

Supplementary Material

Top-Down Synthesis of NaP Zeolite from Natural Zeolite for the Higher Removal Efficiency of Cs, Sr, and Ni

Seokju Hong¹ and Wooyong Um ^{1,2,3,*}

- ¹ Division of Advanced Nuclear Engineering (DANE), Pohang University of Science and Technology (POSTECH), 77 Chongam-ro, Nam-Gu, Pohang 790-784, Korea; frederic@postech.ac.kr
- ² Division of Environmental Sciences and Engineering (DESE), Pohang University of Science and Technology (POSTECH), 77 Chongam-ro, Nam-Gu, Pohang 790-784, Korea
- ³ Nuclear Environmental Technology Institute (NETI), Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 790-784, Korea
- * Correspondence: wooyongum@postech.ac.kr; Phone: +82-54-279-9563; Fax: +82-54-279-9559

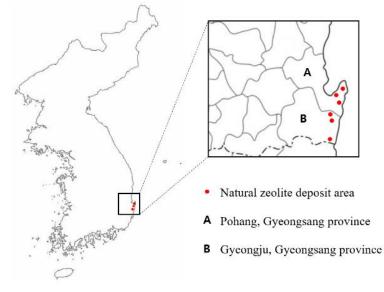
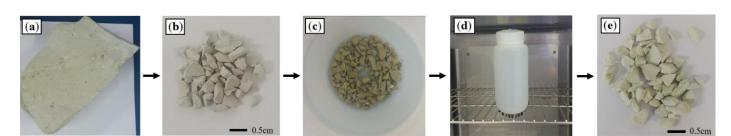


Figure S1. The location of a natural Korean zeolite-mining site (left) where the natural zeolite ore sample (right) was collected.

Composition	Groundwater (ppm)	
Na ⁺	45.9	
K+	2.45	
Mg²+ Ca²+	9.76	
Ca ²⁺	54.5	
Cl-	28.0	
SO4 ²⁻	0.81	
NO3-	9.4	

Table S1.	Composition	of Hanbit	groundwater.



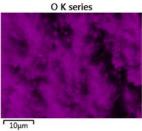
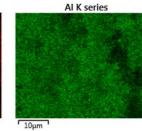
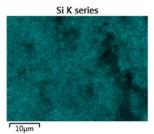

Figure S2. The "top-down" synthesis approach to produce granular-sized zeolites: (a) natural zeolite ore, (b) crushed natural zeolite (granular-sized), (c) zeolite immersed in NaOH solution, and (d) during the reaction process in the oven, and (e) resulting as-synthesized NaP zeolite (granular-sized).

Table S2. Chemical compositions of granular-sized natural and NaP zeolites expressed in wt.%.

Compound	Natural Zeolite	NaP Zeolite	
SiO ₂	72.43	48.70	
Al2O3	14.10	23.61	
Na2O	3.51	14.8	
K2O	2.36	1.17	
CaO	2.08	3.41	
MgO	0.81	1.37	
Others	3.81	6.94	


(a)	Ο Κα1 Si Κα1	Map Sum Spectrum	Element	Line type	Atomic percent (%)
			0	K series	64.33
	\$ 100-		Si	K series	25.62
henry to the mark	Al Kal	(Trues)	Al	K series	6.10
Charles Berght Allen	Na Ko1_2 Ca Lot 2	Κ Κα1 Ca Κα1	Na	K series	1.81
and the state of the			K	K series	1.57
E - A A A A A A A A A A A A A A A A A A	0 2	4 keV	Ca	K series	0.60


10µm

10µm

Na K series

Ο Kα1 Element Line type Atomic percent (%) Map Sum Spectrum (b) K series 59.29 0 Si Ka1 19.02 Si K series Al Ka Al K series 11.84 Ca Kα1 Na K series 9.04 Κ Κα1 K series 0.57 Ca 111 0.25 K K series

O K series Na K series AI K series Si K series 5μm 5µm 5µm 5µm

Figure S3. Elemental mapping of natural zeolite (a) and NaP zeolite (b) with SEM-EDX analysis.

