
minerals

Article

Empirical Application of Generalized Rayleigh Distribution for
Mineral Resource Estimation of Seabed Polymetallic Nodules

Gordon Yu * and John Parianos

����������
�������

Citation: Yu, G.; Parianos, J.

Empirical Application of Generalized

Rayleigh Distribution for Mineral

Resource Estimation of Seabed

Polymetallic Nodules. Minerals 2021,

11, 449. https://doi.org/10.3390/

min11050449

Academic Editors: Pedro Madureira

and Tomasz Abramowski

Received: 16 March 2021

Accepted: 21 April 2021

Published: 23 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Nautilus Minerals Pacific Pty Ltd., East Brisbane, Brisbane 4169, Australia; johnparianos@gmail.com
* Correspondence: gordonyu2000@gmail.com

Abstract: An efficient empirical statistical method is developed to improve the process of mineral
resource estimation of seabed polymetallic nodules and is applied to analyze the abundance of
seabed polymetallic nodules in the Clarion Clipperton Zone (CCZ). The newly proposed method
is based on three hypotheses as the foundation for a model of “idealized nodules”, which was
validated by analyzing nodule samples collected from the seabed within the Tonga Offshore Mining
Limited (TOML) exploration contract. Once validated, the “idealized nodule” model was used
to deduce a set of empirical formulae for predicting the nodule resources, in terms of percentage
coverage and abundance. The formulae were then applied to analyzing a total of 188 sets of nodule
samples collected across the TOML areas, comprising box-core samples and towed camera images
as well as other detailed box-core sample measurements from the literature. Numerical results for
nodule abundance and coverage predictions were compared with field measurements, and unbiased
agreement has been reached. The new method has the potential to achieve more accurate mineral
resource estimation with reduced sample numbers and sizes. They may also have application in
improving the efficiency of design and configuration of mining equipment.

Keywords: polymetallic nodules; mineral resource estimation; statistical analysis; Generalized
Rayleigh Distribution; Clarion Clipperton Zone

1. Introduction

Polymetallic nodules are mineral particles found in many of the world’s oceans [1].
A major deposit lies within the Clarion Clipperton Zone (CCZ) of the tropical North
Pacific [2]. Nodules grow via precipitation in an organized manner in and on clay-ooze at
the seabed [2] and they are often found with others of similar size and form [3–5]. Nodule
“abundance” is the kilograms (usually wet) of nodules per square metre of seabed and is
used to estimate tonnage of nodules in a mineral resource estimation (as the surrounding
clay-ooze should be able to be disregarded at the first step of mining [4,6–10]). Interest in
the deposit, from the perspectives of development, marine environment and regulation,
has increased over the last 10 years [5,11].

The use of nodule long (or major) axis in predicting individual nodule weights has
been long understood [12–15], even if application via seabed photographs is restricted
to areas where the nodules are largely exposed in the host clay-ooze [4,16]. Ultimately,
box-core samples are seen to be the most reliable source of abundance data [4], but their
relatively high cost makes the use of seabed photographs appealing to workers trying to
improve the confidence in abundance estimation [17]. Efforts to use percentage coverage
to predict nodule abundance have so far not been effective [18,19].

The distribution of nodule long-axis lengths has been recognised to be often positively
skewed (e.g., [4,15]), but such distributions are not known to have been used in the mineral
resource estimation process.

In Section 2, three hypotheses are proposed as the basis for an idealized model of
seabed polymetallic nodules. The hypotheses made for the “idealized nodule” model are
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based on analyses of nodule samples collected from the seabed at CCZ. One of the key
hypotheses is based on numerical evidence that long axes of the seabed nodules follow the
Generalized Rayleigh Distribution (GRD).

Section 3 presents the mathematical characteristics of the GRD pertaining to the
analysis of nodules samples. The traditional statistical methods for estimating the pa-
rameters of the sample distribution, and for performing the Goodness-of-fit test for GRD
are discussed. While they are found useful for analysing nodule samples, the traditional
numerical procedure is too complex for practical applications.

In Section 4, based on the “idealized nodule” model discussed in Section 2, a simplified
practical approach is developed to replace the complex numerical methods in Section 3.
As a result, empirical formulae are derived to directly predict the parentage coverage and
abundance of seabed nodules.

Section 5 shows the numerical results of testing the three hypotheses as the basis for
“idealized nodule” model. Strong numerical evidence is found, providing validation to
hypotheses and consequently the “idealized nodule” model.

In Section 6, 188 samples of long axes of seabed polymetallic nodules from the CCZ
are analysed using the empirical method developed in Section 4. The resource estimations
in terms of percentage coverage and abundance are compared with the field measurements.

2. Three Hypotheses for an Idealized Model of Seabed Polymetallic Nodules

Polymetallic nodules from the CCZ are found in a wide range of forms [4], but within
parts of the central and eastern CCZ covered by an exploration contract held by Tonga
Offshore Mining Limited (TOML) they often form irregular slightly prolate spheroid-like
forms ([4]; Figure 1). Growth around the horizontal axes (X and Y) is believed to be a
function of horizontal space and mineral supply, and growth along the vertical axis is also a
function of permissive layer of chemical conditions term the geochemically active layer [4].
Nodules have a very consistent density [4] and a relationship between the major horizontal
axis and nodule weight (i.e., volume) has been long recognized [4,12,13].
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Figure 1. Example towed seabed photo (a) and box-core sample (b). Mounds of clay-ooze without nodules in the seabed
photo are caused by bioturbation.

