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Abstract: Fe isotopes have been applied to the petrogenesis of ore deposits. However, the behavior of
iron isotopes in the mineralization of porphyry-skarn deposits is still poorly understood. In this study,
we report the Fe isotopes of ore mineral separations (magnetite, pyrite, chalcopyrite and pyrrhotite)
from two different skarn deposits, i.e., the Tonglvshan Cu-Fe skarn deposit developed in an oxidized
hydrothermal system and the Anqing Cu skarn deposit developed in a reduced hydrothermal
system. In both deposits, the Fe isotopes of calculated equilibrium fluids are lighter than those of the
intrusions responsible for the skarn and porphyry mineralization, corroborating the “light-Fe fluid”
hypothesis. Interestingly, chalcopyrite in the oxidized-Tonglvshan skarn deposit has lighter Fe than
chalcopyrite in the reduced-Anqing skarn deposit, which is best understood as the result of the prior
precipitation of magnetite (heavy Fe) from the ore fluid in the oxidized-Tonglvshan systems and the
prior precipitation of pyrrhotite (light Fe) from the ore fluid in the reduced-Anqing system. The δ56Fe
for pyrite shows an inverse correlation with δ56Fe of magnetite in the Tonglvshan. In both deposits,
the Fe isotope fractionation between chalcopyrite and pyrite is offset from the equilibrium line at
350 ◦C and lies between the FeS-chalcopyrite equilibrium line and pyrite-chalcopyrite equilibrium
line at 350 ◦C. These observations are consistent with the FeS pathway towards pyrite formation.
That is, Fe isotopes fractionation during pyrite formation depends on a path from the initial FeS-fluid
equilibrium towards the pyrite-fluid equilibrium due to the increasing extent of Fe isotopic exchange
with fluids. This finding, together with the data from other deposits, allows us to propose that the
pathway effect of pyrite formation in the Porphyry-skarn deposit mineralization is the dominant
mechanism that controls Fe isotope characteristics.

Keywords: porphyry-skarn deposits; Fe isotopes; isotopic fractionation; pathway effects; light-Fe
fluid; redox state

1. Introduction

Iron isotopes, as a possible tracer of geological processes, have attracted much atten-
tion in recent years [1]. Current studies have reported that there are significant variations
in Fe isotope ratios in varying rocks and solid earth geochemical reservoirs [2–5] as a
consequence of mantle sources [6–10], magma differentiation [11–15] and chemical and
thermal diffusion on microscopic scales [16,17].

Traditionally, light stable isotopes (e.g., H, O, S) have been used to study sources and
processes of mineralization [18–20], contributing to the understanding of the petrogenesis
of ore deposits, but cannot provide more direct information since these elements are not
ore-forming metals [21,22].
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Hence, Fe isotopes and other metal stable isotopes have been used to study the ore
genesis due to the advancement of analytical methods on stable isotopes of ore metals (e.g.,
Fe, Cu, Zr, Ni) [21–39]. However, two important problems remain concerning magmatic-
hydrothermal deposits (e.g., porphyry- and skarn-type deposits): (1) Fe isotope fractiona-
tion during fluid exsolution [23–25,32,33]; (2) Fe isotope behavior in fluid-mineral systems
(e.g., mineral-fluid fractionation and between mineral fractionation). Regarding question
(1), there are mainly two views. One is that the exsolved magmatic-hydrothermal fluid
has a light Fe isotopic composition [40,41] in the range of δ56Fe = −0.39‰ and −0.05‰.
The other [32] is that the redox state actually governs the Fe isotope composition of the
exsolved fluid. For example, oxidized magmas crystallize magmatic magnetite with heavy
Fe, resulting in a melt having lighter Fe and hence a lighter Fe magmatic-hydrothermal
fluid. On the other hand, reduced magmas crystallize ferrous minerals (e.g., pyroxenes
and ilmenite) with light Fe, leading to a melt having heavier Fe and hence a heavier
Fe magmatic-hydrothermal fluid. For question (2), theoretical calculations and related
experimental studies have provided equilibrium fractionation factors for minerals and
fluids [42–46]. However, for natural samples, it is not straightforward to determine whether
the co-existing minerals and fluid may have achieved Fe isotope equilibrium; hence ki-
netic Fe isotope fractionation during mineralization is thought to be important [44,47].
Alternatively, the pathway of pyrite formation may control pyrite-fluid Fe isotope composi-
tions [44,48–50], which in turn affects the Fe isotope composition of fluids and subsequent
minerals [31].

In this study, we compare two different skarn ore deposits, the “oxidized” Tonglvshan
skarn Cu-Fe-Au deposit and the “reduced” Anqing skarn Cu deposit, in the same met-
allogenic belt with the attempt to better understand the problem (1), which also helps
understand problem (2). We analyzed Fe isotope compositions of major ore minerals
magnetite, pyrite, chalcopyrite and pyrrhotite. The data support that the pathway effect
of pyrite formation is a common mechanism of Fe isotope fractionation that controls Fe
isotope compositions of pyrite, fluids and co-existing minerals in the mineralization of
skarn deposits.

