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Abstract: The mineralogical complexity of mine dust complicates exposure monitoring methods
for occupational, respirable hazards. Improved understanding of the variability in respirable dust
characteristics, e.g., mineral phase occurrence and composition, is required to advance on-site
monitoring techniques that can be applied across diverse mining sectors. Principal components
analysis (PCA) models were applied separately to XRD and FTIR datasets collected on 130 respirable
dust samples from seven mining commodities to explore similarities and differences among the
samples. Findings from both PCA models classified limestone, iron, and granite mine samples via
their analytical responses. However, the results also cautioned that respirable samples from these
commodities may not always fit patterns observed within the model. For example, one unique sample
collected in a limestone mine contained no carbonate minerals. Future predictive quantification
models should account for unique samples. Differences between gold and copper mine dust samples
were difficult to observe. Further investigation suggested that the key to their differentiation by FTIR
may lie in the characterization of clays. The results presented in this study provide foundational
information for guiding the development of quantification models for respirable mineral hazards in
the mining industry.

Keywords: respirable mine dust; principal components analysis; PCA; FTIR spectroscopy; XRD;
mineralogy; direct-on-filter

1. Introduction

The risk of respiratory diseases associated with the mining profession is well-documented,
with a large body of knowledge on the hazardous nature of mineral dusts, the types of
lung diseases they cause, and effective measures of exposure monitoring and control.
Respiratory hazards encountered in mining include respirable crystalline silica (RCS),
aluminosilicates including asbestiform and other elongate mineral particles, respirable
coal dust, and diesel particulate matter [1,2]. Of the possible mineral hazards, exposure to
RCS continues to be of significant concern and is associated with silicosis [3–6], chronic
obstructive pulmonary disease (COPD) [7], lung cancer [8] and possibly kidney disease [9].
It has been estimated that 314,533 workers in the mining industry and 408,175 in the oil and
gas industry in the United States have had potential RCS overexposures, and it is assumed
that 100% of the workforce in those industries are potentially exposed [10]. Moreover, RCS
exposure is a suspected influence in the recent resurgence of coal worker’s pneumoconiosis
(CWP) in the United States [11]. Monitoring and controlling exposure are key components
to addressing the risk for these health effects.
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Current RCS exposure monitoring techniques used in the U.S. mining industry are
X-ray diffraction (XRD) [12,13] and Fourier transform infrared (FTIR) analysis meth-
ods [14–16] for the quantification of RCS in respirable dust samples. These techniques
require analysis at off-site laboratories slowing the time it takes to make exposure data
available to mining health and safety personnel. FTIR instruments are more suitable for
on-site exposure analyses as they provide rapid testing, lower cost, and greater portability
than XRD-based methods. Thus, researchers at the Pittsburgh Mining Research Division of
the National Institute for Occupational Safety and Health (PMRD/NIOSH) have focused
on investigating methods for advancing field-based RCS exposure monitoring approaches
using FTIR analysis [17,18].

Based upon on-going exposure monitoring and prior knowledge of a mine site’s
geology, mining operators are aware that RCS is present in respirable dust throughout the
mine site. Nevertheless, the concentrations of RCS encountered by a worker throughout
their shift or in any specific location can be variable and requires accurate monitoring.
Thus, improving upon the established methods requires enabling on-site analysis for
RCS quantification with a level of accuracy that is comparable or better than what is
provided by “off-site” analysis in analytical laboratories with expert analysts. A significant
analytical challenge to the advancement of on-site RCS exposure monitoring approaches is
the mineralogical complexity of the dust to which miners may be exposed. Respirable mine
dust is comprised of multiple mineral phases, and the composition can be highly variable
within the same commodity, across geographic regions [19], and even within the same
mine site [20]. It is well known that the presence of multiple mineral phases complicates
the quantification of RCS for both the XRD [13,21,22] and FTIR techniques. Furthermore,
certain mineral phases (e.g., kaolinite interferes in FTIR measurements) are considered
infrared, analytical interferences [23–25].

The complex evolution of health effects is likely influenced by the mineralogical
complexity of the hazard and the nature of the exposure. In some sites, miners can be
exposed to multiple respirable mineral hazards simultaneously. In addition to RCS and
EMPs, there is evidence that other mineral phases are associated with adverse health effects.
Respirable carbonates cause irritation and acute respiratory impairment [26,27]. Although
a lower risk than RCS, there is conflicting evidence between the inhalation of iron oxide
minerals and an increased risk of lung cancer [28–32]. A comprehensive characterization
of mineral dust could provide information on the mechanisms related to health effects and
commodity-specific exposure pathways.

Multivariate analysis techniques are used to explore patterns and structure in complex
datasets with many variables. These techniques are particularly useful in the investiga-
tion of multi-component samples in which the analytical responses are overlapped and
complicated to resolve due to the complex nature of the samples [33,34]. These techniques
have been utilized for the analysis of mineral phases in shale and clay [35,36]. Predictive,
multivariate models, like partial least squares (PLS) analysis, have been investigated for
the quantification of RCS in respirable mine dust in coal mines [37], synthetic limestone
mine samples [38], and some noncoal mines [39].

Although the mineralogical complexity of respirable mine dust is generally known, a
detailed study across diverse mining commodities and locations is lacking. This study re-
ports the investigation of respirable dust from mine bulk dust samples in terms of minerals
present and their response using both XRD and FTIR analysis. While XRD methods are
generally considered the “gold standard” for mineral phase quantification, these methods
require significant time for analysis in off-site analytical laboratories. In recent years, it has
been recognized that rapid scanning methods, such as FTIR analysis, can provide quick,
on-site analysis with comparable quantification of crystalline silica phases. In this study,
a total of 130 mine dusts representing seven mine types or specific mining commodities
and 56 mine locations were analyzed using FTIR and XRD methods. The objectives of
the study were to examine the mineralogical complexity of this diverse suite of samples.
In addition, chemometric analyses of both the XRD and FTIR datasets were conducted
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using principal components analysis (PCA) to show patterns in complex data sets. The
results of these analyses will provide knowledge and focus for the future development of
quantification models for advanced, on-site RCS exposure monitoring that can be applied
to any mining sector.