Based on the above observation, to allow mathematical modelling of seabed polymetal-
lic nodules, the following three somewhat severe fundamental hypotheses are constructed:

1. Each nodules piece is of ellipsoidal shape (e.g., in Figure 2a,b), which is defined by its
three axes Xi, Yi and Zi, where i = 1, 2, 3 . . . N, with N being the number of nodules.
Here Xi is the long or major axis, which is usually in the horizontal plane while Yi
and Zi are the two typically shorter minor axes in the horizontal and vertical planes.
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2. Within a certain boundary (domain) on the seabed, the ellipsoidal nodules are similar
in shape, i.e., the ratio between two minor axes and the major axis, ε1 = Yi

Xi
and

ε2 = Zi
Xi

are constant.
3. Within a certain boundary (domain) on the seabed, the long axis of nodule Xi follows

a Generalized Rayleigh Distribution (GRD), which is defined by a pair of parameters
α and β (See Section 3).
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The above idealization is supported by analysis of nodule data and they were found
accurate to certain degree. Specifically, the hypothesis 1 and 2 above will be justified
using regression analysis of nodule dimensions and weights of seabed nodules samples in
Section 5.1, while the hypothesis 3 will be validated by Anderson-Darling “Goodness-of-
Fit” tests in Section 5.2 using nodule samples collected from TOML areas.

3. Generalized Rayleigh Distribution (GRD) and the Traditional Method

The Rayleigh distribution has been widely used to model phenomena in various
technical fields. For instance, in the field of oceanography, Longuet-Higgins [20] showed
the heights of narrow-banded random ocean waves follows the Rayleigh distribution.
Generalized Rayleigh Distributions (GRD), a family of two-parameter variations, have also
been proposed although their practical application is limited. For a random variable X
following the GRD, its probability density function (PDF) f (x) is in the form:

f (x) = 2αβ2x e−(βx)2[
1− e−(βx)2]α−1

, x > 0, (1)

where α > 0 and β > 0 are shape and scale parameters, respectively.
The cumulative distribution function (CDF) F(x) is given by:

F(x) =
[
1− e−(βx)2]α

, x > 0. (2)

Figure 3 shows the PDF of Generalized Rayleigh Distribution for various values of
parameters α and β. For a typical statistical analysis of seabed polymetallic nodules, the
parameter range is α ≥ 1 .
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3.1. Mean and Standard Deviation of the Generalized Rayleigh Distribution (GRD)

As derived in Appendix A (Equations (A9) and (A15)), the mean µ and the standard
deviation σ of the Generalized Rayleigh Distribution can be written as:{

µ = α
β F1(α)

σ = µ
√

G(α)
(3)

where: 
F1(α) =

∫ ∞
0
√

z e−z[1− e−z]
α−1dz

F2(α) =
∫ ∞

0 z e−z[1− e−z]
α−1dz

G(α) =
F2(α)

α[F1(α)]
2 − 1

(4)

Formally, Equation (3) can be used to estimate α and β when µ and σ are known.
However, due to the complexity of functions F1(α) and F2(α) in Equation (4), the solution
process is rather tedious. Due to the complexity in evaluating F1(α), F2(α), an empirical
method is developed below in Section 4 to simplify the solution procedure for practical
applications.

3.2. Test of Goodness-of-Fit of Generalized Rayleigh Distribution
3.2.1. Parameter Estimation by Maximum Likelihood Estimation (MLE)

For a random sample X1, X2, . . . , Xn of size n, following the Generalized Rayleigh
Distribution (GRD), to determine the two parameters α and β, defining the GRD, the
Maximum Likelihood Estimation (MLE), which maximizes the log likelihood function,
gives the following a pair of equations (Abd-Elfattah [21]):

∑n
i=1 x2

i e−β2x2
i /
(

1− e−β2x2
i

)
∑n

i=1 ln
(

1− e−β2x2
i

) +
∑n

i=1 x2
i /
(

1− e−β2x2
i

)
n

=
1
β2 (5)

α =
−n

∑n
i=1 ln

[
1− e−β2x2

i

] (6)

In a typical solution process for α and β, Equation (5) is first solved iteratively by the
Newton-Raphson Method to yield β, and Equation (6) is then used to calculate α. It is
obvious that the solution process for Equation (6) is quite tedious. An empirical alternative
is, therefore, devised in Section 4 below to simplify the process for practical application.
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3.2.2. The Anderson–Darling Test Statistics

Once the parameters α and β are estimated as above, it is important to test whether
they will yield a Generalized Rayleigh Distribution which gives a “good-fit” for the sample.
For computational purpose, the Anderson–Darling (AD) test statistics A2

n and V2
n can be

written as: {
A2

n = −n− 1
n ∑n

i=1(2i− 1){ln[zi + ln(1− zn+1−i]}
V2

n = n
2 − 2 ∑n

i=1 zi −∑n
i=1

[
2− 2i−1

n

]
ln(1− zi)

(7)

Here zi = F(xi), where F(xi) is the empirical Probability Density Function (PDF),
calculated using Equation (2) above, and arranged into ascending order.

3.2.3. The Test Criteria for Hypothesis

The value of A2
n and V2

n calculated above are then compared with their corresponding
critical values yΓ and uΓ, respectively. If:{

A2
n < yΓ

V2
n < uΓ

, (8)

the null hypothesis that sample data follow generalized Rayleigh distribution, is accepted
at the particular significance level Γ (or at 1− Γ confidence level). The critical values yΓ

and uΓ are simulated by the Monte Carlo Method, as discussed in Appendix B.

4. A New Empirical Method and Its Application to Nodule Resources

As shown above in Section 3, the traditional formulation can be used for (1) analysing
whether a numerical sample follows the Generalized Rayleigh Distribution in a statistically
significant way, and (2) for, if it does, estimating the parameters which defines a GRD
yielding the best fit to the sample. However, the complexity of the numerical process
described about in Section 3, makes it difficult to be applied in practice. In this Section,
we introduce a simplified numerical procedure for predicting the mineral resource of
seabed nodules.

4.1. Empirical Estimation of Parameters of the Generalized Rayleigh Distribution

As shown in Section 3.2.1, Equations (3) and (4) can formally be used to estimate α
and β when µ and σ are known. To simplify the calculation of F1(α) and F2(α), using the
technique of nonlinear regression, it can be shown, for the interested range of 1 ≤ α ≤ 9,
the following empirical formulae:

F1(α) =
1.26364

(α+0.51265)0.85786

F2(α) =
1.73929

(α+1.11917)0.73864

G(α) = 0.19249
(α−0.41497)0.67379

, for 1 ≤ α ≤ 9 (9)

are accurate to an accuracy of 10−4 (See Figure 4).
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Additionally, included in Figure 4 is F3(α), which will be discussed further in Section 4.2
below. The empirical form of F3(α) is:

F3(α) =
2.48274

(α + 1.71977)0.62304 (10)

Combining Equations (3) and (9), it is straightforward to derive:

{ α = 0.41497+0.08669( µ
σ )2.96828

β = 1.26364 α
(α+0.51265)0.85786 ( 1

µ )
(11)

For a random sample X1, X2, . . . , Xn of size n, the mean µ and standard deviation σ
are first estimated from the sample, and then the two formulae in Equation (11) can be
used to estimate parameters α and β.