2. Geology and Samples

The Middle-Lower Yangtze River (MLYR) metallogenic belt (Figure 1) is a famous
Cu-Fe-Au porphyry-skarn province in China, from east to west, consisting of Ningzhen,
Ningwu, Luzong, Tongling, Anqing-Guichi, Jiurui and Edong ore districts, all of which
are associated with late Mesozoic granitoid magmatism [51,52]. We collected 15 skarn ore
samples from the Tonglvshan skarn deposit, which lies in the Edong ore district, and the
Anqing skarn deposit from the Anqing-Guichi ore districts.
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method, shows evidence of two independent hydrothermal events (~136 Ma and 121 Ma). 
A more detailed study [55] suggested the ore-forming fluid to be of magmatic-hydrother-
mal origin. Detailed fluid inclusion work suggested the magnetite deposition temperature 
of 405–567 °C and quartz-sulfide mineralization temperature of 240–350 °C [55]. 

Magnetite, pyrite and chalcopyrite are the three main ore minerals in the Tonglvshan 
skarn deposit (see Table 1 for petrography), sharing a similar mineral assemblage to oxi-
dized porphyry-skarn deposits (Figure 3) [56]. The subhedral to euhedral magnetite crys-
tals are characterized by abundant porous pits (Figure 3a,b,d–f) caused by the dissolution–
reprecipitation process (DRP) [57–59]. Some authors [57] suggest that the DRP may be 
important in the formation of hydrothermal magnetite. The magnetite is mostly replaced 
and cut by sulfides, suggesting that the pyrite and chalcopyrite may form later than mag-
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→ pyrite/chalcopyrite. 

Figure 1. Geological map of the Middle-Lower Yangtze River Valley metallogenic belt in eastern
continental China (modified from Ref. [52]).



Minerals 2021, 11, 444 3 of 18

2.1. Tonglvshan Cu-Fe-Au Skarn Deposit

The Tonglvshan Cu-Fe-Au deposit is associated with an Yangxin quartz diorite stock
intruding the dolomitic limestones of the Lower Triassic Daye Formation, resulting in
skarn mineralization (Figure 2) [53]. Previous studies report that this deposit contains
economic metals of 1.08 Mt Cu (1.78% Cu), 60 Mt Fe (41% Fe), 70 t Au (0.38 g/t Au), and
508 t Ag [54]. A recent dating study [53], using the Laser ablation ICP-MS titanite U-Th-Pb
method, shows evidence of two independent hydrothermal events (~136 Ma and 121 Ma).
A more detailed study [55] suggested the ore-forming fluid to be of magmatic-hydrothermal
origin. Detailed fluid inclusion work suggested the magnetite deposition temperature of
405–567 ◦C and quartz-sulfide mineralization temperature of 240–350 ◦C [55].
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Figure 2. Geological map of the Tonglvshan Cu-Fe-Au skarn deposit in eastern continental China
(modified from Ref. [53]). Cu, Fe, Cu-Fe, Mo: skarn ore bodies.

Magnetite, pyrite and chalcopyrite are the three main ore minerals in the Tonglvshan
skarn deposit (see Table 1 for petrography), sharing a similar mineral assemblage to oxi-
dized porphyry-skarn deposits (Figure 3) [56]. The subhedral to euhedral magnetite crystals
are characterized by abundant porous pits (Figure 3a,b,d–f) caused by the dissolution–
reprecipitation process (DRP) [57–59]. Some authors [57] suggest that the DRP may be
important in the formation of hydrothermal magnetite. The magnetite is mostly replaced
and cut by sulfides, suggesting that the pyrite and chalcopyrite may form later than mag-
netite (Figure 3a,b,d–f).Thereby, the paragenetic sequence may be as follows: magnetite→
pyrite/chalcopyrite.
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Table 1. Petrography of the Tonglvshan skarn ore samples.

Skarn Ore Sample Description

Ore body III

TLS3-1 granular magnetite (~200 µm), subhedral pyrite (~2 mm), anhedral chalcopyrite (~300 µm) (Figure 3a).
TLS3-3 magnetite, pyrite, chalcopyrite.
TLS3-5 anhedral magnetite (~1 mm), euhedral pyrite (~1 mm), subhedral chalcopyrite (~3 mm) (Figure 3b).
TLS3-6 magnetite, pyrite, chalcopyrite.
TLS3-9 acicular hematite (~1 mm), euhedral pyrite (~3 mm) (Figure 3c).
TLS3-11 anhedral magnetite (~1 mm), subhedral pyrite (~3 mm), subhedral chalcopyrite (~2 mm) (Figure 3d).
TLS3-12 disseminated magnetite (~100 µm), euhedral pyrite (~2.5 mm), anhedral chalcopyrite (~1 mm) (Figure 3e).

Ore body IV TLS4-7 disseminated magnetite (~200 µm), anhedral pyrite (~1 mm), anhedral chalcopyrite (~100 µm) (Figure 3f).
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euhedral pyrite and anhedral chalcopyrite. (f) skarn ore sample(TLS4-7) with disseminated magnetite, anhedral pyrite and anhe-
dral chalcopyrite . 