2. Materials and Methods

In the last seven years, researchers at PMRD/NIOSH collected 144 bulk dust samples
from 56 different mining operations in the United States. The bulk dust samples were
generally in the form of powdered, particulate material. The samples were collected as
grab samples [40] in different parts of the mine with no specific sampling strategy. The
particle size and moisture content of the bulk samples were variable depending on the type
of mine and the location within the mine in which they had been collected. The samples
were collected during field studies conducted by NIOSH and through the interaction with
individual mines and mining companies, as well as with industry organizations at the
national and state level. A small number of samples were obtained during collaborations
with international mining companies in Canada, South Africa, Chile, and Australia. The
samples were organized by the mining commodity from which they were collected or
sampled. The commodities (gold, copper, limestone, granite, sand and gravel (S&G),
industrial sand, and other metals) are used to categorize the samples. Throughout this
manuscript, the language “limestone mine dust sample” or “limestone sample” will be
used interchangeably to refer to a sample collected or obtained from a mining operation
whose primary commodity is limestone.

2.1. Dust Sample Preparation

Each bulk mine dust was inspected at the NIOSH laboratory. Dusts with excessive
moisture levels were identified qualitatively through visual inspection. The dust was dried
in a muffle furnace at 80 ◦C overnight if the moisture content was elevated. This treatment
was generally sufficient to dry the material and facilitate re-aerosolization. Dust samples
with particles larger than a few millimeters were removed by sieving with dry sieves,
typically 106 um mesh size. The product of these pre-treatments was a dry, fine powder.

Respirable Dust Sample Collection

A single respirable dust sample was collected from each dry bulk mine dust. The
respirable dust sample (“sample” from hereafter) was collected on a pre-weighed, PVC
37-mm diameter, 5-µm pore size filter inside a 3-piece styrene cassette attached to a GK2.69
sampler (MESA laboratories, Lakewood, CO). An AirTouch pump (SKC, Covington, GA)
was used to maintain the desired volumetric flowrate of 4.2 L min−1 [41]. Although particle
size distribution of the samples was not rigorously measured in this study, the GK2.69
sampler is a size selective sampler designed to collect “respirable size” particles as defined
by the respirable ISO/ACGIH/CEN sampling convention with a 50% cut point at 4 µm [42].
The project report by Sellaro et al. indicated the particle size of respirable dust is below
8 µm [43].

The inlet of the sampler was connected with a 1/4 inch internal diameter conductive
tubing with the outlet of a plastic jar in which a small quantity of bulk mine dust was
inserted. The jar was continuously in movement using a bench rocker. The continuous
movement of the jar induced the dust material to be aerosolized and the aerosol was
sampled by the sampler. A small, disposable filter element (Parker-Balston, Lancaster,
NY, USA) was connected to the inlet of the jar to provide dust-free air for sampling. The
collection of the sample varied from 30 min to a few hours, depending on how easily
the dust material was aerosolized. Sampling was considered complete once 1–10 mg
had been collected on the filter. Of the original 144 mine dust samples, 14 of these dusts
were excluded from final analysis for the following reasons: (1) They did not sufficiently
aerosolize (i.e., <1 mg was collected), (2) The mass collected exceeded the maximum target
of 10 mg, or (3) Subtracted FTIR data was corrupted.
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2.2. Analysis of the Samples
Respirable Dust Samples Analysis

After sampling was completed, each sample went through three different analyses:
gravimetric analysis for determining the mass of respirable dust collected, transmission
FTIR analysis for the collection of the spectrum associated with each sample, and powder
X-ray diffraction direct-on-filter for the analysis of the mineral phases contained in each
sample. Details for each analysis are provided below.

The samples were equilibrated, neutralized, and post-weighed in a controlled envi-
ronment where the filter media had been pre-weighed. The controlled environment, at the
NIOSH Pittsburgh Mining Research Division, is kept at 22 ◦C and 50% relative humidity.
Gravimetric analysis of the samples was conducted on a microbalance (XP6, Mettler-Toledo,
Columbus, OH) with a precision better than 5 µg. The gravimetric analysis was used to
identify samples with an excessive amount of dust that would negatively affect the quality
of the infrared spectrum.

An infrared spectrum was collected for each sample using a portable FTIR unit (Alpha,
Bruker, Billerica, MA, USA). The spectrum was collected using transmission analysis, and
the sample was analyzed in the center of the filter media using a specific filter holder that
assures the correct positioning of the filter. Prior to sampling, the infrared spectrum of each
filter medium was collected using an ambient air background spectrum from the empty
sample chamber. The filter medium spectrum was then subtracted from the spectrum of the
sample to remove the contribution of each filter material. Background and sample spectra
were collected at a resolution of 4 cm−1, with 16 sample scans (averaged) per spectrum. The
collection of the background, spectra for the blank filter and sample, and the subtraction
of the blank spectrum from the sample spectrum resulted in a total analysis time of a few
minutes per sample.

The samples were then sent to an analytical laboratory (H&M analytical, Cream Ridge,
NJ, USA) for full scan X-ray Diffraction (XRD) analysis. The XRD analysis identified
the presence of mineral phases in each sample. The Rietveld refinement was used to
provide a semi-quantitative evaluation of the mineral phases in the form of percent relative
abundance. The analysis was done as direct-on-filter. Each sample was mounted onto a
zero-background sample holder. The sample holder was placed into a Panalytical X’pert
MPD diffractometer using Cu radiation at 45 KV/40 ma. The scan was run over the range
of 5◦ to 80◦ with a step size of 0.0131◦ and an accumulated counting time of 500 sec/step.
Using these parameters, the average total acquisition time to collect an XRD pattern of a
typical sample was about 3 h and 15 min. Once the diffraction patterns were obtained, the
phases were identified with the aid of the Powder Diffraction File (PDF) published by the
International Centre for Diffraction Data or the Inorganic Crystal Structure Database (ICSD).
The analysis yielded semi-quantitative results, and the nature of the analysis, i.e., XRD
analysis direct-on-filter, led to some increased uncertainty in the measurements. In some
cases, the identification of a single mineral was not possible, and it was only possible to
identify a mineral series or group.