It is evident from the first equation of Equation (11) that shape parameter α is de-
termined by the ratio of µ and σ (in effect the reciprocal of the coefficient of variation or
signal-to-noise-ratio). The scale parameter β, on the other hand, is related to the mean µ.
This is consistent with the observation in Figure 3. It can be posited that geologically these
two parameters may in turn relate to the stability and thickness of the geochemically active
layer in which the nodules grow, as described in [4].

4.2. Resource Estimation for Seabed Polymetallic Nodules Using Coverage and Abundance

To estimate the percentage coverage and abundance of seabed polymetallic nodules
using the measurements of their long axes, the first two hypothesis, as in Section 2 above,
are applied:

1. The nodule is assumed to be in an idealized ellipsoid shape.
2. Nodules within a certain boundary are assumed to be “similar” in shape, the ratios

between the lengths of the two minor axes and the major axis (denoted by ε1 and ε2)
are constant.
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4.2.1. Prediction of Nodule Coverage: Idealized Nodules

Assuming X1, X2, . . . , XN are samples of long axes of ellipsoid nodules, with N
being the number of nodules in the photo, the total area Sc being covered by nodules can be
calculated as the summation of the elliptical projections of nodules Si in the photo image:

Sc =
N

∑
i=1

Si =
N

∑
i=1

π

4
XiYi (12)

where Yi = ε1Xi being the shorter axes (ε1 ≤ 1). Equation (12) can then be re-arranged as:

Sc =
N

∑
i=1

π

4
XiYi =

π

4

N

∑
i=1

Xi(ε1Xi) =
πε1

4

N

∑
i=1

X2
i (13)

where X2 indicating the mean of X2
i . Using Equation (A8) in Appendix A and taking m = 2,

Equation (13) becomes:

Sc =
πε1

4
NX2 =

πε1

4
N

α

β2 F2(α) (14)

Assuming Sp is the total area of the photo and using Equation (9), the nodule percent-
age coverage CN becomes:

CN=
Sc

Sp
=
πε1N
4Sp

α

β2 F2(α)=
ε1N
Sp

1.36603 α

β2(α+1.11917)0.73864 (15)

4.2.2. Prediction Nodule Abundance I: Based on “Idealized Nodule” Model

Similarly, the total Weight Wa of nodules in the photo can be calculated as the summa-
tion of the weights of nodules Wi in the photo:

Wa =
N

∑
i=1

Wi =
N

∑
i=1

π

6
ρXiYiZi (16)

Assuming the two minor axes Yi and Zi are related to the major axis Xi by Yi =
ε1Xi and Zi = ε2Xi, Equation (16) can be re-arranged as:

Wa =
N

∑
i=1

π

6
ρXiYiZi =

π

6
ρ

N

∑
i=1

Xi(ε1Xi)(ε2Xi) =
πρε1ε2

6

N

∑
i=1

X3
i =

πρε1ε2

6
NX3 (17)

where X3 indicating the mean value of X3
i . Using Equation (A8) in Appendix A and taking

m = 3, Equation (17) becomes:

Wa =
πρε1ε2

6
NX3 =

πρε1ε2

6
N

α

β3 F3(α) (18)

Assuming Sp is the area of the photo and using Equation (10), the nodule abundance
AN becomes:

AN =
Wa

Sp
=
πρε1ε2N

6Sp

α

β3 F3(α)=
ρε1ε2N

Sp

1.29996 α

β3(α+1.71977)0.62304 (19)

4.2.3. Prediction Nodule Abundance II: With Empirical Long-Axis-Weight Relationship

According to [4,13] and Case 4 in Section 5.1 below, the weight of the nodule is
correlated to its long axis by:

log10Wi = klog10Xi + b (20)
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where k and b are constants and k is usually smaller and close to 3.0 (See discussion in
Section 5.1). Equation (20) can be re-arranged as:

Wi = 10bXk
i (21)

Then, the total weight Wa of nodules in the photo can be calculated by adding the
weights of nodules Wi in the photo:

Wa =
N

∑
i=1

Wi =
N

∑
i=1

10bXk
i = 10b

N

∑
i=1

Xk
i (22)

Using Equation (A8) in Appendix A and taking m = k, Equation (22) becomes:

Wa = 10b
n

∑
i=1

Xk
i = 10bNXk = 10bN

α

βk Fk(α) (23)

Fk(α), with 2 < k ≤ 3, can be approximated by interpolating F2(α) and F3(α):

Fk(α) = [F3(α)− F2(α)] k + [3F2(α)− 2F3(α)] (24)

Assuming Sp is the area of the photo and using Equation (24), the nodule abundance
AN becomes:

AN =
Wa

Sp
=

10bN
Sp

α

βk Fk(α)

=
10bN

Sp

α

βk {[F3(α)− F2(α)] k + [3F2(α)− 2F3(α)]}
(25)

4.2.4. Relation between Nodule Percentage Coverage and Abundance

The abundance AN are related to the percentage coverage CN by dividing Equation (19)
by Equation (15):

AN
CN

=
2
3

ρε2

β

F3(α)

F2(α)
(26)

Eliminating β using the first equation of Equation (3), Equation (26) above becomes:

AN
CN

=
2
3

ρε2µ
F3(α)

αF1(α)F2(α)
(27)

Using the technique of nonlinear regression, Equation (27) can be rewritten into
the form:

AN

CN
=ρε2µ

0.70834(α+0.41373)0.99261

α
(28)

For the range of 1 < α < 4, of interest to nodules, Equation (28) can be further
approximated, within 0.2% error, by:

AN

CN
≈ρε2µ [1−0.3(1− 1

α
)] (29)

The above formulation, based on the “Idealized Nodule” model, provides two alter-
native ways to estimate the nodule resources:

1. Equations (15) and (19) can be used independently to calculate the nodule percentage
coverage CN and the abundance AN , respectively.