2.2. Anqing Cu skarn Deposit 
The Anqing Cu deposit is a typical skarn ore deposit in the Yueshan metallogenic 

belt [60], located within the contact between the dioritic intrusions and the Low Triassic 
Yueshan Formation (limestone) (Figure 4). A previous study divided the mineralization 
into four stages: (I) garnet-diopside skarn stage, (II) oxides stage, (III) quartz-sulfide stage 
and (IV) quartz-carbonate stage [60]. The fluid inclusion work suggests the temperature 
of 200–375 °C at the quartz-sulfide stage [60]. 

The main mineral assembles in the Anqing Cu deposit are pyrite, chalcopyrite and 
pyrrhotite, similar to reduced porphyry-skarn deposit (Figure 5; see Table 2 for petrogra-

Figure 3. Photomicrographs of selected hydrothermal mineral assemblages from the Tonglvshan deposit. Mt = magnetite;
Py = pyrite; Cp = chalcopyrite; Bn = Bornite; Hem = hematite. (a) skarn ore sample(TLS3-1) with granular magnetite,
subhedral pyrite and anhedral chalcopyrite. (b) skarn ore sample(TLS3-5) with anhedral magnetite, euhedral pyrite and
subhedral chalcopyrite. (c) skarn ore sample(TLS3-9) with acicular hematite and euhedral pyrite. (d) skarn ore sample(TLS3-
11) with anhedral magnetite, subhedral pyrite and subhedral chalcopyrite.(e) skarn ore sample(TLS3-12) with disseminated
magnetite, euhedral pyrite and anhedral chalcopyrite. (f) skarn ore sample(TLS4-7) with disseminated magnetite, anhedral
pyrite and anhedral chalcopyrite.
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2.2. Anqing Cu skarn Deposit

The Anqing Cu deposit is a typical skarn ore deposit in the Yueshan metallogenic
belt [60], located within the contact between the dioritic intrusions and the Low Triassic
Yueshan Formation (limestone) (Figure 4). A previous study divided the mineralization
into four stages: (I) garnet-diopside skarn stage, (II) oxides stage, (III) quartz-sulfide stage
and (IV) quartz-carbonate stage [60]. The fluid inclusion work suggests the temperature of
200–375 ◦C at the quartz-sulfide stage [60].

The main mineral assembles in the Anqing Cu deposit are pyrite, chalcopyrite and
pyrrhotite, similar to reduced porphyry-skarn deposit (Figure 5; see Table 2 for petrog-
raphy) [56]. The anhedral and subhedral pyrrhotite is replaced and cut by anhedral
chalcopyrite, indicating that chalcopyrite formed later than pyrrhotite (Figure 5a–d). Pyrite
is subhedral and replaces the disseminated pyrrhotite, suggesting that the pyrite formed
later than pyrrhotite (Figure 5f). Hence, the paragenetic sequence may be as follows:
pyrrhotite→ pyrite/chalcopyrite.

Table 2. Petrography of the Anqing skarn ore samples.

Skarn Ore Sample Description

Anqing skarn
deposit

AQ-1 disseminated chalcopyrite (~200 µm), disseminated pyrrhotite (~200 µm) (Figure 5a).
AQ-2 chalcopyrite, pyrrhotite, pyrite.
AQ-3 anhedral chalcopyrite (~300 µm), anhedral pyrrhotite (~300 µm), anbhedral pyrite (~500 µm) (Figure 5b).
AQ-5 anhedral chalcopyrite (~300 µm), anhedral pyrrhotite (~200 µm) (Figure 5c).
AQ-7 anhedral chalcopyrite (~100 µm), subhedral pyrrhotite (~1 mm) (Figure 5d).
AQ-8 subhedral pyrite (~1 mm), disseminated chalcopyrite (~100 µm) (Figure 5e).
AQ-9 subhedral pyrite (~1 mm), disseminated chalcopyrite (~100 µm), disseminated pyrrhotite (~100 µm) (Figure 5f).
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arates of garnet, magnetite, pyrite, chalcopyrite and pyrrhotite from the massive skarn ore 
samples. 

Figure 5. Photomicrographs of selected hydrothermal mineral assemblages from Tonglvshan and
Anqing ore samples. Py = pyrite; Cp = chalcopyrite; Po = pyrrhotite. (a) skarn ore sample(AQ-1)
with disseminated chalcopyrite and disseminated pyrrhotite.(b) skarn ore sample(AQ-3) with an-
hedral chalcopyrite, anhedral pyrrhotite and anbhedral pyrite.(c) skarn ore sample(AQ-5) with
anhedral chalcopyrite and anhedral pyrrhotite.(d) skarn ore sample(AQ-7) with anhedral chal-
copyrite and subhedral pyrrhotite.(e) skarn ore sample(AQ-8) with subhedral pyrite and dissemi-
nated chalcopyrite.(f) skarn ore sample(AQ-9) with subhedral pyrite, disseminated chalcopyrite and
disseminated pyrrhotite.

