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Abstract: Gypsum (CaSO4·2H2O) is the most common sulfate mineral on Earth and is also found
on Mars. It is an evaporitic mineral that predominantly precipitates from brines. In addition to its
precipitation in natural environments, gypsum also forms an undesired scale in many industrial
processes that utilize or produce brines. Thus, better insights into gypsum formation can contribute
to the understanding of natural processes, as well as improving industrial practices. Subsequently,
the thermodynamics, nucleation and crystal growth mechanisms and kinetics, and how these factors
shape the morphology of gypsum have been widely studied. Over the last decade, the precipitation
of gypsum under saline and hypersaline conditions has been the focus of several studies. However,
to date, most of the thermodynamic data are derived from experiments with artificial solutions that
have limited background electrolytes and have Ca2+/SO4

2− ratios that are similar to the 1:1 ratio in
the mineral. Moreover, direct observations of the nucleation and growth processes of gypsum are
still derived from experimental settings that can be described as having low ionic strength. Thus,
the mechanisms of gypsum precipitation under conditions from which the mineral precipitates in
many natural environments and industrial processes are still less well known. The present review
focuses on the precipitation of gypsum from a range of aspects. Special attention is given to brines.
The effects of ionic strength, brine composition, and temperature on the thermodynamic settings
are broadly discussed. The mechanisms and rates of gypsum nucleation and growth, and the
effect the thermodynamic properties of the brine have on these processes is demonstrated by recent
microscopic and macroscopic observations. The morphology and size distribution of gypsum crystals
precipitation is examined in the light of the precipitation processes that shape these properties. Finally,
the present review highlights discrepancies between microscopic and macroscopic observations, and
studies carried out under low and high ionic strengths. The special challenges posed by experiments
with brines are also discussed. Thus, while this review covers contemporary literature, it also outlines
further research that is required in order to improve our understanding of gypsum precipitation in
natural environments and industrial settings.

Keywords: gypsum nucleation; gypsum crystal growth; gypsum morphology; calcium sulfate
dihydrate; saline environment; evaporitic environments

1. Introduction

Three CaSO4·nH2O minerals are known to exist: anhydrite (n = 0), bassanite (n = 0.5),
and gypsum (n = 2). Gypsum first appeared in the geologic record during the Archean [1],
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and it is the most abundant sulfate mineral on Earth. Gypsum precipitates in many
environments but it is primarily recognized as an evaporitic mineral that precipitates from
evaporated seawater, with large terrestrial deposits of it originating from marine evaporitic
environments, such as the “Mediterranean evaporite giant” deposited during the Messinian
salinity crisis [2]. Natural precipitation of gypsum occurs also in other environments, such
as lakes [3,4], hydrothermal waters [5,6], and volcanic environments [7].

Traditionally, marine evaporitic environments are described by the “lagoon model”
first proposed in the late 19th century [8]. According to this model, an area with limited con-
nectivity to the sea may experience a net negative water balance (i.e., evaporation > inflow).
As a result, the dissolved ions in the water are concentrated, and the salinity and saturation
state of the brine with respect to gypsum increases until the attainment of saturation and
onset of precipitation. Ultimately mineral precipitation begins. Later studies showed
that under such geological settings three factors will lead to increased oversaturation
and eventually prompt precipitation: (1) increase in ion concentration; (2) fluctuations in
temperature; and (3) mixing of undersaturated or saturated brines with varying degrees
of evaporation that may be undersaturated or saturated [9]. While a simplistic approach,
one or a combination of these three factors can explain the attainment of oversaturation
and the onset of abiotic gypsum precipitation in many natural environments and indus-
trial processes.

Whether in a lagoon or other environments, the precipitation of gypsum from evapo-
rated seawater begins at an evaporation factor of 3.3–3.8 [10–13]. At this evaporation factor,
the ionic strength (I) is about 3 molal (m). Because of their settings, evaporitic deposits of
gypsum are keys to the reconstruction of climate, hydrological, and geochemical cycles of
the past [14–18].

Large quantities of gypsum and bassanite exist on Mars [19,20]. It was suggested that
the Martian gypsum deposits also precipitated under saline evaporitic conditions [19,21,22].
A better understanding of the conditions in the terrestrial saline environments in which
gypsum precipitates may provide insight into the development of the gypsum deposits on
Mars, and the hydro-geological history of that planet [16]. Thus, understanding the factors
affecting gypsum precipitation is important.

Today evaporitic environments in which gypsum precipitates are found in a wide
range of geographic locations, spanning from Africa and Asia, to America, Australia, and
even Antarctica [23–27]. Precipitation of gypsum under saline conditions also occurs dur-
ing industrial processes such as desalination and the production of oil and hydrothermal
energy [28–31]. In these industrial operations, gypsum forms a scale that may clog mem-
branes, pipes, and boreholes, affect aquifers and reservoirs, and can result in the temporary
halting of production [28,32]. CO2 sequestration in saline aquifers hosted by carbonate
rocks might also prompt the formation of gypsum scale, a process that would affect aquifer
properties and the feasibility of such operations [33–35].

To prevent the formation of gypsum scale (as well as other minerals), antiscalants
(scale inhibitors) are often added to brines during industrial processes. The addition of
antiscalants increases operational costs and the introduction of these chemicals into natural
environments may have undesired consequences [36–39].

Thus, gypsum precipitation under saline conditions bears significance on various
geological, environmental, and industrial issues. Over the last decade, several studies have
focused on gypsum precipitation under saline and hypersaline conditions. In addition,
in recent years advanced techniques (e.g., atomic force microscopy (AFM), transmission
electron microscopy (TEM), small and wide angle X-ray scattering (SAXS/WAXS)) are
increasingly used to study the early stages of gypsum precipitation and the growth mecha-
nisms at the nanometer and micrometers scales. However, the chemical complexity of the
precipitating brine poses a challenge when applying some of these advanced techniques.
Subsequently, direct observations of the mechanisms of gypsum precipitation are derived
from solutions with low salinities and a limited variety of background electrolytes. Often,
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discrepancies exist between the microscopic and macroscopic studies, as well as between
experimental studies carried out in brines vs. in low ionic strength solutions.

In the following, we review the thermodynamics, kinetics, and crystal habit of gypsum.
Gypsum precipitation under saline and hypersaline conditions is given special considera-
tion. In addition, the discrepancies between microscopic and macroscopic observations
and studies carried out under conditions of high and low salinity are emphasized.

2. Thermodynamics
2.1. Determination of Saturation, Solubility, and Activity Coefficients

The degree of saturation of a solution with respect to gypsum is given by Ωgypsum:

Ωgypsum =
IAP
K0

SP
=

aCa2+ · aSO2−
4
· a2

H2O(
aCa2+ · aSO2−

4
· a2

H2O

)
eq

(1)

where IAP is the ion activity product, K0
SP is the thermodynamic solubility product, and a

is the activity of the species.
The activity of the jth species is related to its molal concentration (mj) by a composi-

tionally determined activity coefficient γj:

aj = γjmj (2)

The solubility (CS) of a mineral is the molal concentration of that mineral dissolved
in a solution at equilibrium (i.e., Ω = 1). Thus, for gypsum in a stoichiometric solution
(i.e., containing equal amounts of Ca2+ and SO4

2−), CS would be the concentration at
equilibrium of either Ca2+ or SO4

2−. If the quotient of Ca2+/SO4
2− in solution differs

from the ratio in the mineral, CS would equal the equilibrium concentration of the less
abundant ion. Whatever the Ca2+/SO4

2− ratio in solution may be, CS and the equilibrium
concentrations of the lattice ions are directly linked.

