sulfides from the Nussir and Ulveryggen deposits. Chalcopyrite,
bornite and chalcocite obtained a weathered rim around the grains (Figures 4F and 5F;
Supplementary Figures S1H and S3B,C). Some grains of chalcopyrite were entirely covered
with a thin film of weathering products (Figure 4F). Pyrite from Ulveryggen remained well-
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preserved, but might have accelerated the oxidation of bornite (Supplementary Figure S3C).
Pyrrhotite and sphalerite from the Røros deposit were significantly weathered, whereas
pyrite remained relatively well-preserved with insignificant formation of iron oxides
(Figure 6F; Supplementary Figure S5D). A weathered Cu-containing mineral was also
observed within the pyrite (Supplementary Figure S5D).

Figure 5. Microphotographs of Ulveryggen samples after 90 days of experiments. The photographs
are taken under a reflected light microscope, with crossed polarizers. Setup description is given in
Table 1, (A–H) microphotographs correspond to #1–8 conditions. (A) Intergrowth of chalcocite (Cct)
with bornite (Bn, ENV-Ulv-1); (B) well-preserved chalcopyrite (Cpy) with minor oxidation of fine
grains (ENV-Ulv-2); (C) well-preserved chalcopyrite grains (ENV-Ulv-3); (D) unaltered chalcopyrite
grains (ENV-Ulv-4); (E) partly oxidized chalcopyrite grain with secondary mineral and oxidation
cover on the surface; (F) oxidized Cu sulfide, likely chalcopyrite with secondary minerals formed on
the lateral parts; (G) well-preserved chalcopyrite grain; and (H) micro-assemblage of well-preserved
bornite (Bn) with chalcopyrite.
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Figure 6. Microphotographs of polished thin sections from the Røros deposit after the 90-day experi-
ment. The photographs (A–H) are taken under crossed poles, reflected light microscope and corre-
spond to test conditions #1–8 (Table 1). (A,B) well-preserved pyrite grains (Py) with partly oxidized
sphalerite (Sph) triangles (blue); (C) partly oxidized pyrite with secondary minerals formed on the rim
of Cu-sulfides; (D) oxidation of sulfide mineral assemblages: pyrite (Py), sphalerite (Sph), pyrrhotite
(Po), and secondary minerals likely formed on Cu-sulfides; (E) Intensive oxidation and the forma-
tion of secondary minerals (Cu-ox) of chalcopyrite (Cpy); (F) relatively well-preserved pyrite and
intensely oxidized sphalerite, with minor amount of iron oxides (Fe-ox); (G,H) micro-assemblages of
well-preserved sphalerite (Sph), chalcopyrite (Cpy), pyrite (Py), and pyrrhotite (Po).

Experimental conditions #7 (quartz sand, TOC ≈ 10 wt.%, carbonate buffered,
infiltrated with meteoric water; initial Ehsed = 191.5 mV, pHsed = 7.86; Figure 3) did
not affect the Nussir and Ulveryggen sulfides. The minerals remained well-preserved
(Figure 4G and Figure 5G; Supplementary Figure S3D,E). The Røros ore minerals also
remained almost unaffected, however some pyrite grains were slightly tarnished with
bright blue secondary covellite and brownish iron hydroxides (Figure 6G;
Supplementary Figure S5E,F).
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Experimental conditions #8 (quartz sand, TOC ≈ 10 wt.%, no added carbonates,
infiltrated with meteoric water; Ehsed = 286.1 mV, pHsed = 5.43; Figure 3) resulted in
well-preserved sulfides from the Ulveryggen and Røros deposits (Figures 5H and 6H;
Supplementary Figures S3F,G and S5G). Chalcopyrite from Nussir was observed both as
relatively well-preserved grains (Figure 4H) and significantly weathered grains
(Supplementary Figure S2B).

4.3. Raman Spectroscopy

Raman spectra (Figure 7) obtained from chalcopyrite and pyrite from the Nussir,
Ulveryggen, and Røros deposits suggest formation of new peaks 450 and 500 cm−1 after
exposing samples from the Nussir and Ulveryggen to experimental conditions #2 and #5,
respectively (Figure 7A–D).