3. Analytical Method

Fe isotope compositions of the ore mineral separates were analyzed in the Laboratory
of Ocean Lithosphere and Mantle Dynamics, Institute of Oceanology, Chinese Academy of
Sciences (IOCAS), Qingdao, China. The skarn ore samples were crushed using a corundum
jaw crusher. The separation was done by using a magnetic separator to separate magnetite
and pyrrhotite from non-magnetic minerals. Individual mineral phases were handpicked
under a binocular microscope [36]. We have altogether obtained mineral separates of
garnet, magnetite, pyrite, chalcopyrite and pyrrhotite from the massive skarn ore samples.

For Fe isotopes analysis, about 50 mg of mineral samples were digested in HNO3-HCl-
HF (1 mL H2[(N3O8)Cl] and 0.5 mL HF) at ~190 ◦C for 15 h and then re-dissolved with
the distilled 3 mol L−1 HNO3 for two hours until complete dissolution after evaporation.
Finally, the sample were dissolved in the 1 mL 9 mol L−1 HCl for chromatographic separa-
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tion for Fe. We used a column filled with 1 mL Bio-Rad AG-MP-1 M resin (200–400 mesh)
to purify the Fe element in a HCl medium following the procedures in Ref. [62]. After total
purification, the eluted Fe solutions were analyzed using ICP-OES to ensure purity and full
recovery. Prior to analysis, each sample was doped with GSB Ni standard (an ultrapure
single elemental standard solution from the China Iron and Steel Research Institute) with
Ni:Fe = 1.4:1 to monitor the instrumental mass bias during the analysis using a Nu Plasma
MC-ICP-MS with wet nebulization in medium resolution (a mass resolution > 8000). Mass
bias fractionation was corrected by 60Ni/58Ni similar to [63], with the 58Fe interference
on 58Ni corrected for based on 56Fe. Each sample was analyzed five times and every
two sample solutions were further bracketed with 14 ppm GSB Fe standard solution
that was also doped with the GSB Ni solution with Ni:Fe ratio of 1.4:1 (a substitution of
IRMM-014; δ56FeIRMM-014 = δ56FeGSB + 0.729; δ57FeIRMM-014 = δ57FeGSB + 1.073) [64]. Iron
isotopic composition is expressed in δ-notation and normalized to IRMM-014 value:
δiFe(‰) = [(iFe/54Fe)sample/(iFe/54Fe)IRMM-014 − 1] × 1000, where i refers to mass 56 or
57. The δ56Fe values of the USGS standard GSP-2, BCR-2, AGV-2 and BHVO-2 were
0.13 ± 0.04‰, 0.07 ± 0.04‰, 0.09 ± 0.04‰, 0.11 ± 0.02‰, respectively, which are consis-
tent with the literature values within error [64–67]. Instrumental and analytical details are
given in [62].

4. Results

The Fe isotope compositions for mineral separates of the Tonglvshan Cu-Fe skarn and
Anqing Cu skarn ore samples are given in Table 3. All the data are plotted on the δ57Fe-δ56Fe
mass-dependent fractionation line, demonstrating the good data quality (Figure 6).

Table 3. Iron isotopic composition of minerals separates from the Tonglvshan and Anqing skarn samples.

Sample

Mineral Separates

Magnetite Chalcopyrite Pyrite

δ56Fe 2 s.d. δ57Fe 2 s.d. δ56Fe 2 s.d. δ57Fe 2 s.d. δ56Fe 2 s.d. δ57Fe 2 s.d.

TLS3-1 0.131 0.036 0.191 0.068 −0.307 0.033 −0.413 0.076 −0.177 0.041 −0.312 0.051
TLS3-3 0.018 0.015 −0.002 0.052 −0.317 0.043 −0.495 0.094 −0.063 0.041 −0.086 0.057
TLS3-5 0.137 0.016 0.245 0.035 −0.349 0.047 −0.542 0.040 −0.157 0.018 −0.243 0.071
TLS3-6 0.075 0.034 0.105 0.075 −0.296 0.034 −0.454 0.062 −0.062 0.034 −0.121 0.063
TLS3-9 0.060 0.049 0.076 0.086
TLS3-11 0.196 0.022 0.258 0.084 −0.381 0.039 −0.499 0.059 −0.156 0.025 −0.214 0.070
TLS3-12 0.204 0.029 0.301 0.056 −0.292 0.054 −0.485 0.076 −0.202 0.027 −0.321 0.070
TLS4-7 −0.113 0.017 −0.119 0.075 −0.837 0.033 −1.209 0.106 −0.538 0.040 −0.790 0.040

Sample

Mineral Separates

Bornite Garnet Siderite

δ56Fe 2 s.d. δ57Fe 2 s.d. δ56Fe 2 s.d. δ57Fe 2 s.d. δ56Fe 2 s.d. δ57Fe 2 s.d.

TLS3-1 0.094 0.047 0.151 0.105
TLS3-3 −0.011 0.106 −0.098 0.113
TLS3-5 −0.041 0.044 −0.101 0.087
TLS3-6 0.092 0.041 0.117 0.099
TLS3-9 −0.019 0.079 −0.039 0.081
TLS3-11 −0.050 0.045 −0.067 0.072
TLS3-12 0.041 0.012 0.067 0.042
TLS4-7 −1.145 0.018 −1.699 0.024 −0.189 0.033 −0.277 0.079 −1.162 0.031 −1.709 0.060

Sample

Mineral Separates

Pyrrhotite Chalcopyrite Pyrite

δ56Fe 2 s.d. δ57Fe 2 s.d. δ56Fe 2 s.d. δ57Fe 2 s.d. δ56Fe 2 s.d. δ57Fe 2 s.d.