Many saline solutions in natural and industrial environments are oversaturated
(i.e., Ω > 1) with respect to several minerals. Ostwald’s step rule determines that if
several minerals can precipitate from solution, the first phase to precipitate is the least
stable one, with the nearest free energy to the initial state (i.e., the solution) [40]. Their
solubility determines the stability of the various minerals. Precipitation of less stable
minerals may change the saturation state of the more stable minerals, thus affecting the
mineral assemblage that ultimately precipitates. Gypsum is one of three possible calcium
sulfate minerals and solutions from which it precipitates are typically oversaturated with
additional minerals containing the same lattice ions (anhydrite and bassanite) or some of
them (e.g., calcite, barite, etc.). Therefore, the ability to calculate mineral solubility is crucial
in studies that reconstruct paleo-conditions based on mineral assemblages, and to study
the natural occurrence of gypsum.

2.2. The Pitzer Formalism

During the 1970s, Pitzer and co-authors developed a set of semi-empirical equations
that enable calculating the activity coefficients and mineral solubility in solutions with
high ionic strength [41–45]. These equations, referred to hereafter as the Pitzer formalism,
use a set of empirical interaction coefficients to calculate the activity coefficients of single
ions. Parameters β(0), β(1), β(2), and Cϕ are derived from binary systems and account for
the interaction of ion-pairs (cation–anion, cation–cation, and anion–anion). The parameters
ψ and θ are derived from ternary systems, and account for the interaction of ion triplets
(cation–cation–anion and anion–anion–cation). The values of these parameters were deter-
mined by Harvie and Weare for the Na-K-Mg-Ca-Cl-SO4-H2O system at 25 ◦C [46] and
from 25–250 ◦C by Moeller [47]. The parameters set by Harvie and Weare [46] allowed to
accurately determine the solubility of minerals during seawater evaporation up to I = 20
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molal and accurately calculate the solubility of gypsum and the activity coefficients of Ca2+

and SO4
2− over a wide range of saline and hypersaline conditions.

The Pitzer formalism and the coefficients determined by Harvie and Weare [46]
were shown to accurately calculate ion activity coefficients and mineral solubilities in
the Dead Sea (I~10 m) and the solubility product of gypsum in mixtures comprised of
Dead Sea brine (or evaporated Dead Sea brine) with seawater (or evaporated seawater)
up to I = 13 m [48,49]. The composition of these brines is distinctly different from that of
evaporated seawater. Overall, the Pitzer formalism was found to be effective in predicting
the thermodynamic properties of complex saline and hypersaline brines under ambient
conditions [50]. However, semi-empirical reaction coefficients for the Pitzer formalism
under environmental conditions that greatly vary from those parameterized by Harvie
and Weare [46,51] are also found in the literature. Such conditions include cryogenic
conditions ([52], and references within) that are relevant for conditions found on Mars or
Antarctica, or conditions of elevated pressure and temperature as may be found during
CO2 sequestration ([53], and references within).

Today the Pitzer formalism is implemented in various codes designed for thermo-
dynamic calculations (e.g., PHREEQC, The Geochemist’s Workbench, etc.) [54]. As the
parameters to accurately calculate the solubility and activity coefficients under different
conditions vary, it is the responsibility of the end-user to choose a source code with a set
of parameters tested to the desired ranges of pressure, temperature, ionic strength, and
solution composition.

We review here the implementation of the Pitzer formalism in the pitzer.dat database in
PHREEQC versions 2 and 3 [55,56] and its implications for studying gypsum precipitation
in brines to emphasize the importance of choosing the correct database. PHREEQC is a free
software package available at the United States Geological Survey (USGS) website: https:
//www.usgs.gov/software/phreeqc-version-3. The discussion focuses on PHREEQC for
two reasons: 1) this code is widely used by the “water–rock interaction” community, and 2)
the database and implementation of the Pitzer formalism were extended to account for high
T and P in a manner that affects calculations of gypsum solubility in saline environments
under ambient conditions. While this discussion focuses on PHREEQC and gypsum, its
conclusions hold also for other codes and minerals.

Initially, the pitzer.dat database in PHREEQC version 2 included the parameters
of Harvie et al. [46,51] for the system Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O
at 25 ◦C and an extension by Plummer et al. [57] to account for additional ions and
temperatures up to 300 ◦C. However, the extension by Plummer et al. [57] was based on
untested values and came with a warning that calculations extending beyond 0–60 ◦C
should be validated.

Reznik et al. [58] performed extensive experimental work to validate the accuracy of
the parameters that were implemented in PHREEQC (version 2, Pitzer.dat database) [55]
for the calculations of gypsum solubility in hypersaline brines under ambient conditions.
To validate the database, different mixtures between seawater and Dead Sea brine were
prepared (I = 3–10 m, and Ca2+/SO4

2− molar ratio = 5–115) and the solubility of the
mixtures was experimentally determined in temperatures of 15, 25, and 35 ◦C. A compar-
ison between the experiments and calculations carried out with the pitzer.dat database
demonstrated an excellent fit.

To make the thermodynamic calculations relevant for applications in studies of CO2
sequestration, high T and P conditions were included in version 3 of PHREEQC [56]. To
account for these conditions, equations (and parameters to solve these equations) that
consider the change in the specific volume of the aqueous species, gas, and the molar
volume of minerals as a function of temperature and pressure were incorporated into
PHREEQC [53,56,59]. However, the changes in the above physical values do not affect
the Pitzer interaction parameters. Hence, these changes were not limited to the Pitzer
formalism but also to other thermodynamic databases [56].

https://www.usgs.gov/software/phreeqc-version-3
https://www.usgs.gov/software/phreeqc-version-3
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Rendel et al. [60] constructed a novel experimental system that enables exploring
water–rock–CO2 interactions under conditions of CO2 sequestration. A comparison of their
experimental data at 25 ◦C up to 100 bar demonstrates that the changes implemented in
PHREEQC 3 allow to accurately calculate the effect of pressure, with or without CO2, under
these conditions [33,34]. A comparison between a compiled dataset of experimentally-
derived solubility of gypsum up to 100 ◦C (as well as other minerals over various tempera-
tures) and the calculations by PHREEQC 3 also shows a good fit [53].

The above changes were implemented in the early versions of PHREEQC 3, while
the parametrization of Harvie et al. [46,51] and Plummer [57] remained the base for the
Pitzer.dat database [56]. However, as outlined below, additional changes in the Pitzer.dat
database were made during later updates of the software, which were found to negatively
impact the accuracy of some of the thermodynamic calculations for gypsum in hypersaline
brines under ambient conditions [12].

The Pitzer formalism includes several additional empirical parameters on top of those
mentioned above. One of these, designated b, accounts for the short-range interactions.
Pitzer and Mayorga [42] assumed that b was a universal constant equal to 1.2. The experi-
mental work of Harvie et al. [46,51] verified this value which was later incorporated into
the Pitzer.dat database. To improve the calculations of the Pitzer.dat database at high T
and P, b was later changed from a constant to a variable, b = 1.2 − f (T,P). The rationale for
this change and the mathematical expressions of f(T,P) is given in Appelo [53].

Another Pitzer coefficient that was later updated in the Pitzer.dat database is Eθ. This
parameter accounts for electrostatic unsymmetrical mixing effects. The mathematical
expression for this is defined in Pitzer [44]. The Pitzer interaction parameters, and Eθ
calculation were optimized in the Pitzer.dat database released with version 3.2. A complete
list of updates and new implementations in PHREEQC is available on the software’s release
notes page on the PHREEQC website.