2. If an estimation of the CN is already estimated (e.g., using digitization technique from
seabed imagery), then Equation (28) or Equation (29) can be used to compute AN .
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5. Test of Hypotheses of the Idealized Nodule Model

The three fundamental hypotheses that define the “idealized nodule” in Section 2 find
considerable support from numerical measurements of samples of seabed nodule.

5.1. Test of Hypothese 1 and 2: Linear Regression Analyses on Nodule Dimensions and Weights

In order to examine the validity of the first two hypotheses for the “idealized nodules”,
linear regression analyses were carried out on published data of nodule major and minor
axes, volume and weight from two sites (BGR East and GSR Central Regions) in CCZ [14].
Specifically, the following cases of linear regressions were carried between:

1. Case 1: Nodule long axis and its horizontal minor axis;
2. Case 2: Nodule long axis and its vertical minor axis;
3. Case 3: Nodule weight and its volume; and
4. Case 4: Nodule long axis and its weight.

The numerical results are shown in Figure 5 (for BGR East Region) and Figure 6 (for
GSR Central Region), with charts (a) to (d) representing Cases 1 to 4, respectively, and are
also summarized in Table 1. The linear regression was performed for Cases 1 to 3 with
intercept forced be zero to match the fact that the two variables vanish at the origin.
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Table 1. Results of Linear Regression for Nodule Dimensions and Weights.

Case Regression Parameters Regions Sample Size Estimated
Slope

Estimated
Intercept

Coefficient of
Determination

(R2)

1
Minor Axis Y

(Horizontal, mm)
Long Axis X (mm) BGR East 1376 0.7350

0 (Forced)
97.52%

GSR Central 259 0.7618 97.63%

2
Minor Axis Z
(Vertical, mm)

Long Axis X (mm) BGR East 1376 0.4762
0 (Forced)

95.09%

GSR Central 259 0.5389 96.83%

3 Weight (g) Volume (cm3)
BGR East 99 1.9269 0 (Forced) 90.93%

GSR Central No Data / / /

4
Weight

(Logarithmic, g)
Long Axis X

(Logarithmic, mm)
BGR East 1376 2.5067 −2.6245 87.68%

GSR Central 259 2.7210 −2.9439 93.13%

The results from Cases 1 and 2 show the two minor axes are correlated to the long
axis in statistically significant ways. With R2 > 95%, a great majority (>95%) of the data
points supports the hypothesis that, with a certain boundary, the ratios between the length
of the major axes X and the lengths of the horizontal and the vertical minor axes Y and Z
can be considered as constants. It is also noted the ratios vary between regions. The result
from the 3rd Case indicates a nodule density of 1.93 g/cm3 although it is only supported
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by a small sample. The Case 4 indicates the nodule weight is strongly correlated with the
2.5056th and 2.7210th power of the long axes, supported by about 88% and 93% of the
data points from the two regions, respectively. It is worthwhile to notice, for “idealized
nodules”, the nodule weight is proportional exactly to the cubic (the 3rd power) of its
long axis.

While the above results give broad, yet strong support to the first two hypotheses
for “idealized nodules” in Section 2 (these being on ellipsoid form and similarity of form
within a domain), we use additional analysis in Section 2 to validate the 3rd hypothesis
regarding a GRD distribution.

5.2. Test of Hypothses 3: Goodness-of-Fit Test of Generalized Rayleigh Distribution for Nodule
Long Axes

In this Section, the traditional Anderson-Darling “Goodness-of-Fit” tests, as outlined
in Section 3, are carried out to check the validity of the 3rd hypothesis for the “idealized
nodules”. It is to check whether the long axes of seabed nodules follow the Generalized
Rayleigh Distribution (GRD) in a statistically significant way. A total of 9 samples (5 towed
photos and 4 washed samples) of nodule long axes were analysed. While Table 2 shows
the key statistical properties of the 9 data sets, Table 3 presents the results of “Goodness-of-
Fit” tests.

Table 2. Summary of 9 Sets of Samples of Nodule Long Axes used for Goodness-of-Fit Test.

No Sample ID TOML Area Type Sample Size Mean Standard Deviation

1 2015_08_10_172643 B Towed Photo 336 3.091 2.512

2 2015_08_10_220159 B Towed Photo 153 7.767 2.387

3 2015_08_11_121357 B Towed Photo 403 5.978 1.732

4 2015_08_29_131349 C Towed Photo 440 5.425 1.995

5 2015_09_02_185307 C Towed Photo 113 3.827 1.270

6 CCZ15-B51 D Washed Sample 67 7.486 2.404

7 CCZ15-B102 F Washed Sample 278 4.318 1.705

8 CCZ15-B106 F Washed Sample 559 3.681 1.298

9 CCZ15-B110 F Washed Sample 135 6.910 2.602

Table 3. Results of Goodness-of-Fit Test for 9 Sets of Samples of Nodule Long Axes.

No Sample ID α β A2
n yΓ V2

n uΓ Conclusions

1 2015_08_10_172643 0.623 0.211 9.957 0.833 5.436 0.43 Not Generalized Rayleigh

2 2015_08_10_220159 2.714 0.162 0.66 0.784 0.257 0.414

Generalized Rayleigh Dist. at 5%
Level of Significance

3 2015_08_11_121357 3.598 0.226 0.69 0.770 0.226 0.410

4 2015_08_29_131349 1.965 0.210 0.541 0.777 0.305 0.408

5 2015_09_02_185307 2.690 0.327 0.159 0.789 0.076 0.419

6 CCZ15-B51 1.701 0.144 0.376 0.804 0.200 0.423

7 CCZ15-B102 1.396 0.243 1.435 0.790 0.605 0.412 Not Generalized Rayleigh

8 CCZ15-B106 2.410 0.321 0.738 0.778 0.314 0.410 Generalized Rayleigh Dist. at 5%
Level of Significance9 CCZ15-B110 1.890 0.171 0.361 0.791 0.192 0.418

For each set of data in Table 3, α and β are solved iteratively by Equations (5) and
(6), using the MLE method described in Section 3.2.1. The Anderson–Darling (AD) test
statistics A2

n and V2
n are then calculated by Equation (7) and they are in turn compared

with their critical values yΓ and uΓ, which are computed by the Monte Carlo Simulation in
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Appendix B. According to the test criteria in Equation (8), among the 9 sets of samples, 7
of them have passed the AD tests at 95% confidence level. It indicates a high probability
that the samples of long axes of polymetallic nodules do follow Generalized Rayleigh
Distribution although more AD tests need to be carried out for more samples to check
the generality. This conclusion may be conditional (e.g., by geological domain), and more
research is needed to identify the conditions.