Figure 7. Raman spectrometry of chalcopyrite (Cpy) and pyrite (Py) from Nussir, Ulveryggen and
Røros after 90-days of testing in selected conditions. Sample numbers correspond to condition
numbers and can be found in Table 1. Cps—counts per second. A–E: right images are micropho-
tographs of samples under reflected light microscope; left diagrams relate to Raman spot analyses.
A,B—chalcopyrite (Cpy) from the Nussir deposit (sample Env-NS-2, experimental condition #2);
C,D—chalcopyrite (Cpy) from the Ulveryggen deposit (sample Env-Ulv-5, experimental condition
#5); E—pyrite (Py) and F—chalcopyrite (Cpy) from the Røros deposit (sample Env-RS-1, experimental
condition #1).
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4.4. Mineral Chemistry

In addition, to determine the concentration of potentially toxic elements including Cu,
Zn, Ni, Hg, Cd, and As (e.g., [64]), the bulk chemical compositions of hand-picked Nussir,
Røros chalcopyrite as well as Ulveryggen bornite were analyzed (Table 2). The Nussir and
Ulveryggen results are taken from [53].

Table 2. Lithogeochemistry of hand-picked chalcopyrite from the Nussir deposit (NS-35-ccp), bornite
from the Ulveryggen deposit (Ulv-2-bn) and chalcopyrite Røros Mine (RSL-ccp).

Element, ppm LD 1 NS-35-ccp 2 Ulv-2-bn 3 RSL-ccp

As 5 LLD LLD 226.1
Ba 3 12 527 18
Bi 0.1 0.3 0.1 9.9
Cd 0.1 LLD LLD 30
Co 1 85 2 535.9
Cu 10 >10,000 >10,000 >10,000
Hg 0.01 LLD LLD 4.59
Mo 2 LLD 5 6.5
Ni 0.1 100 LLD 7.8
Pb 5 LLD LLD 196.1
Rb 1 LLD 24 2.5
Sb 0.2 LLD LLD 1.8
Sn 1 LLD LLD 8
Tl 0.05 3.69 0.96 2
V 5 5 27 LLD
W 0.5 0.6 LLD 0.7
Zn 30 310 LLD 2942

1 NS—Nussir, 2 Ulv—Ulveryggen, 3 RSL—Røros; Bn—bornite, ccp—chalcopyrite, LD—limit of detection, LLD—
lower than limit of detection, ND—no data.

4.4.1. Nussir and Ulveryggen

The Nussir chalcopyrite contains 100 ppm of Ni, 85 ppm of Co and 310 ppm of Zn.
The content of Bi is 0.3 ppm, while As, Mo, Cd, Sb, Pb, and Hg contents are minor or below
the detection limit. The Nussir chalcopyrite also contains Ba (12 ppm), most likely in the
form of nearly insoluble inclusions of barite.

Ulveryggen bornite contains 2 ppm of Co and 5 ppm of Mo. Nickel, Zn, As, Sn, Sb,
Cd, Pb, and Hg contents are minor or below the detection limit, while the Rb content is
24 ppm. The content of Ba in the Ulveryggen bornite is 527 ppm.

4.4.2. Røros

Chalcopyrite was picked from the crushed Røros sample. The Co content is 535.9 ppm.
The chalcopyrite also contains: Ni 7.8 ppm and Zn 2942 ppm. As content is 226.1 ppm, and
Sn and Sb contents are 8 and 1.8 ppm respectively. Chalcopyrite contains 30 ppm of Cd
and 18 ppm of Ba. The Bi content is 9.9 ppm and Hg content is 4.59 ppm.

5. Discussion

The Cu mineralization found in the Nussir and Ulveryggen sediment-hosted Cu
deposits is characterized by predomination of chalcopyrite, bornite and chalcocite. Mine
tailings from these Cu-sulfide deposits are associated with a high risk for the generation of
acid mine drainage (AMD) because of the high Fe2+/Fe3+ and S2−/SO4

2− ratios in their
mineral assemblages. Furthermore, the Ulveryggen deposit has a low carbonate content
that additionally increases the risk. In contrast, a low content of potentially toxic elements
such as As, Cd, Hg, and Zn in both, reduces their environmental threat [53].