The precipitation potential is the mass of a mineral that must precipitate for an over-
saturated solution to attain equilibrium. The precipitation potential is easily determined in
the lab but in order to calculate it thermodynamically, the activity coefficients and solubility
of the mineral must be known. As such, the precipitation potential is a useful parameter
for verifying thermodynamic models. Figure 1 presents the experimentally determined
gypsum precipitation potential from a range of mixtures of Dead Sea brine and seawater
and calculations carried out using the two Pitzer.dat databases implemented in PHREEQC
2.1 (Harvie and Wear parameters for ambient conditions) and 3.3 (parameters for extended
P and T conditions).

It can be seen from Figure 1 that, compared to version 2.1, the updates in the Pitzer.dat
database version 3.3 result in calculations that are less accurate for gypsum in saline
environments and ambient P and T conditions. Hence, the choice of the thermodynamic
database should be performed with caution to be relevant to the experimental or natural
conditions in question. Nevertheless, it appears that the goal to enable accurate calculations
at high T and P was achieved. However, this came at the expense of calculations made for
brines under ambient pressure. For gypsum in saline environments under atmospheric
pressure, the best results are still provided by the parameterization of Harvie et al. [46,51].
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Reznik et al., [58]. Calculations are based on the two Pitzer.dat databases that were implemented in 
PHREEQC version 2.1 and 3.3. Figure reprinted from Rosenberg et al., [12] with permission of Else-
vier. 
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Figure 1. Experimentally-determined and calculated gypsum precipitation potentials from Dead
Sea brine–seawater mixtures at T = 25 ◦C and P = 1 atm. The experimental data are derived from
Reznik et al. [58]. Calculations are based on the two Pitzer.dat databases that were implemented
in PHREEQC version 2.1 and 3.3. Figure reprinted from Rosenberg et al. [12] with permission
of Elsevier.

2.3. Effects of Temperature and Composition on Gypsum Solubility
2.3.1. Range of Gypsum Stability

As gypsum is a mineral with significant importance in natural and industrial environ-
ments, much work was carried out to experimentally determine its solubility under a wide
range of temperatures and ionic strengths. The stoichiometry of the solution (i.e., the ratio
between the lattice ions dissolved in solution, Ca2+/SO4

2− for gypsum) and the pressure
may also affect solubility. However, thus far the effect of these properties has been far
less studied.

Gypsum solubility under different temperatures is well studied. However, the re-
ported temperature at which it is the stable calcium sulfate mineral widely varies [47,61–65].
The stability field of the three calcium sulfate minerals is crucial for understanding the
natural occurrence of gypsum. A thorough review of this topic is found in Van Driessche
et al. [66]. Briefly, previous studies found that at ambient pressure, gypsum is the stable
mineral up to a temperature of 40–60 ◦C. Above this temperature, anhydrite becomes the
stable mineral. Moreover, increasing salinity lowers the activity of water and anhydrite
becomes the stable mineral at lower temperatures.

In the following, we discuss the effect that temperature, salinity, and solution stoi-
chiometry have on gypsum solubility and the activity coefficients of calcium and sulfate
up to a temperature of 60 ◦C. Thus, the following discussion covers temperatures in which
gypsum is the stable mineral. The effect pressure has on the solubility of gypsum in
brines bears significance when CO2 sequestration is discussed. However, to the best of
our knowledge, the effect pressure has on the solubility of gypsum in brines is yet to
be experimentally studied. Thus, although this topic is important, it is not discussed in
the following.



Minerals 2021, 11, 141 7 of 36

2.3.2. Effect of Temperature

Figure 2 presents a compilation of the experimentally determined gypsum solubility
for the temperature range of 0.5–55 ◦C. The data were compiled here from the studies of
Madgin and Swales [67], Marshall and Slusher [68], Ostroff and Metler [69], Block and
Waters [70], and He et al. [71]. The solutions in all these experiments were stoichiometric
(i.e., Ca2+ = SO4

2) and the salinity was adjusted with NaCl (0–6 m NaCl).
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55 ◦C. Data points are all based on previous studies [67–71]. The line is based on thermodynamic
calculations at 25 ◦C, while the dashed lines are the theoretical calculation ±3%. The calculations
were performed with the Pitzer formalism and the parameterization of Harvie and Weare [46,51,57]
as implemented in the Pitzer.dat database of PHREEQC version 2.18.

Over the range of temperatures presented in Figure 2 the deviation between the
measured solubility and the thermodynamic calculations based on the Pitzer formalism
(PHREEQC v. 2.18) at 25 ◦C is mostly smaller than 3%. This scales to the analytical uncer-
tainty of measured dissolved concentration of Ca2+ and SO4

2−. Thus, under atmospheric
pressure, the solubility of gypsum at a given salinity is not affected by the temperature in
the range of 0.5–55 ◦C.

It should be noted that while the solubility of gypsum under atmospheric pressure
does not change with temperature, Ca2+ activity decreases, while the activity of SO4

2− and
water increase with temperature [58]. These opposite effects cancel out, so that the effect of
temperature on the thermodynamic properties is negligible.

2.3.3. Effect of Ionic Strength

The solubility of gypsum increases with ionic strength until about 3 m NaCl. At
this NaCl concentration, further addition of the salt lowers the solubility of gypsum
(Figure 2). As gypsum has high solubility, the dissolved calcium and sulfate add to the
total ionic strength of the solution, and the maximum gypsum solubility is at I = 3.23 m.
This ionic strength is similar to the ionic strength from which gypsum begins to precipitate
from seawater.

The bell shape of the solubility of gypsum with increasing ionic strength (Figure 2)
implies that the chemical potentials of Ca2+ and/or SO4

2− do not change linearly with
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increasing ionic strength. The calculated activity coefficients reflect the changes in the
chemical potentials, but their values (which has no physical meaning) depend on the
thermodynamic model used. Using the Pitzer formalism, a theoretical explanation can be
derived to explain the changes in the activity coefficients with increasing ionic strength.
Figure 3 presents the calculated solubility, and the ratio between γCa2+, γSO4

2−, and the
activity of H2O in a solution containing only calcium, sulfate, and water to systems in
which salts are added up to an ionic strength of 6 m. The ionic strength in Figure 3 is
adjusted with either NaCl, KCl, or MgCl2.
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Figure 3. The calculated solubility (a) and ratio of γSO4
2− (b), γCa2+ (c), and a2H2O (d) in pure water

and in electrolyte solutions up to I = 6 m with Ca2+:SO4
2− = 1. Calculations were performed with

Pitzer.dat database in PHREEQC 2.18. The ionic strength is derived from either NaCl (circles), KCl
(triangles) or MgCl2 (squares) and does not include the contribution of the dissolved Ca2+ and SO4

2−.