AQ-1 −0.399 0.017 −0.557 0.108 −0.123 0.043 −0.200 0.020
AQ-2 −0.378 0.018 −0.573 0.061 −0.038 0.017 −0.024 0.056 −0.582 0.041 −0.888 0.057
AQ-3 −0.984 0.015 −1.502 0.030 0.373 0.049 0.533 0.043 0.848 0.067 1.304 0.107
AQ-5 −0.331 0.060 −0.480 0.154 1.215 0.066 1.859 0.082
AQ-7 −0.251 0.027 −0.395 0.075 1.308 0.044 1.901 0.051
AQ-8 −0.334 0.046 −0.491 0.047
AQ-9 −1.072 0.057 −1.675 0.125 0.023 0.026 −0.007 0.066 −0.047 0.032 −0.115 0.069

Two-standard deviation (2 s.d.).
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1 
 

 
Figure 6. Plot of δ56Fe vs. δ57Fe of Tonglvshan and Anqing samples analyzed, defining a line that is
perfectly consistent with the theoretical mass dependent fractionation.

Our Tonglvshan Cu-Fe skarn deposit samples were from two ore bodies. In samples
(TLS3-1, 3-3, 3-5, 3-6, 3-11 and 3-12) from ore body III, magnetite shows a limit range of δ56Fe
(0.018± 0.015 to 0.204± 0.029‰), which is negatively corelated with δ56Fe of the coexisting
pyrite (−0.202± 0.027 to 0.060± 0.049‰) (Figures 7 and 8a). Chalcopyrite (−0.381 ± 0.039
to −0.292 ± 0.054‰) and Garnet (−0.050 ± 0.045 to 0.094 ± 0.047‰) have a relatively
uniform δ56Fe signature. For sample TLS4-7 from ore body IV, we analyzed δ56Fe for
magnetite (−0.113‰ ± 0.017), garnet (−0.189‰ ± 0.033), pyrite (−0.538 ± 0.040‰), chal-
copyrite (−0.837‰ ± 0.033), bornite (−1.145‰ ± 0.018) and siderite (−1.162 ± 0.031‰)
(Table 3; Figure 7). The latter two minerals had the lowest δ56Fe values.
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results [45,46].

For samples from the Anqing skarn Cu deposit, we analyzed δ56Fe for pyrrhotite
(−1.072‰ ± 0.057 to −0.251 ± 0.027‰), chalcopyrite (0.023 ± 0.026‰ to 1.308 ± 0.044‰)
and pyrite (−0.582 ± 0.041‰ to 0.848 ± 0.067‰), all displaying large variation (Table 3;
Figure 7).

5. Discussion
5.1. Iron Isotope Compositions of Mineral Separates
5.1.1. Tonglvshan Cu-Fe Skarn Deposit

In the Tonglvshan Cu-Fe skarn deposit, the δ56Fe values vary in the order of Mt~Grt
> Py > Cp > Sid~Bn (Table 3; Figure 7). The δ56Fe values for mineral separates from
TLS4-7 are generally lighter than those of mineral separates from other seven samples
(Table 3), which may reflect a two-stage magmatic-hydrothermal event [53]. One magmatic-
hydrothermal event may be related to the samples from ore body III, whose ore-forming
fluid has a heavier Fe isotope composition. The other event is possibly concerned with the
TLS4-7, as the ore-forming fluid has a lighter Fe isotope composition.

The magnetite has the heaviest Fe isotopic composition, which is consistent with its
high 56Fe β-factor [43]. Therefore, we considered that the magnetite may have reached
Fe iso-topic equilibrium. Only one co-existing chalcopyrite and bornite were analyzed on
sample (TLS4-7) to show the Fe isotope contrast between chalcopyrite and bornite. This
observation (∆56FeCp-Bn ≈ 0.31 ± 0.05‰) is consistent with those in the literature [24]. The
siderite has the lightest Fe (δ56Fe = −1.16 ± 0.03‰), which is consistent with the prediction
that ferrous carbonates preferentially incorporate the light Fe isotope [32,34].

However, according to theoretical and experimental studies [42,43,68,69], pyrite is
expected to have the heaviest Fe isotopes among co-existing minerals in equilibrium
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because pyrite has the highest 56Fe β-factor. There is a mainstream view to explain the
‘light pyrite’, whose rapid precipitation may preserve the isotopic composition of FeS
precursor with light Fe, as the result of kinetic control [44,48–50]. Nevertheless, with the
continuous evolution of hydrothermal fluids, equilibrium fractionation will also cause a
great change in the Fe isotope composition of pyrite, which may not need to invoke kinetic
fractionation (Section 5.4; see below).