2.3. Data Processing
2.3.1. Principal Components Analysis (PCA)

Principal components analysis (PCA) is an exploratory, data analysis technique that
reduces the number of variables in large datasets to a smaller number of variables, called
principal components (PC) while retaining the chemically relevant variation in the dataset.
This technique enables easier recognition and interpretation of patterns within the data and
is accomplished by solving eigenvector/eigenvalue type problems using matrix algebra.
PCA was applied to both the XRD and FTIR datasets. Each dataset was imported into
MATLAB (R2020, Mathworks, Natick, MA, USA) and analyzed using the PLS_toolbox
(Eingenvector Research Incorporated, Manson, WA, USA). For the XRD data, the results of
the Rietveld-derived mineral phases were evaluated. The PCA XRD analysis was based on
130 observations × 29 mineral phases. Each sample was an observation and the abundance
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of each mineral phase a variable. For the FTIR dataset, the spectrum of each sample was
imported with the absorbance at each wavenumber used as an independent variable. The
PCA FTIR analysis was based on 130 observations × 1765 variables.

Mean centering was used as a preprocessing approach for both the XRD and FTIR
PCA models. The FTIR spectral data were normalized based on the actual dust loading
on each sample filter determined using gravimetric analysis. The wavenumber region
2200–2800 cm−1 was excluded from the calculation of PCA models. This part of the spec-
trum was excluded as only peaks for ambient carbon dioxide occur in this region. The type
of mine operation associated with each observation/sample was used to set up classes for
the PCA models. The presence of the filter in the XRD analysis caused some interference
with the calcite peak used for phase identification and quantification, leading to increased
uncertainty for calcite measurements. For this reason, dolomite and calcite were combined
into the group carbonates for the PCA analysis of the XRD data. It is important to consider
that the division of samples in classes does not have any effect on the PCA model, but it is
simply an approach to review the results of the PCA analysis.

2.3.2. Predictive Modeling for the Presence of Mineral Phases Using FTIR Data

The FTIR spectra of the samples were batch processed using the Essential FTIR
software package (Operant LLC, Madison, WI, USA). The first derivative of each spectrum
was calculated using a light smoothing (window of 5) with a Savitzky-Golay quadratic
smoothing method. The first-order derivative spectra were then transferred to a spreadsheet
for analysis.

The determination of the local maxima for each spectrum was conducted in the
wavenumber region from 430 cm−1 to 1300 cm−1. The local maximum was defined with a
change of sign in the first derivative, from positive to negative. Samples were compared
on the basis of the location of the local maxima in the spectra. A scoring method was
established to compare a spectrum with a reference spectrum: each time a local maximum
is present in one spectrum and not in the reference, the score increases by one unit. By
evaluating the entire range of 430 cm−1–1300 cm−1, the overall score indicates how close
the local maxima are in the two spectra. By comparing a single sample against the entire
dataset of samples, scores can be calculated. A low score indicates spectra with local
maxima at the same wavenumbers; a high score indicates spectra with local maxima at
different wavenumbers. For each sample and spectrum, the information of the presence
of mineral phases identified by the XRD analysis in the samples was added. The scoring
method that was designed to compare the spectra based on the location of their local
maxima was then used to predict the presence of mineral phases in unknown samples. The
hypothesis was that spectra within the database that exhibit a low score with an unknown
sample are more likely to have the same mineral phases as the unknown sample.

This hypothesis was tested using the leave-one-out approach for method cross valida-
tion. One sample at a time was removed from the database and used as a testing “unknown”
sample. Scores were calculated with the method described above. The spectrum with the
lowest score was selected: the mineral phases present in the testing sample compared with
the minerals present in the selected spectrum from the database samples. The comparison
was analyzed as a number of false negatives (absence of a mineral in the low score array
but present in the testing sample), false positives (presence of a mineral in the low score
array but absent in the testing sample), and matches (agreement in the low score array and
testing sample).

3. Results
3.1. Mineralogy Overview

A total of 29 mineral phases were identified, with α-quartz occurring in 100% of
the samples. Table 1 displays the mineral phases detected and their incidence in the 130 res-
pirable mine dust samples in terms of % relative abundance organized by the type mining
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commodity in which they were sampled. A visual representation of the % relative abun-
dance of mineral phases in the samples is provided in the Appendix A (Figure A1).

Table 1. Relative incidence of mineral phases in the 130 respirable mine dust samples organized
by commodity.

Mineral Phases Full Set Copper
Mines

Gold
Mines

Iron
Mines

Other Metals
Mines

Granite
Mines

S&G
Mines

Limestone
Mines

number of samples 130 40 36 7 4 11 15 16
α-Quartz 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Cristobalite 1.5% 2.5% 6.7%
Plagioclase 66.9% 92.5% 72.2% 75.0% 1.0% 6.0% 6.3%
K-feldspar 56.2% 77.5% 36.1% 100.0% 81.8% 66.7% 37.5%

Zeolites 4.6% 8.3% 42.9%
Cordierite 2.3% 5.0% 2.8%
Kaolinite 25.4% 32.5% 2.8% 85.7% 100.0% 36.4% 33.3%

Montmorillonite 4.6% 15.0%
Talc 2.3% 2.8% 28.6%

Chlorite 44.6% 65.0% 52.8% 27.3% 46.7% 18.8%
Sepiolite 2.3% 42.9%
Amesite 1.5% 12.5%