Figures 7 and 8 show the visual comparison of distribution of nodule long axes
from raw data, computed by the traditional method, and by the new empirical method.
Probability density functions (PDF) and cumulative distribution functions (CDF) are plotted
in Figures 7 and 8, respectively, using Sample ID: 2015_08_29_131349 as an example. For
the raw data, a bin size of 0.25 was selected to create a histogram of the sample of long axis,
and the PDF and the CDF are then computed. The dark blue line shows the raw counts of
the original data set, with the light blue line showing the smoothed data using the Savitzky-
Golay filter [22] for the PDF in Figure 7. The green line shows PDF and CDF based on
parameters α and β calculated iteratively by MLE method described in Section 3.2.1 above.
The red line shows PDF and CDF based on parameters α and β calculated by the empirical
formulas in Equation (11). The empirical formulas, while much more straightforward
to use, do give reasonably accurate results for the statistical distributions in practical
applications.
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5.3. Comments on the Level of Support

Significantly, the Linear Regression Analysis in Section 5.1 and the Goodness-of-Fit
Test in Section 5.2 do support the three seemly drastic fundamental hypotheses made
in Section 2 for “idealized nodules”. However, more analyses are needed to check the
generality. Nonetheless, as the hypotheses have been validated, the empirical method
developed in Section 4 can be used for nodule resource prediction in the next Section.

Possible reasons for achieving the statistically significant validations, include that the
samples are located within a particular growth domain (the CCZ), and that the conditions
of growth within this domain are remarkably consistent as nodules grow in effect from
the ocean’s epibenthos, and slowly enough to “average out” short term (millennia scale)
variances in growth conditions.

6. Numerical Results of Nodule Resource Prediction Using the New Empirical Method

Once newly proposed “idealized nodules” model has been validated in the previous
Section, the empirical formulation as developed in Section 3, particularly the Equation (19)
(or Equation (25)) for nodule abundance AN are applied to a total of 188 samples of seabed
polymetallic nodule collected in 2015 as part of the TOML CCZ15 marine expedition.

6.1. Sample Datasets

The 188 samples of seabed polymetallic nodules used for the empirical analyses can
be grouped in three datasets:

1. Dataset 1: regional scale box-core sample dataset (physical weights). This involves
four TOML exploration contract areas (TOML B, C, D, F; Figure 9) spanning some
2000 km of longitude and 700 km of latitude. The dataset thus allows for examination
of a general relationship.

2. Dataset 2: local scale box-core sample dataset (physical weight) of two distinct facies
types but only within the TOML F area (~200 × 200 km). Type 1 nodules are smaller
and often densely packed, type 2 nodules are significantly larger and more variable
(cf. [5]). The dataset thus allows for differences in nodule types from an area where
the distinction between type is simple and straightforward.

3. Dataset 3: two local scale towed photo sample datasets (long-axis abundance estimate)
between the TOML B and C areas (~300 km apart). The dataset is limited in that
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actual nodule weights cannot be compared, but it allows for larger datasets from two
distinctly different areas to be compared.

Coverage was also measured for datasets 2 and 3 from seabed photographs (boxcore
mounted and towed, respectively) using Image J software. Dataset 1 was not able to be
measured due to a lack of images (the box-core camera had frequently malfunctioned).

A summary of the datasets used for analysis is shown in Table 4 and Figure 9.
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Table 4. Summary of 188 Sample Sets of Nodule Long Axes to be Analysed.

Data-
Set

TOML
Areas

Number of
Samples Comparative Data Type

Range of
Measured

Abundances

Range of Mean
Long Axes *

Range of
Coefficient of

Variation *

1 B, C, D, F 2, 3, 7, 3 Washed sample weights 3.2 to 25.7 kg/m2 2.2 to 7.6 cm 0.23 to 0.86

2 F 11 for Type 1
9 for Type 2 Washed sample weights 1.2 to 21.3

3.3 to 29.1
2.2 to 3.9
2.6 to 9.2

0.28 to 0.45
0.28 to 0.72

3 B
C

68
85

Long axis estimates on
individual nodule

images

0.03 to 31
0.01 to 18

1.6 to 7.8
1.5 to 6.1

0.24 to 0.96
0.25 to 0.83

* For datasets 1 and 2 long axes measured from grid photos of the nodules after collection, separation from the host clay-ooze and washing.
For dataset 3 long axes measured from photos of the seabed as detailed in [4].

6.2. Prediction of Abundance of Seabed Nodules

To make a thorough assessment of the accuracy of abundance prediction made by the
new empirical method, particular Equation 19 (or Equation (25)), Figures 10–12 show the
ratios between the abundance prediction and those from the actual box-cores measurements
(for datasets 1 and 2) or the available estimate from long-axis measurements (for dataset
3). In the Figures, ratios are plotted against the mean long axes of each sample. For each
dataset three charts are presented:

1. Chart (a) showing ratios based on abundance calculated directly by the empirical
formula Equation (19), which is strictly based on the three hypotheses for idealized
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nodule model in Section 2. The axis ratios ε1 and ε2 used in the formula are extracted
from the analyses of BGR East and GSR Central data (Table 1 in Section 5.1);

2. Chart (b) showing the ratios in Chart (a) corrected by a “linear adjustment”. Each
individual ratio in Chart (a) is factored/divided by the result of linear regression of
the ratios, and the corrected results are shown in Chart (b); and

3. Chart (c) showing ratios based on abundance calculated by the empirical formula
Equation (19), incorporating the long-axis-weight relationship observed by several
researchers (e.g., Felix [13]), which indicates the nodule weight is coorelated to the
2.7–2.8th power of its long-axis (noting for “idealized nodule”, it is the 3rd power).

