

Supplementary Materials

Describing Phosphorus Sorption Processes on Volcanic Soil in the Presence of Copper or Silver Engineered Nanoparticles

Jonathan Suazo-Hernández ^{1,2}, Erwin Klumpp ³, Nicolás Arancibia-Miranda ^{4,5}, Patricia Poblete-Grant ², Alejandra Jara ^{2,6}, Roland Bol ³ and María de La Luz Mora ^{2,6,*}

- ¹ Doctoral Program in Science of Natural Resources, Universidad de La Frontera, Av. Francisco Salazar 01145, P.O. Box 54-D, 4780000 Temuco, Chile; j.suazo06@ufromail.cl
- ² Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Biotechnological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Avenida Francisco Salazar 01145, 4780000 Temuco, Chile; patty.grant87@gmail.com (P.P.-G.); alejandra.jara@ufrontera.cl (A.J.)
- ³ Institute of Bio- and Geosciences, Agrosphere (IBG–3), Forschungszentrum Jülich, Wilhelm Johnen Str., 52425 Jülich, Germany; e.klumpp@fz-juelich.de (E.K.); r.bol@fz-juelich.de (R.B.)
- ⁴ Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Av. B. O'Higgins, 3363 Santiago, Chile; nicolas.arancibia@usach.cl
- Center for the Development of Nanoscience and Nanotechnology, CEDENNA, 9170124 Santiago, Chile
- ⁶ Department of Chemical Sciences and Natural Resources, Universidad de La Frontera, Av. Francisco Salazar 01145, P.O. Box 54-D, 4780000 Temuco, Chile
- * Correspondence: mariluz.mora@ufrontera.cl; Tel.: +56-4574-4240; Fax: +56-4532-5053

Figure S1. TEM images L-ascorbic acid-stabilized (a) Cu⁰ and (b) Ag⁰ ENPs.

Figure S2. Histograms with the corresponding particle size distribution for L-ascorbic acid-stabilized (**a**) Cu^0 and (**b**) Ag^0 ENPs.

Figure S3. UV-Vis absorption spectra for L-ascorbic acid-stabilized Cu⁰ and Ag⁰ ENPs.

Figure S4. FT-IR spectra of (**a**) Pure L-ascorbic acid, (**b**) L-ascorbic acid-stabilized Cu⁰ ENPs and (**c**) L-ascorbic acid-stabilized Ag⁰ ENPs.

Figure S5. Zeta potential of L-ascorbic acid-stabilized Cu⁰ and Ag⁰ ENPs in 0.01 M KCl.

Figure S6. FT-IR spectrum for soil samples with (**a**) total organic matter (T-OM) and (**b**) partial removal of organic matter (R-OM).

Figure S7. Zeta potential curves in the presence of 9.71 mmol·L⁻¹ H₂PO₄⁻ and 5% Cu⁰ or 5% Ag⁰ ENPs at constant ionic strength (0.01 M KCl) for soil with (**a**) total organic matter (R-OM) and (**b**) partial removal of organic matter (R-OM).

Figure S8. Adsorption isotherm curves of $H_2PO_{4^-}$ on (**a**) total organic matter (T-OM) and (**b**) partial removal of organic matter (R-OM) in the presence of 3% L-ascorbic acid and Cu²⁺ and Ag⁺. Reaction conditions: Concentrations from 0.016 to 9.71 mmol·L⁻¹ H₂PO_{4⁻} on 0.5 g soil in 0.01 M KCl at 20 ± 2 °C and pH 5.5.

Table S1. Pseudo-first-order parameters (\pm standard error) obtained from H₂PO₄⁻ adsorption kinetics in the absence and presence of different doses of Cu⁰ and Ag⁰ ENPs at pH 5.5 \pm 0.2 for soil with total organic matter (T-OM) and with partial removal of organic matter (R-OM).

	Pseudo-first-order				
	ENPs doses (%)	q _{e,cal} (mmol·kg ⁻¹)	k1 (x 10 ⁻³ min ⁻¹)	r ²	χ^2
T-OM	0	156.2 ± 6.7	198.7 ± 47.3	0.863	359
R-OM		165.6 ± 7.5	211.8 ± 53.7	0.848	451
			Cu ⁰		
T-OM	1	167.3 ± 8.0	193.2 ± 51.5	0.837	521
R-OM		195.8 ± 6.6	161.7 ± 29.5	0.920	341
T-OM	3	191.3 ± 9.8	218.0 ± 63.4	0.808	788
R-OM		215.0 ± 5.2	325.3 ± 50.0	0.945	231
T-OM	5	201.3 ± 10.5	163.3 ± 46.4	0.818	874
R-OM		225.7 ± 6.5	378.9 ± 73.9	0.920	371
			Ag^0		
T-OM	1	169.1 ± 11.4	151.6 ± 55.4	0.721	1018
R-OM		168.7 ± 8.7	131.8 ± 36.8	0.848	583
T-OM	3	190.9 ± 9.5	205.1 ± 56.9	0.820	725
R-OM		173.2 ± 9.5	137.1 ± 40.5	0.830	694
T-OM	5	204.5 ± 7.0	255.5 ± 51.2	0.905	403
R-OM		183.8 ± 9.5	201.9 ± 58.1	0.814	727