Muscovite 77.7% 92.5% 86.1% 100.0% 63.6% 53.3% 81.3%
Biotite 3.8% 5.0% 2.0%

Phlogopite 1.5% 18.2%
Natroapophylite 0.8% 2.5%

Amphibole 6.9% 8.3% 14.3% 18.2% 2.0%
Calcite 40.0% 45.0% 27.8% 14.3% 10.0% 53.3% 81.3%

Dolomite 26.9% 7.5% 38.9% 14.3% 13.3% 87.5%
Siderite 2.3% 42.9%
Alunite 1.5% 2.5% 2.8%
Jarosite 1.5% 5.6%

Gypsum 10.0% 15.0% 13.9% 13.3%
Apatite 1.5% 6.3%

Hematite 7.7% 12.5% 57.1% 6.7%
Magnetite 7.7% 11.1% 85.7%
Hydroxide 3.8% 2.5% 2.8% 42.9%

Pyrite 14.6% 2.5% 41.7% 18.8%
Unknown 7.7% 5.0% 5.6% 18.2% 26.7%

Figure 1 summarizes the distribution of the number of mineral phases over the entire
dataset. Most of the samples (41%) contained 5 mineral phases, and 14% and 16% of the
samples contained 4 and 6 mineral phases, respectively. The rest of the samples (29%)
had either ≥7 or ≤3 mineral phases. Analysis of the distribution of the number of mineral
phases within each mining commodity (not displayed in the figure) revealed that samples
from each commodity had an average number of mineral phases close to 5.
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Figure 1. Histogram showing the number of different mineral phases found in individual samples.

3.2. PCA of XRD Results

Principal components analysis (PCA) was applied to the XRD analysis results, where
each sample was an observation and the abundance of each mineral phase a variable.

In this PCA analysis of the XRD mineralogy data, 6 principal components (PC),
describing 88.03% of the variation within the data, were chosen. PC1 captures the greatest
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amount of variation (44.23%), and PC2 is the component describing the second greatest
amount of variation (14.46%). The scree plot that was used to select the number of principal
components and the variance captured by each PC are provided in the appendices (Table
A1 and Figure A3). Figure 2A shows the scores on PC1 for each sample. Figure 2B displays
the loadings for PC1 v. mineral phases. In the scores plot for PC1, all limestone samples
have positive scores (with one exception). All granite samples have negative scores, most
copper scores are negative, and the scores for iron samples show little variation along PC1.
Carbonate minerals have the highest loadings along PC1 in Figure 2B.
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Figure 2. PCA results of XRD mineralogy data (A) Sample scores for PC1 v. samples, arrow indicating
unique limestone sample; (B) Loadings on PC1 v. mineral phases; (C) Sample scores for PC2 v.
samples; (D) Loadings on PC2 v. mineral phases.

Figure 2C displays scores on PC2 v. sample number; Figure 2D shows PC2 loadings
v. mineral phases. In Figure 2C, all samples except granite samples have positive and
negative scores along PC2. Iron sample scores show the least amount of variation along
this component. Muscovite has the most positive loading and plagioclase and K-feldspar
have the most negative loadings along PC2 (Figure 2D).

Figure 3 shows sample scores on PC1 v. sample scores on PC2. The limestone samples
show some variation along PC2, and all of them, except the unique limestone sample
(indicated by arrow), have positive scores on PC1. Iron samples show the least variation
along PC1 and PC2, while granite samples all have negative scores on both components.
Gold and copper samples are difficult to distinguish from each other. Both show variability
along PC2, with scores spreading from negative to positive. Although it is very limited,
more gold samples have positive scores along PC1 than copper samples.

Examination of the scores and loadings for PC3 and PC4 did not reveal any new
patterns or significantly different information. Therefore, these plots are included in the
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Appendix A (Figure A5A–D) but are not discussed in the text in any detail. PC5 captures
5.78% of the variation in the data. Iron samples show the most variation along PC5,
with the spread of their scores trending more negatively than the sample scores of other
commodities in Figure 4A. The loadings of the mineral phases on PC5 are shown in
Figure 4B. The mineral phases with negative loadings for PC5 are highlighted: cristobalite,
kaolinite, magnetite, and hematite.
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3.3. PCA of FTIR Spectra

Principal components analysis (PCA) was applied to the FTIR spectra collected on the
130 respirable dust samples. In this analysis each observation was a sample spectrum and
the absorbance at each wavenumber was a variable.

Like the XRD data, the FTIR spectra were also analyzed using PCA. Percent variance
captured for each principal component of the PCA FTIR model and accompanying scree
plot are show in Appendix A, Table A2 and Figure A6. Six principal components, capturing
94.85% of variation, were chosen to calculate a PCA model for the 130 FTIR spectra of res-
pirable mine dust samples. PC1 describes the largest portion of the spectra at 47.87%. The
sample scores on PC1 are displayed in Figure 5A. Limestone and iron samples have mostly
positive scores on PC1. There is only one limestone sample with a negative score which is
indicated by an arrow. The scores for all the other samples are mostly negative. Granite
sample scores are all negative. Figure 5B shows that the major spectral regions that con-
tribute to PC1 are the silicate region (~1000 cm−1) and the carbonate region (~1400 cm−1).
Part of the fingerprint region (400–800 cm−1) also negatively contributes to PC1. The scores
for iron mines have the greatest variability in the positive direction along PC2 (Figure 5C).
The carbonate band and a sharp peak at ~875 cm−1 are the only regions of the spectrum
with negative loadings on PC2. The rest of the wavenumbers in the spectrum have positive
loadings with the region 3200–3800 cm−1 having the greatest influence (Figure 5D).
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Sample scores on PC1 v. sample scores on PC2 are displayed in Figure 6. The limestone
samples exhibit variation along PC1, and all of them, except the unique limestone sample
(indicated by arrow), have positive scores on PC1. Most of the limestone samples including
the unique sample have negative scores on PC2. Iron samples vary in the positive direction
along PC1 and PC2, and granite samples all have negative scores on both components.
Gold, S&G, and copper samples are difficult to distinguish from each other. Each sample set
shows some variability in both the positive and negative direction along both components.
More gold samples have positive scores along PC1 than copper and S&G samples. S&G
samples trend a bit more negatively in the PC2 direction compared with copper and gold.
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Figure 7A,B display the scores and loadings plots for a PCA model of the FTIR spectra
in which limestone and iron mine samples have been excluded from the dataset. The new
model was calculated using 6 PCs, which captured 91.72% of the variation in the remaining
samples. PC1 now describes 40.80% of the variation in the spectra. The sample scores on
PC1 are displayed in Figure 7A. S&G, copper and gold mine samples have positive and
negative scores along PC1, although gold samples appear to trend more positively than
the others. All granite samples have negative scores on PC1. In Figure 7B, the fingerprint
region of the IR spectra (400–1500 cm−1) has mostly positive loadings with the exception
of 5 sharp peaks. The loadings for the silicate region are the most negative, and all other
regions (>1300 cm−1) have positive loadings.