Figure 10 shows the results for Dataset 1, which is collected across the TOML areas.
It is observed that empirical formula Equation (19), which is strictly based on the three
hypotheses for idealized nodule model in Section 2, gives a slight bias of over-predicting
the abundance for larger nodules. Unbiased prediction can be achieved once either the
“linear adjustment” or the long-axis-weight relationships are applied.

Figure 11 depicting Dataset 2 shows that nodule types can have an influence in the
prediction. While empirical formula Equation (19) results in a similar bias to that seen for
Dataset 1, facies specific “linear adjustment” results in unbiased estimates with slightly
higher levels of scatter. Use of empirical formula Equation (25) based on the coefficients
of [13] works better for Type 1 nodules than for Type 2, suggesting that different coefficients
may work better.

Figure 12 with Dataset 3 shows that the accuracy of prediction made by empirical
formula Equation (19) may vary for nodules between different areas. In effect the nodules
from TOML B1 appear to deviate more from the “idealized nodules” per Section 2 than
the nodules from TOML C1. This may be due to the fact that the TOML B1 nodules are
likely older and more often formed from multiple generations of growth (i.e., fragments of
nodules with younger concentric growth phases). This could predispose them to be more
equant in shape. Again, the linear adjustment addresses the size-bias seen in the direct
application of Equation (19). Application of Equation (25) gives broadly similarly agreeable
results in (c) as those with “linear correction” in (b).

The slight biases of over-estimation of abundance for larger nodules reveals a limi-
tation of the empirical formula Equation (19), which is directly based on the three funda-
mental hypotheses for the “idealized nodules”. While the first two hypothesis state that
the nodules are in ellipsoidal shape and they are “similar” in shape, in realty, it is obvious
that the nodule shapes are complex and for nodules of various sizes, the ratios between
the minor axes and the long one may vary with nodule size. However, this bias seems
much less severe while empirical formula Equation (25) is applied, which is based on an
empirical relationship between the nodule long axis and its weight (e.g., Felix [13]).
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Estimates of coverage using the new empirical method show mixed but encouraging
results when compared with field measurements from three areas (Figure 13). Dataset 2
from TOML F shows a systematic bias independent of nodule facies types. In contrast,
Dataset 3 from TOML B and C do not display any appreciable bias. This is likely related to
the degree of clay-ooze sediment cover between the areas (Figure 14).
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Figure 14. Seabed photos from TOML B, C and F. (a) TOML B, CCZ15-F02: 2015_08_17_032745 (b) F05: 2015_08_29_071000
(c) TOML F type 1 nodules CCZ15-B105 (d) TOML F type 2 nodules CCZ15- B99. Images in (a) and (b) are 2.4 m × 1.6 m in
area. Trigger weight in images (c) and (d) is 28 cm × 16 cm long.

7. Conclusions

It is concluded that:

1. There is statistically significant evidence that the forms of CCZ polymetallic nodules
resemble an “idealized nodule” model based on three hypotheses: (1) broadly ellip-
soidal shape, (2) similar forms between nodules in a given area and (3) the nodule
long axes follow a two-parameter Generalized Rayleigh Distribution (GRD). These
three hypotheses were tested using field measurements from available nodule sam-
ples collected from CCZ. Numerical evidence supports the three hypotheses, possibly
due to the relatively stable seabed environment and the long growth period of the
nodules removing short-term transient effects.

2. The distribution of nodules sizes and associated parameters can be estimated using
empirical formulae. Specifically, explicit empirical formulae have been derived for
direct calculation of GRD parameter α and β (Equation (11)), for percentage coverage
CN (Equation (15)), and for abundance AN (Equation (19) or Equation (25)). These
formulas are found to be sufficiently accurate for mineral resource estimation and are
much easier to use than the traditional analytical methods for GRD.

3. The direct application of the formula for AN does display a slight bias of over-
estimating the abundance for larger nodules. However, unbiased accurate prediction
of nodule abundance can be achieved by applying either a “linear adjustment” or a
long-axis-weight relationship.

4. For two of the TOML areas the new empirical method provides close agreement but
from the third area there is a consistent offset. This may be related to the degree of
clay-ooze sediment cover in that third area. Analyses of samples from other regions
will be needed to better understand the generality of the empirical model and its
derived formulae. Such analysis is needed in any event to calibrate the model in
other areas.
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5. The new empirical method with derived explicit formulae has shown the potential of
achieving more accurate mineral resource estimation with reduced sample numbers
and sizes. The new understanding of the nodule size distribution can likely also im-
prove the efficiency of design and configuration of mining equipment with limitations
regarding particle size.
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Appendix A. Functions F1(ααα), F2(ααα) and F3(ααα)

For a random sample X1, X2, . . . , XN of size N, following the Generalized Rayleigh
Distribution (GRD) with its probability density function (PDF) f (x) in the form of:

f (x) = 2αβ2x e−(βx)2[
1− e−(βx)2]α−1

, x > 0, (A1)

and its mean value X or µ can be expressed in the integral form below:

X = µ =
1
N

N

∑
i=1

Xi =
∫ ∞

0
x f (x)dx = 2αβ2

∫ ∞

0
x2 e−(βx)2[

1− e−(βx)2]α−1
dx (A2)

Similarly, the means of square and cubic X2 and X3 be written, respectively, as:

X2 =
1
N

N

∑
i=1

X2
i =

∫ ∞

0
x2 f (x)dx = 2αβ2

∫ ∞

0
x3 e−(βx)2[

1− e−(βx)2]α−1
dx (A3)

And:

X3 =
1
N

N

∑
i=1

X3
i =

∫ ∞

0
x3 f (x)dx = 2αβ2

∫ ∞

0
x4 e−(βx)2[

1− e−(βx)2]α−1
dx (A4)