At a given ionic strength, the solubility of gypsum depends on the background
electrolytes. With increasing salinity, both γSO4

2− and a2H2O decrease. On the other hand,
γCa2+ shows an initial decrease in the low salinities followed by a large increase if Na+ or
Mg2+, which are the matrix cations in solution. This increase is also contrary to the effect
temperature has on γCa2+. When K+ is the cation in solution, the increase in γCa2+ after
the initial decrease is much more gradual and only at an I ≈ 5.5 m it reaches the γCa2+

of pure water. Thus, based on the thermodynamic calculations presented in Figure 3, the
contradicting effect salinity has on the activity coefficients of calcium, sulfate, and water
do not balance each other out. As discussed above, the PHREEQC version and pitzer.dat
database used for the calculations shown in Figure 3 were demonstrated to accurately
calculate the thermodynamic properties of gypsum in high ionic strength brines containing
high concentrations of Na+, Mg2+, and K+ (i.e., Dead Sea–seawater mixtures). Thus, while
there are no thermodynamic studies that can be used to verify the calculations where Mg2+

or K+ are the only matrix cation, we presume the calculations of this database are accurate.
Therefore, it can be inferred that while the ionic strength affects the solubility of gypsum,
the thermodynamic effect of increased ionic strength is not universal and would depend
on the background electrolytes in the matrix.
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2.3.4. Effect of Ca2+/SO4
2− Ratio

Most of the experimental data to determine the solubility of gypsum originates from
stoichiometric solutions. However, the ratio of the lattice ions in the natural and indus-
trial brines from which gypsum precipitates rarely (if ever) resembles their relationship
in the crystal. Thus, solution stoichiometry should be considered when evaluating the
thermodynamic properties of gypsum. However, altering the ratio between Ca2+ and
SO4

2− in solution would require adjusting the concentration of other ions to maintain
charge neutrality, and therefore the effect of solution stoichiometry cannot be isolated in
the laboratory. As the following discussion demonstrates, the effect the Ca2+/SO4

2− ratio
has on thermodynamics cannot be neglected.

Figure 4 shows the calculated equilibrium concentration (m) of calcium and sulfate in
solutions with varying Ca2+/SO4

2− ratios. Oversaturated solutions were “prepared” by
theoretical mixing of CaCl2 with Na2SO4 in 0.67, 0.83, 1.00, 1.20, and 1.50 ratio, adjusting
ionic strength for all solutions was set to I = 3 m by adding NaCl, and gypsum was
precipitated until the solution attained equilibrium.
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Figure 4. Calculated equilibrium concentration (eq.) of sulfate and calcium (m) in non-stoichiometric
NaCl solutions (I = 3 m). If the ratio between the ions in solutions differs from that of the mineral, a
relative larger amount of the less abundant ion would be incorporated into the mineral during precip-
itation. The ratio between the lattice ions at equilibrium is 0.45, 0.70, 1, 1.42, and 2.17. Note that for
Ca2+/SO4

2− < 1 solubility is defined by the Ca2+ concentration whereas for Ca2+/SO4
2− > 1 solubility

is defined by the SO4
2− concentration.

As can be seen from Figure 4, a change in the stoichiometry of the solution at a constant
salinity and temperature affects the solubility of gypsum.

To conclude, the effects of ionic strength, temperature, and stoichiometry on the ther-
modynamic properties are complex and cannot always be separated. However, considering
that the ratio between the lattice ions in natural brines often differs from their stoichiometric
ratio within the mineral, that the temperature fluctuates, and that the composition can vary
over time, their joint effect must be accounted for. The Pitzer formalism can accurately
predict the thermodynamic properties over varying chemical and environmental condi-
tions. Yet, this is a semi-empirical model and the interaction coefficients should be carefully
evaluated and selected according to the experimental conditions.
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3. Gypsum Precipitation in Saline Environments: Mechanisms and Rates
3.1. Gypsum Nucleation
3.1.1. Pathways of Nucleation

Nucleation is the initial phase of crystal precipitation. During nucleation, monomers
(i.e., ions, molecules, or complexes) dissolved in an oversaturated solution react to form a
crystal. Based on the nucleation mechanism, this process is separated into a “classical” or a
“non-classical” pathway [72].

According to the classical nucleation theory (CNT), during the reaction between
the dissolved monomers, a nucleus with a structure similar to the product macroscopic
bulk crystal is formed. Interfacial tension exists between such nuclei and the solution,
making the nuclei metastable. The metastable nuclei may dissolve or further react with
the monomers. If the nucleus surpasses a “critical size”, in which the bulk energy is lower
than the surface energy, it will become a stable crystal [73]. Nucleation, as perceived by the
CNT is, therefore, a single-step process in which a solid phase with the properties of the
bulk crystal form.

According to the CNT, there are two mechanisms by which nuclei form. When the
deviation from equilibrium is sufficiently large, nuclei may form directly from the solution.
This process is called homogeneous nucleation. Closer to equilibrium, an energy barrier
for nucleation can exist. Nucleation then occurs primarily on surfaces of existing solids,
which help overcoming the energy barrier. This process is called heterogeneous nucleation.
It was recently suggested that dust nano-particles serve as nuclei for gypsum nucleation
that is always heterogeneous [74].

Non-classical nucleation is any nucleation process that does not follow the path de-
scribed by the CNT. Microscopic observations at the nanometer–micrometer-scale demon-
strate that nucleation often begins with the formation of clusters with a different structure
than the final bulk crystal. These “pre-nucleation” clusters may then react to form the
stable bulk crystal [75]. Thus, non-classical nucleation involves at least two steps.

According to the CNT the rate of nucleation depends on the degree of oversaturation
of the solution with respect to the mineral, the interfacial tension (σ), and the temperature
(T) and is given by [76]:

JS = A·e
{
− βV2

mσ3NA f (θ)

(RT)3ln2Ω

}
(3)

where A is a pre-exponential rate coefficient, β is a geometrical shape factor, Vm is the
molecular volume (for gypsum this is 7.469 · 10−5 m3 mol−1), NA is Avogadro’s number,
f(θ) is a correction factor for heterogeneous nucleation (0 < f(θ) < 1; for gypsum f(θ) is
between 0.1–0.3) [77], and R is the gas constant (J·K−1·mol−1).

To date, the rate of nucleation cannot be measured. For practical reasons, experimental
studies focusing on nucleation kinetics measure the induction time (Tind), which is the
time that passes between the creation of oversaturation and the ability to detect the new
phase. The latter depends on the method of detection, and thus, Tind is method-specific.
However, it is generally assumed that for a given method, a faster rate of nucleation would
result in a shorter Tind. Under this assumption the relationship between Tind and the rate of
nucleation is expressed by [78]:

Tind =
K
JS

(4)

where K is a coefficient of proportionality.
Equation (4) can be used to determine the parameters in Equation (3) [78], but more

importantly, it enables the study of the effect that solution properties have on the rate
of nucleation.

Kinetic models based on Equation (3) have been able to accurately predict the in-
duction time of gypsum under saline and hypersaline conditions [79]. Moreover, when
coupled with rate equations for crystal growth, CNT-based models were able to describe
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the change in the concentration of SO4
2− over the course of gypsum precipitation, from

the establishment of oversaturation until chemical equilibrium was attained [80].
To date, there is no mathematical framework to calculate nucleation rates based on non-

classical models. However, while nucleation is a microscopic phenomenon, Equation (3) is
derived from bulk properties (i.e., interfacial tension, temperature, oversaturation, etc.). At
the nanoscale, these thermodynamic properties may differ from those of the bulk. Moreover,
Equation (3) does not account for the number of steps during nucleation. Nevertheless,
it was recently claimed that Equation (3) may be a robust mathematical framework for
treating nucleation kinetics, whether the process proceeds via the classical or the non-
classical path [66].

3.1.2. Gypsum Nucleation—Microscopic Observations

Over the last decade, the nucleation pathway of gypsum was the focus of several
studies [81–87]. These studies have observed that gypsum nucleation does not follow
the classical path and that the formation of the mineral is preceded by pre-nucleation
clusters of either bassanite, amorphous CaSO4, or anhydrous CaSO4 nano-rods (<3 nm).
The observations of non-classical gypsum nucleation were in stoichiometric solutions with
low ionic strength (i.e., NaCl ≤ 0.3 m).

Ossorio et al. [86] have studied the early stages of gypsum nucleation from Ca2+ and
SO4

2− solutions with either Na+ or Mg2+ as background electrolytes. They found that Mg2+

retards the rate at which the pre-nucleation phase transforms into gypsum. The subsequent
rate of crystal growth was also retarded by Mg2+. This observation agrees with previous
studies that have also observed that Mg2+ inhibits gypsum nucleation and subsequent
crystal growth [88,89].