Figure 8A,B show the scores and loadings plots on PC4 for a PCA model of the FTIR
spectra in which all samples except copper and gold have been excluded from the dataset.
5 PCs were used to calculate this model, which captured 88.05% of the variation in the
copper and gold samples. PC4 describes 9.16% of the variation in the spectra. The sample
scores on PC4 are displayed in Figure 8A. A majority of the scores for gold samples are
positive, and most of the copper sample scores are negative. Figure 8C displays the average
spectra with standard deviation for the samples collected in copper mines and samples
collected in gold mines.
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3.4. Predictive Model Based on First-Order Spectral Maxima with Mineralogy Data

A simple predictive model for identifying mineral phases in the samples was estab-
lished by matching the maxima of first-order spectra of samples with their mineralogy,
establishing a scoring system based on the matches, and performing a cross-validation
via the leave-one-out testing method. Three parameters were used to assess model perfor-
mance: (1) Calculation of the number of matches with the first-order spectrum that had the
lowest score, (2) Calculation of the number of false negatives, and (3) Calculation of the
number of false positives. Figure 9 displays the results of the assessment.
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Figure 9. Number of mineral phase matches (purple), false negatives and false positives using
score matching of first order maxima of FTIR spectra to predict mineral phase occurrences in a
test spectrum.

In the 130 samples, the XRD analysis reported overall 684 mineral phases. The pre-
dictive model identified 77% of these phases, exactly 519 phases. The incidence of the
false negatives and false positives was calculated as how many times one false single false
positive occurred while cross validating the model. For example, 31 times (23.9%) one false
positive occurred during the 130 cross-validations. One false negative occurred 26.9% of
the time. The likelihood of at least two false negatives or two false positives occurring was
23.9% and 21.5%, respectively. The likelihood of 3 or more false negatives or false positives
occurring is below 10%.

4. Discussion
4.1. Mineralogy Overview

The occurrence of RCS in each of the 130 respirable dust samples is not surprising [44].
Following the feldspar mineral class, silica minerals are the second most abundant mineral
family in the Earth’s crust [45]. Crystalline silica in the form of α-quartz is the most abun-
dant silica mineral phase, and its presence is ubiquitous throughout most geologies [46].
Moreover, the underlying objective of this research is to establish foundational knowledge
for the development of improved quantification models for RCS exposure monitoring, thus
only samples containing quartz were of interest.

To assess the mineralogical complexity of a given respirable dust, it is helpful to
determine the number of individual mineral phases present. The incidence of 5 mineral
phases was reported for most of the samples (Figure 1). This information can also guide
the development of quantification models for crystalline silica and other mineral phases
that should account for the presence of a complex matrix. The average number of mineral
phases in the matrix can affect the design and creation of the quantification models. This
is the case, for example, of the need to prepare calibration samples representative of
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respirable mine dust using pure minerals. The calibration samples do need to account
for all the possible combinations of mineral phases identified in the real samples, or at
least the samples known to be interferences for a specific analytical technique. Although
many standard analytical methods report mineral confounders for RCS, there are only a
few limited studies that have attempted including them in the creation of quantification
models [47,48], with the exception of the models for samples collected in coal mines [14].

The number of mineral phases within each commodity was consistent and in agree-
ment with the overall distribution shown in Figure 1. For samples collected in copper, gold,
granite, sand and gravel (S&G), and limestone mines, most samples contained approx-
imately 4–6 mineral phases. It is important to note that the average number of mineral
phases in the samples does not provide any information on the abundance of each mineral
phase in the samples. The analysis accounts for the presence of minor mineral phases and
the presence of mineral phases that are major constituents of the samples in the same way.

4.2. PCA of X-ray Diffraction Results

Examination of the XRD results shown in Figure 2A,B indicate that carbonate minerals
have a substantial influence on PC1 and are responsible for much of the variation in the
dataset. The simultaneous interpretation of the two plots show that there is an association
between the samples collected in limestone mines and the carbonate minerals. Carbonate
minerals have the major contribution in characterizing PC1 as displayed in the loading
plot (Figure 2B). Additionally, the samples collected in limestone mines exhibit the highest
positive scores for PC1.