Equations (A3) and (A4) can then be combined formally as below:

Xm =
1
N

N

∑
i=1

Xm
i =

∫ ∞

0
xm f (x)dx (A5)
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Assuming z = (βx)2 and dz = 2β2x dx, Equation (A5) becomes:

Xm = 2αβ2
∫ ∞

0
xm+1e−(βx)2[

1− e−(βx)2]α−1
dx

= α
∫ ∞

0

z
m
2

βm e−z[1− e−z]α−1dz =
α

βm

∫ ∞

0
z

m
2 e−z[1− e−z]α−1dz

(A6)

Further defining:

Fm(α) =
∫ ∞

0
z

m
2 e−z[1− e−z]α−1dz, where m = 1, 2, 3, (A7)

Equation (A6) can be written as:
Xm=

α

βm Fm(α) (A8)

From Equation (A8), when m = 1, the mean µ of the sample is:

µ=
α

β
F1(α) (A9)

The variance σ2 of the Generalized Rayleigh Distribution can be calculated as:

σ2 =
∫ ∞

0
(x− µ)2 f (x)dx =

∫ ∞

0
(x2 − 2µx + µ2) f (x)dx

=
∫ ∞

0
x2 f (x)dx− 2µ

∫ ∞

0
x f (x)dx + µ2

∫ ∞

0
f (x)dx

=
∫ ∞

0
x2 f (x)dx− 2µµ + µ2 =

∫ ∞

0
x2 f (x)dx− µ2

(A10)

or
σ2 + µ2 =

∫ ∞

0
x2 f (x)dx = X2 =

α

β2 F2(α) (A11)

Combining Equations (A9) and (A11) gives:

σ2 + µ2

µ2 =

α
β2 F2(α)

α2

β2 [F1(α)]
2 =

F2(α)

α[F1(α)]
2 (A12)

Defining:

G(α) =
F2(α)

α[F1(α)]
2 − 1 (A13)

Equation (A12) can be rewritten as:

σ2

µ2 = G(α) (A14)

Or:
σ=µ
√

G(α) (A15)

From Equation (A7), functions F1(α), F2(α) and F3(α) can be expressed as:

Fm(α) =
∫ ∞

0
z

m
2 e−z[1− e−z]α−1dz, where m = 1, 2, 3 (A16)



Minerals 2021, 11, 449 23 of 28

By using generalized Binomial Theorem, Equation (A16) gives:

Fm(α) =
∫ ∞

0
z

m
2 e−z

[
∞

∑
k=0

(
α− 1

k

)
1[(α−1)−k](−e−z)k

]
dz

=
∞

∑
k=0

(
α− 1

k

) ∫ ∞

0
z

m
2 e−z

[(
−e−z)k

]
dz

=
∞

∑
k=0

(
α− 1

k

)
(−1)k

∫ ∞

0
z

m
2 e−(k+1)zdz

(A17)

Assuming y = (k + 1)z, the integral in Equation (A16) becomes:

∫ ∞

0
z

m
2 e−(k+1)zdz =

∫ ∞

0

(
y

k + 1

)m
2

e−yd
(

y
k + 1

)
=

1

(k + 1)
m
2 +1

∫ ∞

0
y

m
2 e−ydy =

1

(k + 1)
m
2 +1

Γ
(m

2
+ 1
) (A18)

where Γ
(m

2 + 1
)

is the Gamma function. Inserting Equation (A18) into Equation (A17)
gives:

Fm(α) =
∞

∑
k=0

(
α− 1

k

)
(−1)k Γ

(m
2 + 1

)
(k + 1)

m
2 +1

= Γ
(m

2
+ 1
) ∞

∑
k=0

(α− 1)!
k!(α− 1− k) !

(−1)k

(k + 1)
m
2 +1

= Γ
(m

2
+ 1
) ∞

∑
k=0

(α− 1)(α− 2) . . . [(α− 1− k) + 1]
(k + 1) !

(−1)k

(k + 1)
m
2

= Γ
(m

2
+ 1
) ∞

∑
k=0

(−1)k (α− 1)(α− 2) . . . (α− k)

(k + 1) !(k + 1)
m
2

(A19)

Noting for Γ
(m

2 + 1
)

with m = 1, 2 and 3,

Γ

(
1
2
+ 1
)
= Γ

(
3
2

)
=

√
π

2
, Γ

(
2
2
+ 1
)
= Γ(2) = 1 and Γ

(
3
2
+ 1
)
= Γ

(
5
2

)
=

3
4
√

π (A20)

respectively, F1(α), F2(α) and F3(α) can then be expressed by the infinite series as:

F1(α) =

√
π

2

∞

∑
k=0

(−1)k (α− 1)(α− 2) . . . (α− k)
(k + 1) !

√
k + 1

=

√
π

2

[
1− (α− 1)√

2 ∗ 2!
+

(α− 1)(α− 2)√
3 ∗ 3!

− (α− 1)(α− 2)(α− 3)√
4 ∗ 4!

+ . . .
] (A21)

And:

F2(α) =
∞

∑
k=0

(−1)k (α− 1)(α− 2) . . . (α− k)
(k + 1) ! (k + 1)

=

[
1− (α− 1)

2 ∗ 2!
+

(α− 1)(α− 2)
3 ∗ 3!

− (α− 1)(α− 2)(α− 3)
4 ∗ 4!

+ . . .
] (A22)

And:

F3(α) =
3
4
√

π
∞

∑
k=0

(−1)k (α− 1)(α− 2) . . . (α− k)

(k + 1) ! (k + 1)
3
2

=
3
4
√

π

[
1− (α− 1)

2
√

2 ∗ 2!
+

(α− 1)(α− 2)
3
√

3 ∗ 3!
− (α− 1)(α− 2)(α− 3)

4
√

4 ∗ 4!
+ . . .

] (A23)
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The above infinite series are particularly useful for calculating F1(α), F2(α) and F3(α)
when α is an integer. In this case, (α + 1)-th terms onwards are all zero, and only the first α
terms need to be included in the calculation.