As Mg2+ is the second most abundant cation in seawater, it is present in large quantities
in marine evaporitic environments and in feedwater for desalination plants. However,
while Ben Ahmed et al. [89] suggested that Mg2+ is incorporated into the lattice of gypsum,
Rabizadeh et al. [88] concluded that the cation is only adsorbed onto the surface of the
crystal. Ossorio et al. [86] have not identified the mechanism by which Mg2+ affects gypsum
precipitation and found no evidence for Mg2+ incorporation. Thus, to date, this issue is yet
to be resolved.

The microscopic observations of nucleation and the early stages of gypsum nucleation
demonstrate that precipitation of the mineral does not follow the classical path. These
insights increased our understanding of gypsum precipitation and offered a plausible
explanation for phenomena such as the occurrence of bassanite on Mars [84]. However,
it is yet to be determined how increased salinity and the presence of other ions affect the
microscopic mechanisms of gypsum nucleation.

3.1.3. Macroscopic Observations and Nucleation Kinetics

Previous works have studied the effect that the properties of the liquid phase, such
as I, Ωgypsum, T, Ca2+/SO4

2− molar ratio, and different background electrolytes have on
the induction time of gypsum (Equation (4)) [30,39,77,79,90–103]. He et al. [77] have found
that in stoichiometric NaCl solutions (0–6 m NaCl), the logarithm of Tind is inversely
proportional to the solubility of gypsum (Figure 5).
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Although the induction time correlates to the solubility of gypsum (Figure 5), CS is not
explicitly specified in Equations (3) and (4). However, two parameters in Equation (3) are
related to it. The pre-exponential factor (A) and the interfacial tension (σ). The interfacial
tension is a linear function of log(CS) for a variety of sparingly soluble salts [104,105]. Rosen-
berg et al. [12] have shown that the linear relationship between σ and log(CS) described by
Nielsen and Sohnel [104] and Sohnel [105] holds for sulfate minerals precipitating from
seawater undergoing evaporation. However, it has not been demonstrated that σ between
a given mineral and solution would change in accordance with CS if the ionic strength or
the ratio between the lattice building cation and anion are changed. Experimental data
suggest that for gypsum, σ is constant over a wide range of salinities and Ca2+/SO4

2−

molar ratios [79]. However, reported values for σ between gypsum and solution greatly
vary and range from 4–100 mJ·m−2 (see table 1 in Hina and Nancollas [106]). Most reported
values are in the range of 8–52 (mJ m−2) (see table 1 in Hasson et al. [107]).

The pre-exponential coefficient in Equation (3) was found to relate to the solubility
via [79]:

A = b · Cs (5)

where b is a proportion coefficient, which expresses the frequency in which stable crystals
are formed from nuclei that have reached the critical size.

Reznik et al. [79] have assumed that the total nucleation rate is the sum of the ho-
mogenous and heterogeneous nucleation mechanisms, each having its own proportion
coefficient (b). Therefore, Reznik et al. [79] suggested that by combining Equations (3)–(5)
Tind can be represented by:

Tind =
K

bhet CS e
{
− βV2

mσ3 NA f (θ)
(RT)3ln2Ω

}
+ bhomCS e

{
− βV2

mσ3 NA

(RT)3ln2Ω

} (6)

where bhet and bhom are the heterogeneous and homogenous proportion coefficients,
respectively, and the correction factor for heterogeneous nucleation appears only in the
exponent of the left term in the denominator, as it equals 1 for homogenous nucleation.
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Reznik et al. [79] have empirically determined the parameters bhom, bhet, σ, and f(θ)
for various saline and hypersaline composition at 25 ◦C. Reznik et al. [79] have inserted
the values of bhom, bhet, σ, and f(θ) into Equation (6) to derive a general rate equation to
determine the induction time for gypsum. In its logarithmic form, at 25 ◦C this equation is:

log(Tind) = log

 1

3.17 CS e
{
− 7.08

ln2Ω

}
+ 0.072 CS e

{
− 1.426

ln2Ω

}
 (7)

Equation (7) is a semi-empirical equation that is based on the CNT and may predict
the induction time based on CS and Ωgypsum. This equation can predict the induction time
for gypsum nucleation over a wide range of ionic strength (0.09–10 m), Ca2+/SO4

2− molar
ratio (1–115), and Ωgypsum (1.59–8.49) [79].

Log(Tind) describing the nucleation of gypsum from seawater undergoing evaporation
at 25 ◦C was calculated with Equation (7) and is presented in Figure 6:
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Equation (7) predicts that to detect gypsum nucleation and precipitation from evapo-
rating seawater within a reasonable time frame (hours–years) the evaporation factor must
pass 3.3. This may explain why although evaporated seawater becomes oversaturated with
respect to gypsum at an evaporation factor of ~2.8, reports of gypsum precipitation from
evaporated seawater are for the range of 3.3–3.8 (see Introduction).

Research during the last decade significantly advanced our understanding of gypsum
nucleation from the nano-scale to the macro-scale. Microscopic observations have demon-
strated that the nucleation of gypsum does not follow the classical path. Bulk experiments
have shown that the rate of nucleation is directly related to the solubility of the mineral
in the oversaturated solution, and models were developed that have been able to predict
induction times and explain phenomena such as the precipitation of gypsum from seawater
only at ionic strengths above 3.3. However, the pathway of gypsum nucleation under saline
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(i.e., natural) conditions, as well as the complex relationship between these pathways and
the rates of nucleation in large scale environments, have yet to be determined.

3.2. Gypsum Crystal Growth: Mechanisms and Kinetics
3.2.1. Crystal Growth

The energy required for dissolved ions to react with an existing crystal is lower
than the energy needed for them to create a new crystal. Thus, when crystals exist in an
oversaturated solution, crystal growth occurs. The process proceeds via ion addition into
reactive sites on the surface of the crystal, i.e., kinks. Thus, at its essence crystal growth is a
microscopic phenomenon. However, as ions are incorporated into the crystal lattice, their
concentration in the liquid phase is reduced. Subsequently, the oversaturation diminishes.
Therefore, the microscopic process of crystal growth affects the macroscopic properties
of the bulk oversaturated solution. Two approaches are used to study crystal growth:
(a) measure the concentration of the lattice ions in the solutions during crystal growth; or
(b) measure the changes in the topography of a crystal surface during, or following its
interaction with an oversaturated solution. Both methods have different advantages and
disadvantages and have been widely used to study the growth of gypsum.

To determine the rate of crystal growth by a change in the concentration of the lattice-
ions in solution, a large quantity of a crystal is exposed to the oversaturated solution
and the concentration of a lattice-ion is measured over time. The rate at which ions are
incorporated into a crystal as a function of the oversaturation is then determined by rate
equations (also referred to as rate laws). A typical rate equation has the form [108]:

Rate = SA ·k ·
(

Ω1/ν − 1
)n

(8)

where SA is the reactive surface area, k is a rate coefficient, ν is the number of ions building
the lattice of the crystal (for gypsum ν = 2), and n is the reaction order with respect to the
deviation from equilibrium.

The reaction order in Equation (8) is said to represent the dominant growth mechanism.
A reaction order of n = 1 is attributed to adsorption controlled growth while n = 2 or 3 is
attributed to surface controlled growth with the former describing spiral growth at screw
dislocations and the latter describing growth at edge dislocations [109].