The scores and loadings plots for PC2 (Figure 2C,D) indicate that samples collected in
granite mines (referred to as granite samples) can be characterized almost uniquely by the
variation in composition of mineral phases plagioclase and K-feldspar. This statement can
be supported by evidence in both Figure 2C,D: (1) plagioclase and K-feldspar have strong
negative loadings for PC2 and (2) all granite samples have negative scores on PC2. The
authors note that it may not be appropriate to extrapolate this finding to respirable dust
samples from any granite mine, as the granite samples in this study were collected in a
single geographic region of the United States. Scores of samples from copper, gold, S&G,
and other metals mines spread from negative to positive along PC2 indicating variability in
the mineral phases: muscovite, plagioclase, and K-feldspar. Scores for iron mine samples
show the least amount of variation along PC1 and PC2, indicating carbonates, muscovite,
plagioclase, and K-feldspar may be of less importance in characterizing this sample set of
iron mine dust.

The relationships between commodity groups are evident in the score plot shown
in Figure 3. This figure illustrates the clustering behavior of the limestone samples indi-
cating their similarity to each other. Inspection of the mineralogy data (Table 1) confirms
the similarities amongst the limestone samples, as all these samples were collected in
limestone mines and contain carbonate minerals, except one (indicated by arrows in
Figures 2A and 3). This sample, also collected in a limestone mine, does not follow the
same trend of the samples collected in the same commodity. It can be considered unique
relative to the other limestone samples. A review of the XRD analysis results for this sample
confirmed the absence of carbonate minerals.

Iron and granite samples tend to form within class groups, with iron samples cluster-
ing around the zero point for both components and granite samples exhibiting negative
scores for both PC1 and PC2 (Figure 3). Samples from copper, gold, and S&G mines do not
form any clear groups suggesting that they are difficult to distinguish from each other. This
study is not able to make statements regarding the samples collected in industrial sand and
other metals mines due to the limited number of samples collected in these commodities.

The model also enables the recognition of unique samples, which is just as important
as recognizing sample similarities. Unique samples can be recognized by comparing
sample scores as was done to identify the unique limestone sample previously discussed.
Examination of the Q residuals and Hotelling T2 values can provide indication of samples
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that do not fit the model from a statistical perspective. In the case of an exploratory
PCA, high Q residual and Hotelling T2 values can be indicative of samples with unique
characteristics. In this analysis, a unique copper sample and a unique gold sample were
identified by a high Hotelling T2 and a high Q residual, respectively (see Figure A4 in
Appendix A). The gold sample contained 55% alunite and the copper sample contained
97% cristobalite. The high proportion of these mineral phases in these samples was unusual
compared with the percentage of these minerals in other samples within their cohort. Only
two other samples in the cohort contained alunite and cristobalite as mineral phases, but
at the trace level only. From a modeling perspective, these samples could be considered
outliers, but since PCA is an exploratory technique, we can consider them unique samples
compared to the entire dataset. With the collection of more samples and the expansion
of the dataset, the unique samples can become standalone groups within or outside the
commodities where they were collected.

The review of scores and loadings for PC3 and PC4 of the PCA model did not reveal
substantially different information (Appendix A, Figure A5A–D). Although PC5 captures
a comparatively small portion of the dataset, it is the first component that shows a clear
association between the scores of the iron samples and the loadings for mineral phases
that are typically found in iron dust (Figure 4A,B). The variation of the iron scores in the
negative direction (Figure 4A) is likely due to the contributions of magnetite and hematite
on PC5 (Figure 4B). The small variance captured by this PC can be explained by the fact
that iron samples make up roughly 5% of the dataset. The distribution of variance captured
by different components and the influence of different variables on each component is
highly affected by the distribution of the samples in the dataset. The fact that PC1 is so
strongly influenced by carbonates minerals and that samples collected in limestone mines
exhibit high scores for this PC was influenced by the number of samples collected in this
commodity in the entire dataset and the fact that these samples can be characterized so
uniquely by carbonates.

4.3. PCA of FTIR Spectra

It is easy to see similarities and differences within the dataset and between commod-
ity groups when reviewing a mineralogy data table, such as Table 1. However, recog-
nizing these patterns is not as intuitive when evaluating the spectral data of the same
samples. FTIR spectra of samples containing multiple mineral phases typically have char-
acteristic bands that interfere with each other, complicating identification and quantifica-
tion. The mean spectra of samples from each commodity exhibit the most variability in
the region (3200–3800 cm−1), applicable to Si-OH vibrations, and the fingerprint region
(400–1500 cm−1) where the quartz doublet for RCS is located (Figure A2, Appendix A).
Methods like PCA are particularly useful for finding common spectral patterns in FTIR
spectra in complex samples and revealing spectral regions correlated with sample variabil-
ity. Moreover, PCA allows for the extraction of similar and complementary information
from both XRD and FTIR datasets.

Similar to the XRD-PCA results, the presence of carbonates is the dominant spectral
feature that contributes to positive PC1 scores. Thus, the limestone samples (except the
unique sample), which contain the greatest proportion of carbonates, all have strongly
positive PC1 scores (Figure 5A). The carbonate region of the infrared spectrum is positively
correlated with PC1, indicating an association between the limestone samples and the
carbonate region. The association between samples collected in limestone mines and
carbonates was observed in both FTIR and XRD data analyzed by PCA. The consistent
result from the separate application of PCA to both the XRD and FTIR datasets validates
the FTIR-based approach of exploring mineralogical complexity of respirable mine dusts.
Furthermore, the recognition of the same unique samples using both techniques cautions
against the overreliance on a priori knowledge for predicting mineral composition of
samples collected in the mining environment.
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The results for granite samples in the PCA model of FTIR spectra also showed some
agreement with the PCA model of the XRD data. Figure 5A shows that all granite sample
scores are negative. While the association of negative granite scores with negative loadings
from specific mineral phases was clearer by the nature of the XRD data, infrared signatures
for these minerals are more complex. The broad peak at ~1000 cm−1 encompasses many
vibrational peaks of several silicate mineral phases, such as the plagioclase and K-feldspar
phases identified by the PCA XRD model. The bands from 400–800 cm−1 in the fingerprint
region are indicative of muscovite and feldspar mineral phases. Mineralogy shows that
the average feldspar content of the granite samples is 62.5%. The silicate region and
the 400–800 cm−1 bands both contribute negatively to the loadings on PC1 (Figure 5B).
The negative loadings of these regions suggest their importance for characterizing the
granite samples.