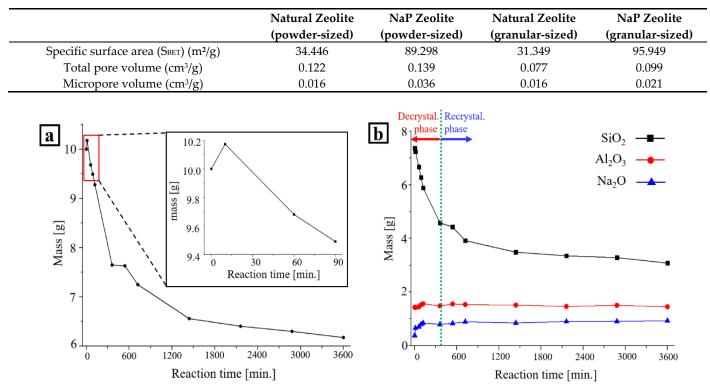
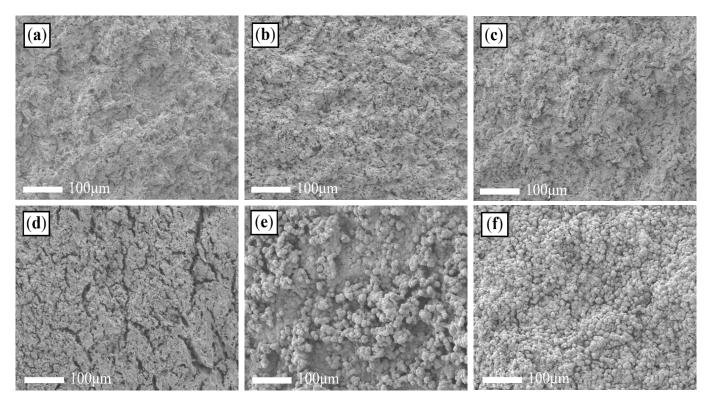
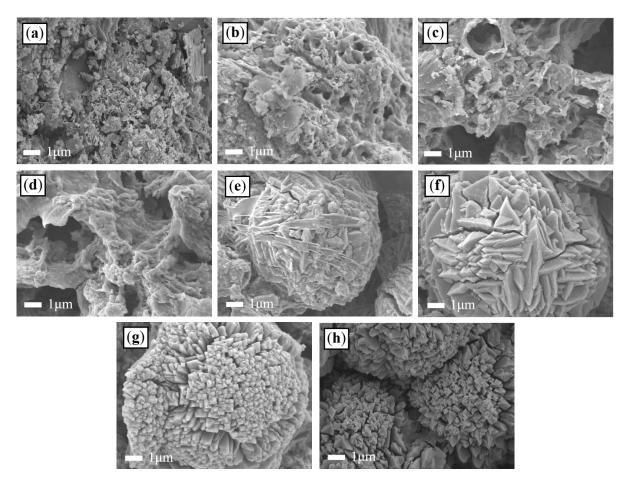




Table S3. Textural parameters of natural and NaP zeolites.

Figure S4. Mass variation (a) and composition variation (b) of zeolite with different reaction times.

Figure S5. SEM images showing morphological changes at different reaction times; (**a**) 10 min, (**b**) 1 h, (**c**) 2 h, (**d**) 9 h, (**e**), 24 h, and (**f**) 48 h.

Figure S6. SEM images showing morphological changes at different reaction times; (a) Natural zeolite, (b) 10 min, (c) 1 h, (d) 2 h, (e) 9 h, (f) 24 h, (g) 48 h, and (h) 60 h.

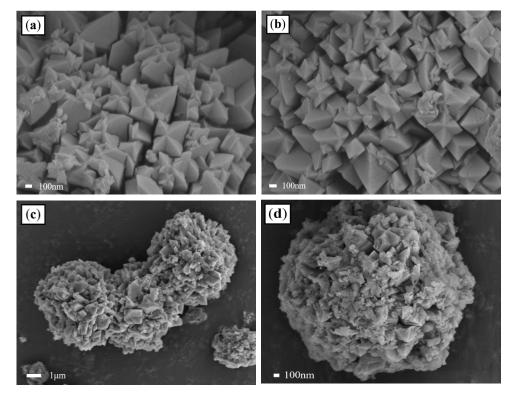


Figure 7. SEM images of two different-sized NaP zeolites (a), (b): Granular-sized NaP zeolite's surface, (c), (d): Powder-sized NaP zeolite's surface.

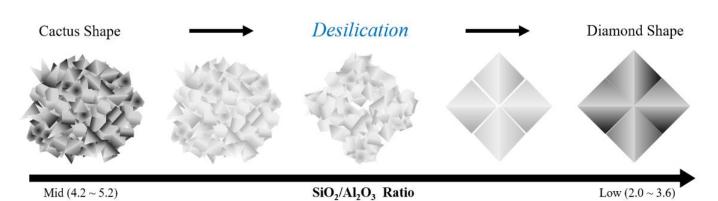
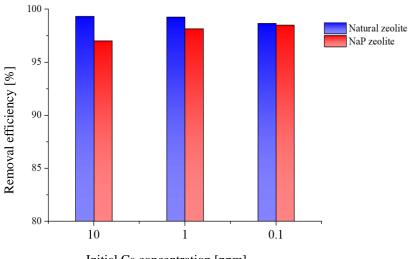



Figure S8. Morphological transition of the NaP zeolite with different Si/Al ratios.

Initial Cs concentration [ppm]

Figure S9. Batch sorption measurements for the removal of Cs at various concentrations in groundwater collected around the Hanbit NPP site. (Note: Error bars were omitted because of size constraints. The initial Cs⁺ concentrations were set to 10, 1, and 0.1 ppm, with the solid-to-solution ratio at 100 mL/g.