The uptake rate of the lattice-ions in solution depends on the available kinks and
the frequency in which they are incorporated into them. The reactive surface area term
(SA) accounts for the first, while theoretically, the rate coefficient term (k) accounts for the
second. While SA depends solely on the properties of the solid phase, the rate coefficient
depends on the properties of the liquid phase (ionic strength, stoichiometry, presence of
inhibitors or catalysts, etc.) and the environmental conditions (temperature and pressure).

The method discussed above to study crystal growth is technically simple. Rate equa-
tions have been able to accurately describe the change in the concentration of Ca2+ or SO4

2−

during the process of gypsum growth over a wide range of compositions (0–10 m), with
or without scale inhibitors [28,39,71,110,111] and environmental conditions that included
high temperature (25–90 ◦C) [71], and pressure (1–100 bar) [34].

While macroscopic rate equations can accurately describe the bulk growth rate, and
are useful for studying the environmental effects on crystal growth, the bulk properties of
the solution (Ω), and the crystal (SA), often fail to capture the complexity of the reactions
and describe the mechanism underlying the processes.

First, SA cannot be measured and the total surface area is used instead to calculate rate
equations [112]. However, different crystal surfaces have different energetics and density
of kinks, dislocations, and impurities. Moreover, these properties vary between similar
crystals. Subsequently, the growth of different crystal surfaces and\or elements on the
surface proceed at different rates and may be governed by different mechanisms. The total
surface area, and a single rate coefficient do not account for the variety in surface reactivity
and rates of the different mechanisms [113,114].
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Moreover, experimental studies have observed that the reaction order with respect
to the deviation from equilibrium (n) between the solution and a mineral (including
gypsum) may vary under similar chemical and environmental conditions [39,109]. In
addition, observed phenomena such as dissolution on the surface of a crystal growing in an
oversaturated solution [115] cannot be explained by the bulk deviation from equilibrium.
Thus, unless demonstrated otherwise, rate equations should be viewed as an empirical tool
in the study of water–rock interaction.

The study of crystal growth by direct observation and measurement of changes in the
surface of the growing crystal enables identifying the elements growing and measuring
the rates at which they grow [116–119]. As such they allow for a direct mechanistic
explanation. However, such microscopic observations require advanced apparatuses
that can identify and image the surface of the crystal and topographical elements on
that surface. These include atomic force microscopy (AFM), light interferometry, laser
confocal microscopy, etc. Carrying out experiments with these devices is often technically
challenging (see Section 3.4).

Although challenging, the application of microscopic techniques to study crystal–fluid
interaction is gaining momentum. The main shortcoming of these techniques is that thus
far data can be obtained only for crystal surfaces that can be oriented under the microscope.
Depending on crystal morphology and cleavage planes, orienting a crystal to observe
certain surfaces may be challenging, or even impossible. Thus, for certain crystals under
certain conditions, microscopic techniques may be unrepresentative.

3.2.2. Gypsum Crystal Growth—Microscopic Observations

Gypsum is a monoclinic crystal and has a structure consisting of CaSO4 layers with
intercalated water molecules. As a result of the weak water-layer, gypsum has a perfect
010 cleavage [120]. Over the years several studies have utilized either AFM, laser confocal
microscopy, interferometry, or a combination of these methods to study the mechanisms
and/or rates of gypsum crystal growth under conditions of low salinity [116,117,121–128].
For the most part, these studies have focused on the growth of the (010) surface of the
crystal while in contact with stoichiometric solutions. A review of the growth mechanism
on the (010) surface as depicted by these studies is given by Aquilano et al. [129] and Van
Driessche et al. [66]. For the following discussion of rate equations, it should be stated that
the consensus is that growth on the (010) is surface controlled and predominantly occurs
by nucleation of 2D islands. Theoretically, such a growth mechanism should result in a
reaction order of n = 3. Spiral dislocations that would result in a reaction order of n = 2
were observed by Van Driessche et al. [116] and Criado-Reyes et al. [128] at 80 ◦C. However,
this was not the main step generating mechanism.

As previously mentioned, the Ca2+/SO4
2− ratio in solution greatly affects the thermo-

dynamics. The only microscopic studies in which the stoichiometry of the lattice ions in
solutions deviated from unity are those of Mbogoro et al. [127] and Van Driessche et al. [117].
The latter studied the growth of gypsum with natural water from the Naica mining complex
in Mexico in which the Ca2+/SO4

2− ratio is 0.82. However, within analytical uncertainty,
these waters are in equilibrium with gypsum which resulted in an ultraslow growth rate.
Moreover, as Ωgypsum ~ 1, the results of this study cannot be compared to any macroscopic
rate equation for gypsum.

Mbogoro et al. [127] performed the only microscopic study that directly explored the
effect of the Ca2+/SO4

2− ratio on the growth of gypsum. They prepared microcrystals small
enough for an entire crystal to be scanned with an AFM (~10 µm) and then exposed them
to oversaturated solutions (Ωgypsum 1.81–1.92) with Ca2+/SO4

2- molar ratios of 0.13–7.12.
They observed that the face-specific rate in which different crystal faces grow responds
differently to a change in the Ca2+/SO4

2− molar ratio. This greatly affected the habit of
growing gypsum, producing plate-like crystals at low ratios and needle-like crystals at
high ratios. Thus, as previously discussed, the Ca2+/SO4

2− ratio has a kinetic effect as well
as a thermodynamic effect. This kinetic effect may affect the morphology of the crystal.
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To date, the mechanisms controlling gypsum growth under saline conditions have
yet to be studied at the microscopic level. While such studies are expected to shed light on
gypsum growth in natural environments, handling saline and hypersaline supersaturated
solutions in complex apparatuses used for direct observations is extremely challenging.
Section 3.4 discusses these challenges.

3.2.3. Rate Equations of Gypsum Crystal Growth
Reaction Order for Gypsum Growth

Gypsum growth from bulk solution was studied over a wider range of environmental and
chemical conditions compared with the microscopic studies [28,34,39,71,80,92,94,110,111,130–138].
The former conditions cover a temperature range of up to 90 ◦C, a pressure range of
1–100 bar, and salinities ranging from low salinity CaSO4 solutions to the hypersaline
Dead Sea.

Packter [94] studied the growth of gypsum from calcium nitrate and sodium sulfate
solutions and reported a reaction order of n = 4. By contrast, Barcelona and Atwood [134]
studied the growth rate of gypsum precipitating from seawater and reported a reaction
order of 3. As mentioned above, the latter reaction order is in accordance with the dom-
inant growth mechanism observed on the (010) surface of gypsum. However, multiple
studies have determined that the reaction order with respect to the deviation from equilib-
rium is n = 2 [28,39,71,92,110,111,130–132,134–138]. A reaction order of 2 does not agree
with the microscopic studies of growth on the (010) surface of gypsum discussed in the
previous section.

It should be noted that while the (010) surface is easily observed under the micro-
scope, it is also the slowest growing surface of gypsum and most of the crystal volume is
derived by the growth of other surfaces. This disagreement can be the result of the bias of
microscopic studies towards growth on the (010) surface of gypsum, or that the reaction
order that describes gypsum growth with a good empirical fit, lacks justification. This
disagreement that exists between most microscopic and macroscopic studies of gypsum
crystal growth requires further study.

Witkamp et al. [111] have reported that the reaction order of gypsum growth changes
from 2 to 5 at high concentrations of sodium nitrate. Several other studies have observed
that the reaction order depends on the distance from equilibrium: As the solution ap-
proaches equilibrium the reaction order changes to 2, whereas at the initial stage of growth,
when the Ωgypsum is larger it is higher [28,92,110,132,135]. The dependency of the reaction
order on Ωgypsum was suggested to be a result of different growth mechanisms dominating
the close to—and far from—equilibrium growth. However, there is no direct evidence that
a change in growth mechanism does indeed occur.