It is also possible to make observations about the variability of the samples from other
commodities. In Figure 5A, iron samples scores vary mostly in the positive direction, while
gold, copper, and S&G spread in both directions along PC1. Any associations between
the scores of these samples and the loadings in Figure 5B are less clear. Additionally, the
limited number of samples collected in industrial sand and other metals mines prevents
this study from making statements about the samples collected in these commodities.

Compared with other commodities, samples from iron mines have the greatest spread
in the positive direction along PC2 (Figures 5C and 6). The spectral region which contributes
the most positive loadings on PC2 is the 3200–3800 cm−1 region. The loadings in this
region represent the positive variation in intensity in this region of the spectrum. The
iron samples scores had the most variation in the positive direction. Moreover, the three
iron samples with the highest positive scores contained large amounts of magnetite, and
their spectra contained high intensity, broad absorption bands in the same region. This
observation suggests the higher intensity in this region may be associated with the presence
of magnetite.

Grouping behavior of certain sample classes observed in the PCA model of XRD data
can be recognized in the PCA model of the samples’ FTIR spectra. The plot in Figure 6
shows that the limestone samples cluster together in the lower right-hand quadrant of the
plot. Iron and granite samples also form clear groups. The iron samples spread into the
upper right-hand quadrant of the plot, a pattern distinct from all the other sample classes.
All the granite samples have negative scores on PC1 and PC2 and form a tighter group.
Samples from copper, gold, and S&G mines do not form any clear groups suggesting
that they are difficult to distinguish from each other in the model and may be difficult
to characterize.

The same unique limestone sample is also recognized in the PCA model of FTIR and is
indicated by the arrow in Figure 6. Samples with unique characteristics were also identified
by their high Q residual or Hotelling T2 values (Figure A7, Appendix A). The same unique
copper and gold samples identified in the PCA model of the XRD data also identified
exhibited high Q residual and Hotelling T2 values in the PCA model of the FTIR spectra,
distinguishing them from the other samples within their commodities as well as the dataset
as a whole. These samples are indicated with arrows in Figure A7. Additionally, the PCA
models of both techniques can recognize the iron mines as unique relative to the whole
sample set, as there are so few iron samples.

The removal of limestone and iron samples from the spectral dataset allows for closer
investigation of further structure within the remaining samples. Copper, gold, and S&G
sample scores in Figure 7A appear to trend more positively. Although limestone samples
have been excluded, Figure 8B shows the carbonate peak still contributes positive loadings
on PC4. Moreover, the sharp peak at 875 cm−1 can be attributed to calcite and has a
positive loading on PC1. Perusal of the sample mineralogy in Table 1 shows medium to
high incidence of calcite and dolomite in copper, gold, and S&G samples, suggesting their
association within the model. The granite samples retain negative score positions, and the
loadings of the silicate region in Figure 7B remains strongly negative. The higher incidence
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of carbonates in copper and gold mine samples, compared with the incidence in granite
mine samples coupled with the loadings strengthens the supposition that the silicate region
may be used for characterizing and distinguishing granite samples.

Throughout this study, patterns specific to copper or gold samples, which could
indicate ways to characterize them, were difficult to identify. To investigate the structure
of these samples further, a PCA model was calculated for copper and gold mine samples
with samples from all other commodities excluded from the dataset. No clear associations
between samples scores and loadings were observed until PC4 was considered. At this
point, some differences in the scores of both sample classes emerge. Gold samples have
more positive scores, while copper samples have more negative scores in Figure 8A. In
Figure 8B, most of the features in the fingerprint region have positive loadings, as does the
carbonate region. Three sharp features in the fingerprint region around 500–800 cm−1 and
the Si-OH stretching region (>3200 cm−1) of the spectrum have negative loadings; however,
the Si-OH stretching region contributions are the strongest.

The variability of the copper and gold spectra were studied to determine which spec-
tral features contribute to the splitting of the gold and copper samples scores (Figure 8C).
Common features in the spectra of both copper and gold samples include sharp peaks in
the fingerprint region that are indicative of feldspar and muscovite mineral phases and the
broad and intense silicate peak around 1000 cm−1. The notable differences between the two
commodities are lower intensity peaks for carbonates (~1400 cm−1) and higher intensity,
more defined peaks for kaolinite (~3600 cm−1). XRD mineralogy data confirm that copper
samples on average contain lower amounts of carbonate minerals and higher amounts
of kaolinite compared with gold samples. The spectral features and mineralogy suggest
the hypothesis that the splitting of copper and gold scores is due to the anti-correlation
between the loadings for the carbonate region and the Si-OH stretching region.

The authors note that the need to use PC4, which only describes 9.04% of the variation
in the samples, underscores the complexity of the samples from an analytical standpoint.
Moreover, it may not be possible to extrapolate these interpretations to samples from any
gold and copper mine due to the limited number of samples in this dataset as well as the
use of a principal component which describes a small percentage of the data.

4.4. Predictive Model Based on First-Order Spectral Maxima with Mineralogy Data

The model created with the dataset explores the possibility of predicting the presence
of specific mineral phases using FTIR spectra of the samples and verified with XRD
mineralogy data of the same samples. The model was developed for several reasons. The
PCA models of the FTIR spectra and XRD mineral phases data highlighted the complexity
of the composition respirable dust present in mining environments. The PCA models
also enabled the possibility of investigating associations between the composition and
the commodity where the samples were collected. The two PCA investigations presented
similar findings for the samples but from different perspectives. The simple predictive
model tested the agreement of the findings from the two analytical techniques. Moreover,
the predictive model showed that the FTIR could predict the correct mineral phase 77.1% of
the time, independently from the commodity where the sample was collected. The model
predicted mineral phases that were not present or missed phases that were present less than
30% of the time. Thus, the model demonstrates that both techniques capture similar sample
complexities most of the time. The occurrences of false positives or false negatives indicate
where the two techniques differ in their description of the samples. These differences can
be attributed to the differences in the physical, fundamental mechanisms of each technique
as well as their specific instrumental limitations.