The Røros Cu-Zn VMS deposit, similar to other VMS deposits worldwide [65,66], is
characterized by a polymetallic composition (Table 2). The main ore minerals are sulfides,
including chalcopyrite, bornite, pyrite, and pyrrhotite. High Fe2+ and S2− contents together
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with an absence of carbonates from its mineral assemblages point to a high risk for the
generation of AMD in this deposit (e.g., [23,27,46,67,68]). In addition, the enrichment in
a wide spectrum of potentially toxic metals and metalloids (e.g., As, Bi, Cd, In, and Zn)
magnifies the environmental risk associated with mining activities and/or processes of
natural weathering in this type of ore deposits (e.g., Rio Tinto VMS deposits, the Iberian
Pyrite Belt in Spain [26,28,69–71] and the Britannia Creek VMS deposit, Canada [48]).

Leaching tests are recognized as powerful tools to predict the behavior of sulfides in
different conditions (e.g., [20,32,37,39,40]). Such tests play an important role in the initial
phases of mining planning, while deciding the potential placement of tailings for future
storage. The tests are usually performed in batch reactors specially equipped with sensors
controlling temperature, pH, and the amount of dissolved oxygen (e.g., [39,47,72]). Other-
wise, the tests can be performed in leaching columns (e.g., [32,73]) or in static conditions
(e.g., [46,74]) for periods of several days to several years. The leaching experiments in this
study were designed to test the stability of ore mineral parageneses from three different
Cu deposits under diverse physicochemical conditions (Figure 3, Table 1), and predict the
behavior of ore-bearing mineral assemblages disposed in on-land and submarine condi-
tions. As expected, the high redox potential was the main driving factor in destabilization
of sulfides (e.g., [75]):

4 FeS2 + 15 O2 + 14 H2O↔ 4 Fe(OH)3 + 16 H+ + 8 SO4
2− (1)

4 FeS + 10 O2 + 9 H2O↔ 4 Fe(OH)3 + 8 H+ + 4 SO4
2− (2)

4 CuFeS2 + 15 O2 + 14 H2O↔ 4 Cu2+ + 4 Fe(OH)3 + 16 H+ + 8 SO4
2− (3)

The organic matter content of the natural marine sediments that were used (0.82 wt.%)
was sufficient to prevent oxidation of the sulfides in experimental conditions in which
the sulfide parageneses were exposed to seawater. In the setups with meteoric water,
a different scenario was observed. A lower solubility of oxygen in seawater (4.6 mg/L at
50 ◦C) compared to meteoric water (5.6 mg/L at 50 ◦C) was probably one of the controlling
factors [76]. When sediments were doped with an additional 10 wt.% of organic matter, the
differences between seawater and meteoric water influence were not recorded.

The carbonate buffered conditions were mostly less reactive due to a slightly alkaline
pH value of the infiltrating aqueous solutions. However, the samples from the Røros VMS
deposit revealed that sphalerite can enter galvanic reactions and be extensively dissolved
even in alkaline or near-neutral conditions. The prerequisite is that sphalerite (−0.24 V; [77])
occurs in direct contact with sulfides with greater rest potentials like pyrite (0.63 V; [78]) or
chalcopyrite (0.54 V; [79]). In interactions with oxygen-rich solutions, sphalerite will act as
an anode:

ZnS↔ Zn2+ + S0 + 2e− (4)

and prevent oxidation of pyrite, and Cu-sulfides reacting with oxygen adsorbed on
their surface:

1
2

O2 (aq) + 2H+ + 2e− ↔ H2O (5)

This reaction will not affect the pH of the aquifer, but it will promote leaching of Zn.
The galvanic reaction may represent a particularly large environmental issue in min-

eral deposits in which pyrrhotite (−0.24 V; [77]) is intergrown or occurs in direct contact
with Cu-sulfides and/or pyrite:

FeS↔ Fe2+ + S0 + 2e− (6a)

Fe2+ + 3H2O↔ Fe(OH)3 + 3H+ + e− (6b)