It has been suggested by Reznik et al. [110] that if two growth mechanisms exist, and
the distance from equilibrium determines which of the two mechanisms is dominant, an
additional term should be added to Equation (8) that becomes:

Rate = SA

[
k f ar·

(
Ω

1
2 − 1

)n f ar
+ kclose·

(
Ω

1
2 − 1

)nclose
]

(9)

where k is a rate coefficients, and n is a reaction order with respect to the deviation from
equilibrium. Subscripts far and close represent the range of deviation from equilibrium.

Based on a series of growth experiments in mixtures of Dead Sea brine with seawater
(I = 4.75–9.95 m; initial Ωgypsum = 1.16–1.74; Ca2+:SO4

2− = 11–115) they determined that
nfar = 10 and nclose = 2. Equation (9) with a reaction order of 10 and 2 for the far from—and
close to—equilibrium regimes, respectively, was also found to accurately describe the
growth rate of gypsum in an oversaturated (initial Ωgypsum = 2.23) reject brine collected
at a desalination plant [28]. It is important to note that unlike the brines used in the
experiments of Reznik et al. [110], the Ca2+/SO4

2− molar ratio in the reject brine collected
at the desalination plant was smaller than unity (Ca2+/SO4

2− = 0.83) and contained a
phosphonate-based antiscalant.
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The effect that antiscalant has on gypsum’s precipitation kinetics in hypersaline
mixtures of Dead Sea brine was recently studied by Reiss et al. [39]. Reiss et al. [39]
prepared mixtures of Dead Sea brine with either rejects brine collected from a desalination
plant or seawater that was evaporated until its composition, excluding the antiscalant, was
similar to that of the reject brine. They conducted unseeded experiments to determine the
induction times, the physical properties of the crystals that precipitate with and without
the antiscalant, and the growth rate following nucleation. They also conducted seeded
experiments to determine the effect of antiscalant on gypsum crystal growth when all else
is equal (i.e., brine composition and crystal properties). Figure 7 presents a comparison of
the measured concentration of sulfate as a function of time, to that predicted by a forward
model based on Equation (9) in mixtures with a similar ratio between the Dead Sea brine
and evaporated seawater or reject brine (i.e., similar composition), in seeded (Figure 7a)
and unseeded (Figure 7b) experiments.
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2− in mixtures of Dead Sea brine with either

evaporated seawater (no inhibitor) or reject brine (scale inhibitor) as a function of time. The calculations are from a forward
model based on Equation (9). (a) Seeded mixtures. (b) Unseeded mixtures. Note the one order of magnitude difference in
the time scales of the two graphs. Although all four mixtures have the same initial oversaturation, the equations describing
the seeded experiments (a) have two terms while in those describing the unseeded mixtures (b) kfar = 0, i.e., in effect
Equation (9) is reduced back to Equation (8) which has only one term. The difference in the change in concentration of
SO4

2− with time in the unseeded experiments is due to the antiscalant’s effect on the properties of gypsum formed during
nucleation (see Reiss et al. [39]). Figure reprinted from Reiss et al. [39] with permission from Elsevier.

While the rate equations for both seeded experiments (Figure 7a) have a far from
equilibrium (nfar = 10) and a close to equilibrium (nclose = 2) term (i.e., Equation (9)), both
unseeded experiments are described by a single mechanism rate equation (i.e., Equation (8))
with a reaction order of 2. The initial Ωgypsum in all four experiments depicted in Figure 7
is the same. The difference between the seeded and unseeded experiments is the crystals.
While the gypsum crystals in the seeded experiments were ground, sieved, and artificially
added to the reaction cells, the crystals in the unseeded experiments nucleated from the
brine within the reaction cells. Therefore, it is the properties of the solid phase and not the
deviation from equilibrium that must explain the apparent “far from equilibrium” mechanism.
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Cleaving or grinding a crystal may damage its surface and affect its reactivity. This
may influence the rate. However, not all of the studies that observed a dependency of the
reaction order on the oversaturation used ground gypsum for their experiments. Smith and
Sweet [92] and Brandse et al. [132] used reagent grade CaSO4·2H2O crystals that were aged
for several months in a solution as their seed material. Witkamp et al. [111] used crystals
that were precipitated in the lab and left to ripen for several months. It is therefore not
likely that the surfaces of the crystals in those experiments were damaged or had increased
reactivity. Thus, a different explanation must be found for the observed high reaction
order in those experiments. It is possible that this conundrum would only be solved by
studying the growth mechanisms on additional surfaces of gypsum. To date, this issue
remains unresolved.

Crystal Growth’s Rate Coefficient (k)

While the reaction order in general rate equations (Equation (8)) are said to account for
the growth mechanism, the different properties of the solution and environmental condi-
tions are represented by the rate coefficient (k). These properties include temperature, ionic
strength, the stoichiometry of the lattice building ions in solution, type and concentration
of the background electrolytes, and the presence of catalysts or inhibitors. Some of these
properties are coupled (e.g., different ratios between the lattice ions must be accompanied
by a change in the concentration of other ions, etc.) and can be difficult to isolate. Moreover,
as discussed in Section 2, these properties also affect thermodynamics.

The effect temperature has on the rate coefficient can be related to the activation energy
(EA) of the reaction via the Arrhenius equation. This effect was studied for the temperature
range of 10–105 ◦C in stoichiometric solutions up to a salinity of 6 m NaCl. The rate of
gypsum growth was found to increase with temperature (Figure 8) and the EA to be in the
range of 60–75 kJ/mol (see table 1 in [66]).

Minerals 2021, 11, x FOR PEER REVIEW 18 of 38 
 

 

added to the reaction cells, the crystals in the unseeded experiments nucleated from the 
brine within the reaction cells. Therefore, it is the properties of the solid phase and not the 
deviation from equilibrium that must explain the apparent “far from equilibrium” mech-
anism. 

Cleaving or grinding a crystal may damage its surface and affect its reactivity. This 
may influence the rate. However, not all of the studies that observed a dependency of the 
reaction order on the oversaturation used ground gypsum for their experiments. Smith 
and Sweet [92] and Brandse et al., [132] used reagent grade CaSO4·2H2O crystals that were 
aged for several months in a solution as their seed material. Witkamp et al., [111] used 
crystals that were precipitated in the lab and left to ripen for several months. It is therefore 
not likely that the surfaces of the crystals in those experiments were damaged or had in-
creased reactivity. Thus, a different explanation must be found for the observed high re-
action order in those experiments. It is possible that this conundrum would only be solved 
by studying the growth mechanisms on additional surfaces of gypsum. To date, this issue 
remains unresolved. 

Crystal Growth’s Rate Coefficient (k) 
While the reaction order in general rate equations (Equation (8)) are said to account 

for the growth mechanism, the different properties of the solution and environmental con-
ditions are represented by the rate coefficient (k). These properties include temperature, 
ionic strength, the stoichiometry of the lattice building ions in solution, type and concen-
tration of the background electrolytes, and the presence of catalysts or inhibitors. Some of 
these properties are coupled (e.g., different ratios between the lattice ions must be accom-
panied by a change in the concentration of other ions, etc.) and can be difficult to isolate. 
Moreover, as discussed in Section 2, these properties also affect thermodynamics. 

The effect temperature has on the rate coefficient can be related to the activation energy 
(EA) of the reaction via the Arrhenius equation. This effect was studied for the tempera-
ture range of 10–105 °C in stoichiometric solutions up to a salinity of 6 m NaCl. The rate 
of gypsum growth was found to increase with temperature (Figure 8) and the EA to be in 
the range of 60–75 kJ/mol (see Table 1 in [66]).  