In addition to sample complexity, fundamental instrumental limitations are also im-
portant to consider when building quantification models. When quantification is necessary,
the presence of other minerals in samples may interfere with the signal of the target min-
eral. In FTIR analyses, silicate minerals pose many interferences in the fingerprint region
where the quartz doublet is located. XRD quantitative analysis techniques are affected by
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preferential orientation and have difficulty addressing amorphous phases. The predictive
model can be considered a first step for the development of quantification models for
RCS to be used for on-site monitoring using portable FTIR. For example, the model could
predict the presence of mineral phases in each respirable dust sample analyzed in the field
with a portable FTIR using a direct-on-filter technique. The identification of mineral phases
using FTIR can direct the analyst to the use of an appropriate, advanced quantification
model. The use of a simple predictive model for quick identification of mineral phases as a
precursor to quantification may be useful especially considering the samples with unique
and unexpected mineralogy that may be encountered in the mining setting.

Although this study provided valuable information on the complexity of the respirable
mine dust samples in terms of mineralogical composition, the dataset cannot be used to
generalize these findings as representative for any mine dust. The distribution of the
samples in the dataset, in terms of samples from different commodities, was based on
the success of collecting bulk dust samples from mining operators. The distribution was
not designed to represent the variability of mine dust or the presence of the different
commodities in the United States. In addition, although not reported, the geographical
location of the mine operations where the samples were collected was not part of the study
design process. Another limitation was the nature of the respirable dust samples analyzed
via X-ray diffraction. With the intent of analyzing the same sample with both analytical
techniques, direct-on-filter X-ray diffraction was employed on the samples. The small
quantity of sample on the filter and the presence of the filter media influenced the quality
of the quantification of the mineral phases in each sample. For example, the quantification
of calcite was affected by the filter media and the preferred orientation of some mineral
phases was enhanced by the direct-on-filter approach. Future studies should consider
the idea of using powdered respirable samples for XRD analysis. Finally, particles size
distribution and morphological analyses were not included in this study. These factors are
important in characterizing health effects of respirable dust exposure and should also be
considered in subsequent research.

5. Conclusions

This study investigated the complexity, in terms mineral phase composition, of respirable
dust samples collected in 7 different mining commodities using FTIR and XRD analysis. From
the results of the study, it is possible to summarize the following conclusions:

• Mineral phases were identified by XRD analysis and Rietveld refinement. Most of the
samples included in this study contained 5 mineral phases regardless of the mining
commodity in which the samples were collected or obtained.

• A total of 29 mineral phases were identified in the samples included in the dataset.
An exploratory principal component analysis (PCA) investigation on the XRD results
relative to the mineral phases content per each sample indicated that 6 components
are sufficient to explain 88% of the compositional variability of the samples.

• The PCA analysis on the XRD results provided information on the possibility of
classifying samples collected in limestone mines based on the presence of carbonate
mineral phases. Samples from granite and iron mines can be partially recognized
based on the presence of feldspars and iron oxides, respectively.

• The PCA analysis of the FTIR spectra of the same samples confirmed the same com-
plexity and the possibility of using specific regions of the spectrum to classify samples
from limestone, granite, and iron mines. The separation of samples from copper and
gold mines was also investigated considering the high number of samples collected in
these commodities.

• Both PCA models identified unique samples characterized by mineralogy data and
spectra that were significantly different compared to the average samples collected in
the same commodity and to the entire dataset.
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• Despite the complexity of the mineralogy of the samples in the dataset detected by
both the FTIR and XRD analyses, a predictive model using FTIR spectra was created
to predict the presence of mineral phases in the samples. The model assumed that
similar spectra contained similar mineral phases. The XRD data for the samples in the
data were used to cross-validate the simple model.

Although the study had limitations in terms of the distribution of the samples in the
dataset and the fact that XRD analysis could be improved by doing analysis of powdered
samples rather than direct-on-filter samples, the findings provided important insight into
the variability and complexity of respirable mine dust in terms of mineral phases. The
results of this study can support the creation of quantification models for crystalline silica
and other phases in complex mixtures, which will enable improved exposure monitoring
approaches in the workplace. Furthermore, FTIR analysis has the potential to detect the
presence of mineral phases and to assess the complexity of the mineralogy in respirable
dust samples as well as XRD. The main advantages of using FTIR are the shorter analysis
time of a few minutes compared to several hours and the possibility of using a portable,
field instrument.
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Figure A2. Mean spectra from each type of mining operation displaying variability of IR bands in the Si-OH stretching
region (3200–3800 cm−1) region and the fingerprint region (400–1500 cm−1).

Table A1. Table displaying eigenvalue, %variance captured and % cumulative variance captured for
every PC.

PC Eigenvalue of Cov(X) % Variance with this PC % Variance Cumulative

1 9.00 × 102 44.23 44.23

2 2.94 × 102 14.46 58.69

3 2.33 × 102 11.45 70.14

4 1.70 × 102 8.35 78.49

5 1.18 × 102 5.78 84.27

6 7.66 × 10 3.76 88.03
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Table A2. Table displaying eigenvalue, %variance captured and % cumulative variance captured for
every PC.

PC Eigenvalue of Cov(X) % Variance with this PC % Variance Cumulative

1 7.82 × 10−1 47.87 47.87

2 4.86 × 10−1 29.75 77.62

3 1.37 × 10−1 8.39 86.00

4 8.08 × 10−2 4.95 90.95

5 4.00 × 10−2 2.45 93.40

6 2.37 × 10−2 1.45 94.85
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