The anode reaction will result in dissolution of pyrrhotite, oxidation of ferrous to ferric
ions, and consequently in acidification of the system.
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In the experimental setups buffered with carbonates, the Cu sulfides showed
an increased reactivity (Figures 4B,E, 5B,E and 6E) whereas pyrite did not show significant
changes under these conditions (Figure 6B). Carbonates are often used for prevention of
acid mine drainage (e.g., [80]), but the results of this study show that in near-neutral to
slightly alkaline conditions Cu can be mobilized from sulfides, most likely in the form
of CuCO3 (aq) [53,81]. This reaction is more intensive in solutions with a higher redox
potential (Figures 4E, 5E and 6E).

In addition, gangue mineralogy might also play a role in the rate and degree of
oxidation. The Nussir mineralogy is hosted by dolomitic marble, while Ulveryggen Cu
sulfides are hosted by arkosic sandstone, which retards the oxidation of sulfides [53].
Røros sulfides, studied here, were sampled from a massive ore with an absence of gangue
minerals. Therefore, galvanic interaction was favoured to higher degree of oxidation and
was not prevented or retarded by gangue mineralogy. Weathering in mine tailings will be
accelerated due to higher surface area, however this is also true for gangue mineralogy
which in the case of Nussir and Ulveryggen might play a buffering role. On the other hand
Røros mineralization being hosted by massive mafic volcanic rocks, which are extremely
soluble, will most probably not retard the oxidation reaction or buffer it to limited degree.

Raman spectroscopy confirmed the slight distortion of crystal lattices of pyrite and
chalcopyrite (Figure 7), however, the signal was low. Optically, even when the blue tinge
was observed in the Nussir and Ulveryggen samples, Raman analyses did not record
any changes in crystal structure of sulfides from these two deposits. This is attributed to
oxidation occurring in a thin layer of secondary minerals, which tends to be amorphous
and is characterized by the absence of a detectable lattice. In addition, the signal from
primary minerals is significantly higher.

6. Conclusions

The mineral assemblages from all three studied deposits point to a high risk for
generation of acid mine drainage due their high Fe2+/Fe3+ and S2−/SO4

2− ratios. However,
different ore-forming conditions of sediment hosted Cu deposits (Nussir and Ulveryggen)
from conditions related to the formation of VMS deposits (Røros) resulted in contrasting
behavior of the trace elements. As a consequence, the Nussir and Ulveryggen deposits
are depleted in most potentially toxic elements, such as As, Cd, Hg, and Zn, whereas the
Røros VMS mineralization is enriched in a wide spectrum of potentially toxic metals and
metalloids, including As, Bi, Cd, In, and Zn.

The leaching experiments revealed the redox potential as the main factor that controls
the stabilities of Cu-sulfides for both on-land as well as submarine conditions. Galvanic
reactions may contribute to the destabilization of minerals with low rest potentials, like
sphalerite and pyrrhotite, even under near-neutral or slightly alkaline conditions. The
destabilization of pyrrhotite can have particularly negative environmental consequences
due to the release of ferrous ions to an aquifer and acidification of the system as a result of
oxidation of ferrous to ferric ions.

Although carbonates are often used for prevention of acid mine drainage, the presence
of carbonates under near-neutral to slightly alkaline conditions may increase the reactivity
of Cu sulfides and mobilize Cu, most likely in the form of CuCO3 (aq).

More complex ore minerals assemblages lead to deeper weathering in given conditions.
Thus, Røros chalcopyrite were notably more altered than chalcopyrite from the Ulveryggen
and Nussir deposits.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/min11060627/s1, Figure S1: Microphotographs demonstrating the Nussir sulfides reac-
tion after 90-day tests; Figure S2: Microphotographs taken under a reflected light microscope;
Figure S3: Microphotographs taken under reflected light; Figure S4: Microphotographs of Røros
samples under reflected light; Figure S5: Microphotographs of Røros samples under the reflected
light microscope after 90-days of experimental tests; Table S1: Total organic carbon (TOC) of gravity
core HH-12-002-MF-GC obtained from Repparfjord.
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