Appendix B. Computation of Critical Values for Goodness-of-Fit Test of Generalized
Rayleigh Distribution by Monte Carlo Simulations

The critical values yΓ and uΓ of the test statistics A2
n and V2

n can be computed as
their percentage points using Monte Carlo simulations. Given the parameters α and β and
sample size n, the numerical procedure consists of the following steps:

1. A set of random numbers of size n is generated in the interval (0, 1) as values of
cumulative distribution function (CDF). Equation (2) is used to back-calculate a
sample X1, X2, . . . , Xn of size n for given α and β.

2. For a sample X1, X2, . . . , Xn, Equations (5) and (6), based on MLE method, are
solved iteratively to estimate parameters α̂ and β̂.

3. Parameters α̂ and β̂ are used in Equation (2) to calculate zi = F(xi), with values in
ascending order.

4. Equation (7) is used to calculate test statistics A2
n and V2

n , using values of zi calculated
in step 3.

5. Steps 1. to 4. above are repeated to generate a sample for A2
n and V2

n .
6. The percentiles of A2

n and V2
n are calculated as critical values. The (1− Γ)th percentile

is taken as the critical value for the level of significance of Γ.

For a set of critical value for given parameters α and β and sample size n, 250,000 Monte
Carlo simulations are carried out to ensure the convergence to 2 digits. The simulated
results are presented in Table A1, Figure A1, and Figure A2 below. In Figures A1 and A2
results for both 200,000 and 250,000 simulations are shown, and the relative error is within
0.1%.

Table A1. Critical values yγ and uγ for various shape parameters α and sample sizes n.

Shape Parameter α 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Significance Level γ 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

Sample
Size n

100
yγ 0.66 0.79 1.10 0.65 0.78 1.08 0.64 0.77 1.07 0.64 0.76 1.06 0.64 0.76 1.05 0.64 0.76 1.05 0.64 0.76 1.05

uγ 0.34 0.41 0.58 0.34 0.41 0.57 0.33 0.41 0.57 0.33 0.40 0.57 0.33 0.40 0.57 0.33 0.41 0.57 0.34 0.41 0.57

200
yγ 0.66 0.79 1.11 0.65 0.78 1.08 0.65 0.77 1.07 0.64 0.77 1.05 0.64 0.76 1.05 0.64 0.76 1.06 0.64 0.76 1.05

uγ 0.34 0.41 0.58 0.34 0.41 0.58 0.34 0.41 0.57 0.34 0.41 0.57 0.34 0.40 0.57 0.34 0.41 0.57 0.34 0.41 0.57

300
yγ 0.66 0.79 1.10 0.65 0.78 1.08 0.65 0.77 1.08 0.64 0.77 1.06 0.64 0.76 1.05 0.64 0.76 1.05 0.64 0.76 1.06

uγ 0.34 0.41 0.58 0.34 0.41 0.58 0.34 0.41 0.57 0.34 0.41 0.57 0.34 0.41 0.57 0.34 0.41 0.57 0.34 0.41 0.57

400
yγ 0.66 0.80 1.11 0.65 0.78 1.08 0.65 0.77 1.07 0.64 0.77 1.06 0.64 0.76 1.06 0.64 0.76 1.06 0.64 0.76 1.05

uγ 0.34 0.41 0.59 0.34 0.41 0.58 0.34 0.41 0.58 0.34 0.41 0.57 0.34 0.41 0.57 0.34 0.41 0.57 0.34 0.41 0.57

500
yγ 0.66 0.80 1.11 0.65 0.78 1.09 0.64 0.77 1.07 0.64 0.77 1.06 0.64 0.77 1.06 0.64 0.76 1.06 0.64 0.76 1.05

uγ 0.34 0.41 0.59 0.34 0.41 0.58 0.34 0.41 0.57 0.34 0.41 0.57 0.34 0.41 0.57 0.34 0.41 0.57 0.34 0.41 0.57



Minerals 2021, 11, 449 25 of 28
Minerals 2021, 11, x FOR PEER REVIEW 25 of 28 
 

 

 

Figure A1. Critical values 𝐲𝛄 versus shape parameters 𝛂 and sample sizes 𝐧 with 200,000 and 

250,000 simulations. 

 

Figure A2. Critical values 𝐮𝛄 versus shape parameters 𝜶 and sample sizes 𝒏 with 200,000 and 

250,000 simulations. 

Figure A1. Critical values yγ versus shape parameters α and sample sizes n with 200,000 and 250,000
simulations.

Minerals 2021, 11, x FOR PEER REVIEW 25 of 28 
 

 

 

Figure A1. Critical values 𝐲𝛄 versus shape parameters 𝛂 and sample sizes 𝐧 with 200,000 and 

250,000 simulations. 

 

Figure A2. Critical values 𝐮𝛄 versus shape parameters 𝜶 and sample sizes 𝒏 with 200,000 and 

250,000 simulations. 
Figure A2. Critical values uγ versus shape parameters α and sample sizes n with 200,000 and 250,000
simulations.



Minerals 2021, 11, 449 26 of 28

Appendix C. Determination of Minimal Sample Size for Estimation of Statistical
Distribution Using Monte Carlo Simulations

It is of practical importance to estimate the minimal sample size necessary to achieve
desired accuracy of estimation. To test whether a sample size of 100 is sufficient to yield an
accurate estimation of statistical distribution, 500 sets of samples with size = 100 were ran-
domly selected from the whole sample with size = 440, and for each set of selected samples,
parameters α and β are computed empirically using Equation (11), and a corresponding
GRD is generated.

For a typical simulation, the mean values of α and β, calculated by averaging results
from 500 simulations, are within 4%, compared with values of α and β calculated based
on the whole sample (size = 440). The maximum errors for α and β between a small-
sample (size = 100) and the whole sample (size = 400) is about 10% and 5%, respectively.
Figures A3 and A4 show CDFs and PDFs from 10 simulations (randomly selected from a to-
tal of 500 simulations), compared with those calculated from the whole sample (size = 440).
The reasonably good agreement between the results from samples with size = 100 and
those from the whole sample (size = 440) indicates that a smaller sample size of 100 can
generally produce a good estimation of the statistical distribution.
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