5.1.2. Anqing Cu Skarn Deposit

In the Anqing Cu-Fe skarn deposit, pyrrhotite has the lightest Fe isotope composition,
which is consistent with the results from the other deposits [24,32,33] and the experimental
Fe isotope fractionation factor [46]. Chalcopyrite has the heaviest Fe isotope composition.
Except for one chalcopyrite-pyrrhotite mineral pair, the other co-existing chalcopyrite-
pyrrhotite have a good positive 56Fe correlation (Figure 8c), indicating that chalcopyrite
and pyrrhotite may reach Fe isotopic equilibrium. The variation of Fe isotopic composition
of pyrite is the largest, which may be explained by the Rayleigh fractionation or kinetic
fractionation, if any. Detail discussions are in Section 5.4.

5.2. The Pathway Effects for Pyrites Formation

In nature, pyrite can be formed through multiple pathways. The detailed reactions
are as follows:

Fe2+
(aq) + H2S = FeS(s) + 2H+

(aq) (1)

The first precipitate is not pyrite, but the unstable mineral FeS (mackinawite) [50,70].
Then, dissolution of FeSs produces FeSaq, which forms pyrite through the H2S pathway or
polysulfide pathway [71–73]:

FeS(s) → FeS(aq) (2)

H2S pathway:
FeS(aq) + H2S = FeS2(s) + H2 (3)

Polysulfide pathway:
FeS(aq) + Sn

2− = FeS2(s) + Sn−1
2− (4)

A previous study [31] on pyrite of the Tongshankou porphyry deposit suggests that
there is no obvious kinetic Fe isotopes fractionation for Reactions (3) and (4). Experimental
studies show that the primary rapidly precipitated pyrite would inherit the Fe isotopic
composition of the intermediate FeS phase that has a lighter Fe isotopic composition
in equilibrium with the fluid [44]. However, as the reaction proceeds, the Fe isotope
fractionation during pyrite formation moves towards the pyrite-fluid equilibrium with
an increasing extent of the Fe isotopic exchange [31,44]. The Fe isotopic composition of
the fluid is up to the extent of Fe isotopic exchange between pyrite and the fluid. The
greater the extent of Fe isotopic exchange between pyrite and fluid is, the heavier the Fe
isotopic composition of the pyrite and the lighter the Fe isotopic composition of the fluid
will be, and vice versa. The study [31] found that the Fe isotopic composition of pyrite and
chalcopyrite mineral pairs in the Tongshankou porphyry deposits are negatively correlated,
which was interpreted to reflect pyrite formation through the FeS pathway in combination
with S isotope data. The wide Fe isotope range of pyrite may be related to different extents
of reactions during pyrite precipitation from an initial FeS-fluid equilibrium towards pyrite-
fluid equilibrium, governing the Fe isotopic composition of ore-forming fluid, which in
turn affects the chalcopyrite. In brief, the FeS-pathway effect is an important mechanism
controlling the Fe isotope fractionation.

In the Tonglvshan skarn deposit, there is an interesting phenomenon that the Fe
isotopic composition of magnetite and pyrite has a good negative correlation (Figure 8a)
despite a limited Fe isotope variation. These magnetite crystals are characterized by
abundant porous pits and are mostly replaced by sulfides (Figure 3), which may be caused
by the dissolution–reprecipitation process (DRP) [57–59]. Hu et al. [57] suggest that DRP
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may be important in the formation of hydrothermal magnetite. During such a process,
the primary magnetite may exchange the Fe isotopes with the fluid whose Fe isotope
composition is governed by the pyrite formation pathways [31,44]. Heavy-Fe pyrite causes
the fluid to be Fe-light, which in turn causes the reprecipitation magnetite to be Fe-light.
The light-Fe pyrite causes the reprecipitation magnetite to be Fe-heavy, finally resulting in
the negative correlation between the magnetite and pyrite. The Fe isotope fractionation
between chalcopyrite and pyrite is offset from the equilibrium line at 350 ◦C and lies
between the FeS-chalcopyrite equilibrium line and pyrite-chalcopyrite equilibrium line
at 350 ◦C (Figure 8b). This is best understood as the FeS-pathway effect. The extent of Fe
isotope exchange between the pyrite and the fluid controls the Fe isotope composition of
the fluid, further affecting the chalcopyrite.

In the Anqing skarn deposit, the Fe isotope fractionation of chalcopyrite-pyrite lying
between the FeS-chalcopyrite equilibrium line and pyrite-chalcopyrite equilibrium line
at 350 ◦C may display the role of the FeS-pathway effect (Figure 8b). Except for one
chalcopyrite-pyrrhotite pair (sample AQ-2), the other co-existing chalcopyrite-pyrrhotite
pairs have a good positive 56Fe correlation (Figure 8c), indicating that chalcopyrite and
pyrrhotite may reach Fe isotopic equilibrium at 300 ◦C–350 ◦C.

In summary, the FeS pathway of pyrite formation in the skarn deposit may be a
common mechanism causing a change in the isotopes’ composition of the fluid, which in
turn affects the Fe isotopic composition of the fluid and other co-existing minerals.

5.3. What Are the Controlling Variables That Govern the Fe Isotope Variation in Co-Exiting Phases
in a Magmatic-Hydrothermal Fluid System?

With the continued cooling and crystallization of the magma, the magmatic-hydrothermal
fluids are released, resulting in ore deposit formation [32,33,74,75]. During this process, Fe
is transported as Fe2+-chloride complexes [76,77]. There exist two main views about the
Fe isotope fractionation during the fluid exsolution. One is the “light fluid” hypothesis,
mainly confirmed by several studies [21–25,27,31], while a recent study [32] considered
that the redox state actually governs the fluid Fe isotope composition. Another study [33]
proposed that the oxygen and sulfur redox state of ore fluids also have an influence on
isotope values of mineral assemblages because of the presence or absence of pyrrhotite
(Figures 9 and 10a).
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Figure 9. Temperature (◦C) vs. oxygen fugacity (logf O2) diagrams [27,33,56]. The blue path shows
the mineral precipitation sequence of the oxidized porphyry-skarn Cu deposit (e.g., Tonglvshan
skarn deposit) and the red path represents the path of the reduced porphyry-skarn Cu deposit (e.g.,
Anqing skarn deposit).
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A recent study [27] summarizes several magmatic-hydrothermal ore deposits and
proposes to use the Fe isotopic composition of chalcopyrite (δ56Fe chalcopyrite~−0.1‰) as a
limiting value (Figure 10b) to judge the redox conditions of deposits. Using this criterion,
the Tonglvshan skarn deposit would be regarded as representing an oxidized hydrothermal
system and the Anqing skarn deposit would reflect a reduced system. Combined with the
phase diagram (Figure 9) and petrographic analysis (Figures 3 and 5) in the oxidized system,
magnetite is the mineral that precipitates first, while in the reductive system, pyrrhotite
precipitates first. Hence, magnetite from the oxidized-Tonglvshan skarn deposit is used to
calculate the equilibrium fluid Fe isotope composition (δ56Fefluid = δ56Femt + ∆56FeMt-fluid,
the ∆56FeMt-fluid = 0.6‰ at 350 ◦C), obtaining the heaviest δ56Fe ~−0.393 ± 0.029‰ [43,69],
which is consistent with Ref. [41]. In the reduced-Anqing skarn deposit, we chose pyrrhotite
to calculate the equilibrium fluid Fe isotope composition (δ56Fefluid = δ56FePo + ∆56FePo-fluid,
the ∆56FePo-fluid = −1.12‰ at 350 ◦C) [46] and obtained the lightest δ56Fe ~0.045 ± 0.057‰,
which is similar to the results in [41], within a rate of error. The calculated Fe isotope
compositions of the mineralization fluids for both deposits are lighter than the stock
intrusions associated with skarns and also porphyry mineralization [23,24,27,32,33], which
is in support of the “light fluid” hypothesis.

The chalcopyrite in the oxidized-Tonglvshan skarn deposit is lighter than that from
the reduced-Anqing skarn deposit, which is best understood as relating to the redox state of
ore fluids because of earlier precipitated heavy Fe magnetite from the oxidized-Tonglvshan
system and because of earlier precipitated light Fe pyrrhotite from the reduced-Anqing sys-
tem (Table 3, Figures 7, 9 and 10) [27,32,33]. In the Tonglvshan skarn deposit, the deposited
magnetite causes the fluid to become lighter, and the subsequently precipitated chalcopy-
rite thus has a lighter Fe isotopic composition, while in the Anqing skarn deposit, pyrrhotite
incorporates light Fe isotopic composition, causing the fluid to become heavier-Fe and
causes the chalcopyrite to have a heavier Fe isotopic composition (Figure 10). Moreover,
the wide range of δ56Fe in pyrrhotite and chalcopyrite from the reduced-Anqing skarn
deposit may be contributed to Rayleigh fractionation of pyrrhotite during the hydrothermal
evolution (Figure 10a) [27]. The overlap of the Fe isotopic composition of pyrite in the two
deposits may be related to the formation pathway of pyrite and the relative timing of the
fluid evolution (Figure 8).
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5.4. Re-Evaluating Fe Isotope Behaviors in the Skarn Mineralization

Some studies have shown that the Fe isotopic composition of pyrite in a single deposit
system varies greatly. For example, pyrite in the Xinqiao Cu-Fe-Au skarn deposit has
δ56Fe = −0.83‰ to 0.46‰; pyrite in the Dongguashan Cu-Au skarn-porphyry deposit
has δ56Fe = −0.21‰ to 1.58‰; and pyrite in the Fenghuangshan Cu-Fe-Au skarn deposit
has δ56Fe = −0.55‰ to 1.46‰. [22,23]. He et al. [31] suggest that such large variation
may reflect the involvement of low-temperature sedimentary materials. Wei et al. [36]
divides pyrites of the Damiao titanomagnetite ore deposit into two types, magmatic pyrite
(δ56Fe: −0.638‰ to −0.056‰) and hydrothermal pyrite (δ56Fe: 0.435‰ to 0.662‰).

In Section 3 above, we discussed the redox state of the ore fluid that governs the Fe
isotopes composition of precipitated minerals [33]. In the Tonglvshan deposit, precipitation
of magnetite with heavy Fe will cause the fluid to become lighter, which will impart lighter
Fe in subsequently precipitated chalcopyrite from this fluid. In the Anqing deposit, precip-
itation of pyrrhotite with light Fe can cause the fluid to become heavier (Figure 10) [27],
which is expected to have great influence on the latter precipitated chalcopyrite. This is
important. If we assume an initial δ56Fe value of 0‰ for fluid, magnetite precipitation
can deplete the heavier Fe, resulting in light Fe in the liquid, readily reaching a value of
δ56Fe = ~−0.3‰ (Figure 10). Likewise, precipitation of pyrrhotite can deplete the light Fe,
resulting in heavy Fe in the liquid, readily reaching a value of δ56Fe = ~0.3‰ (Figure 10).

As mentioned in Section 1, we suggest equilibrium fractionation will also cause a
great change in the Fe isotopic composition of pyrite (Figure 11a). With the FeS pathway
mechanisms, i.e., the transient FeS-fluid equilibrium followed by pyrite-fluid equilibrium,
we can readily explain the large Fe isotope compositional variation of pyrites in skarn
deposits (Figure 11). The δ56Fe for pyrites can be simply contributed to the Rayleigh frac-
tionation model by the combination of pyrite-fluid and FeS-fluid equilibrium fractionations
(Figure 11). Our model shows that the pyrite-fluid equilibrium fractionations result in
the light Fe isotopes boundary of the pyrite (Figure 11a,b), while the heavy Fe isotopes
boundary of the pyrite is caused by the FeS-fluid equilibrium fractionations (Figure 11c,d).
With all the observations and discussion above considered, we advocate that that the
FeS-pathway effects on pyrite formation may be a common mechanism controlling the
fluid Fe isotope composition in both oxidized (i.e., Tonglvshan) and reduced (i.e., Anqing)
skarn ore-forming systems.
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Figure 11. Rayleigh fractionation modeling showing that δ56Fe (‰) variations in the residual fluid(red solid line), instanta-
neous(blue solid line ) and cumulative pyrite(blue dashed line) during pyrite precipitation. Instantaneous pyrite represents
single pyrite formed at every instant and cumulative pyrite means bulk pyrite at every instant. The initial fluid Fe isotope
composition for the oxidized systems is set to be −0.3‰ (a,c) and for the reduced system is + 0.3‰ (b,d). (a) Equilibrium
fractionation between pyrite and fluid in the oxidized system; (b) Equilibrium fractionation between pyrite and fluid
in the reduced system; (c) Equilibrium fractionation between FeS and fluid in the oxidized system and (d) Equilibrium
fractionation between FeS and fluid in the reduced system. Equilibrium fractionation factors at 350 ◦C between pyrite and
fluid is 0.99‰ from [44], while between the FeS and fluid is −0.31‰, calculated from [43,69]. The Rayleigh fractionation
equations are as follows: δ56Fefluid = δ56Fefluid (initial) + ∆56Femineral-fluid × ln(F); δ56Femineral (instantaneous) = δ56Fefluid +
∆56Femineral-fluid; δ56Femineral (cumulative) = [δ56Fefluid (initial) − (1 − F) × δ56Fefluid]/F; F is the Fe mass fraction in the
remaining fluid. The yellow line stands for the Fe isotope compositional range of pyrite from the oxidized system and the
green line represents the same for the reduced system [22,23].

6. Conclusions

This work, based on Fe isotope data on skarn ore mineral separates and petrography,
led to the following important conclusions.

1. We used magnetite from the oxidized-Tonglvshan skarn deposit and pyrrhotite from
the reduced-Anqing skarn deposit to calculate the equilibrium Fe isotope compositions
of the fluids, respectively. The calculated heaviest Fe isotope of the equilibrium fluid for
the oxidized-Tonglvshan skarn deposit and the lightest Fe isotope of the equilibrium
fluid for the reduced-Anqing skarn deposits are both lighter than the stock intrusions
associated with skarn and also porphyry mineralization, supporting the “light fluid”
hypothesis for granitoid magmatic fluids. Moreover, the chalcopyrite Fe isotope in
the oxidized-Tonglvshan skarn deposit is lighter than that from the reduced-Anqing
skarn deposit, which is controlled by the prior precipitation of magnetite (heavy Fe)
from the ore fluid in the oxidized-Tonglvshan systems and the prior precipitation of
pyrrhotite (light Fe) from the ore fluid in the reduced-Anqing system.
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2. The δ56Fe for pyrite shows an inverse correlation with δ56Fe for the magnetite in
Tonglvshan ore samples. In both deposits, the Fe isotope fractionation between chal-
copyrite and pyrite is offset from the equilibrium line at 350 ◦C and lies between the
FeS-chalcopyrite equilibrium line and pyrite-chalcopyrite equilibrium line at 350 ◦C.
These observations are best understood as the FeS pathway towards pyrite formation.
That is, the initial FeS-fluid equilibrium Fe isotope fractionation is a critical step for
continued pyrite-fluid equilibrium fractionation via increased extent of Fe isotopic
exchange. With data from other ore deposits considered altogether, we advocate
that the pathway effect on pyrite formation in the skarn deposit mineralization is
important in controlling the Fe isotope fractionation.
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