 
Figure 8. Gypsum solubility (at 25 °C) and logarithm of rate coefficients for gypsum growth at a 
range of temperatures (25 °C, 50 °C, 70 °C, and 90 °C) in stoichiometric solutions as a function of 
salinity (0–6 m). Note that over the range of temperature presented, the rate coefficient increases and 

Figure 8. Gypsum solubility (at 25 ◦C) and logarithm of rate coefficients for gypsum growth at a
range of temperatures (25 ◦C, 50 ◦C, 70 ◦C, and 90 ◦C) in stoichiometric solutions as a function of
salinity (0–6 m). Note that over the range of temperature presented, the rate coefficient increases
and decreases with solubility. Rate coefficients are from He et al. [71]; solubility was calculated with
PHREEQC (see also Figure 2).
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Other properties of a solution also affect the kinetic coefficients. He et al. [71] showed
that the rate coefficient in stoichiometric solutions with salinities up to 6 m NaCl increases
with solubility according to:

k = k∗Cn∗∗
S (10)

where k* and n** are proportion coefficients.
The solubility in the study of He et al. [71] was changed by salinity alone. As previ-

ously discussed, the stoichiometry of the solution also affects solubility. The solubility of
gypsum in natural and industrial brines is more likely to be determined by a combination
of salinity and solution stoichiometry.

Reznik et al. [110] showed that when salinity and the Ca2+/SO4
2− ratio are changed,

the rate coefficient shows a better correlation with the equilibrium concentration of SO4
2−

than it does with the solubility of the mineral. This may be explained by Zhang and Nan-
collas’s [139] suggestion that the water in the lattice of gypsum facilitate the incorporation
of the more hydrated Ca2+ and that a rotational energy barrier exists for the incorporation
of SO4

2− ions making the integration of the SO4
2− the rate-limiting step even when it is in

excess in comparison with Ca2+. Zhang and Nancollas [139] have also suggested that Na+

competes with Ca2+ on the SO4
2− kink sites.

Based on the observation that the rate coefficient is correlated with SO4
2− concentration at

equilibrium and the suggestions made by Zhang and Nancollas [139], Reznik et al. [110] have
suggested the following empirical model for the rate coefficient (Equation (11) and Figure 9):

k = ratei,SO4 = 0.0065
2.0 × 106 × C4.24

SO4

1 + 2.0 × 106 × C4.24
SO4

(11)

where ratei,SO4 is the rate of SO4
2− integration, CSO4 is the molal concentration of sulfate in

solution, 0.0065, 4.24, and 2.0 × 106 are empirical coefficients that include the integration
coefficient of SO4

2− (sec−1), the density of SO4
2− kink sites (mol m−2), and a coefficient

related to the energy of SO4
2− adsorption. A detailed definition of the coefficients and their

parameterization can be found in Reznik et al. [110].
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Equation (11). Reprinted from Reznik et al. [110] with permission from Elsevier.
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Figure 9 compares the experimentally determined rate coefficients and the coeffi-
cients calculated based on Equation (11) as a function of SO4

2− at equilibrium and the
Na+/Ca2+ activity ratio. The experimental data in Figure 9 are compiled from studies with
Ca2+/SO4

2− molar ratio ranging from 0.1 to 43 and I up to 8.2 m. Above this ionic strength,
the model did not accurately describe the rate coefficients. Reznik et al. [110] suggested
that this may be due to the formation of CaSO4

0 complexes at high ionic strength.

3.3. Gypsum Precipitation in Large-Scale Systems

The reaction cells used during laboratory nucleation and crystal growth experiments
are typically only a few hundreds of ml in volume. These reaction cells are small com-
pared to evaporitic environments from which gypsum naturally precipitates. Following
nucleation in the small reaction cells, the crystal surface-area to water ratio is very large
compared to the natural situation. Moreover, in natural environments, the crystals may
sink out of the water column, whereas if the water column is only a few centimeters deep,
as is often the case in experiments, the crystals would remain in contact with the solution.
Thus, following nucleation in the laboratory, the surface area available for crystal growth
rapidly becomes large enough for crystal growth to lower the oversaturation and halt
nucleation. This explains why Tind is a good proxy for the rate of nucleation. However, the
relationship between nucleation and crystal growth displayed in the laboratory and natural
settings often differs. This difference may result in brines that remain metastable with
respect to the precipitating crystal for a long duration. In extreme cases, oversaturation
may also increase as a crystal nucleates and grows.

During the winter of 1978/9, the previously stratified Dead Sea overturned [140].
Prior to the overturn, in the 1950s and 1960s, gypsum precipitated from the upper water
body [141]. Shortly after the overturn it was determined that the mixed Dead Sea brine
was oversaturated with respect to gypsum [142]. Since the overturn of the lake, the salinity
of the Dead Sea has continued to rise and the ratio between some of the dissolved ions has
shifted due to various water–rock interactions. Yet, due to sluggish kinetics of gypsum
nucleation and the relatively rapid settling of the crystals out of solution, the surface
area of gypsum available for growth in the lake is insufficient for growth to reduce the
oversaturation [137]. As a result, today Ωgypsum of the Dead Sea brine is higher than it was
40 years ago when the lake overturned [39,142].

It should be noted that if the initial Ca2+/SO4
2− in solution differs from the stoichio-

metric ratio of the mineral, precipitation would increase the ratio between the abundant
and scarce lattice ions. The Ca2+/SO4

2− ratio in the Dead Sea brine for example has in-
creased from about 75 during the early 1980′s to above 130 today [39,142]. As previously
discussed, a change in this ratio affects the thermodynamic settings and the kinetics of
nucleation and growth.

Brines in large scale flow-through settings can remain metastable with respect to
gypsum over long periods. A large pool (9.8 m3) was built near the Dead Sea to serve as
a reaction chamber for large scale flow-through experiments. An oversaturated mixture
of Dead Sea brine and seawater was constantly supplied to the pool over 8 months (June–
January 2007). During this period, the temperature in the pool varied between 15 and
35 ◦C. Within a week gypsum crystals precipitated in the pool. Despite the large variation
in temperature, and the presence of crystals available for growth, an Ωgypsum = 1.64 ± 0.09
was established and remained constant [143].

A steady-state oversaturation while gypsum precipitates was also found in the in-
dustrial evaporation ponds of the Atlit salt plant located on the Mediterranean coast of
Israel. In this plant, a series of evaporation ponds are operated to eventually precipitate
and harvest halite. In each consecutive pond, the evaporation factor is higher than in the
previous one. It was observed that gypsum precipitation only began when Ωgypsum reached
a value of ~1.5. After the mineral began to precipitate, Ωgypsum remained at 1.5 ± 0.2 [12].

Based on their observations, Reznik et al. [143] and Rosenberg et al. [12] suggested
that under natural conditions feedback between evaporation and gypsum precipitation
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controls Ωgypsum of brine and the precipitation of gypsum. Evaporation increases Ωgypsum
and the rate of nucleation and crystal growth. Crystal growth reduces Ωgypsum and causes
faster settling of the crystals out of the water column. The settling of the crystals from the
water column restricts the surface area available for growth, which enables evaporation to
cause an additional increase in Ωgypsum so the rate of nucleation increases once more. Under
this scenario, nucleation and crystal growth may occur simultaneously, influencing one
another. This dynamic nature of gypsum precipitation is very different from the dynamics
of nucleation followed by growth that is typically encountered in laboratory experiments.
The different dynamics and their effect should be considered when projecting the results
derived from small-scale laboratory experiments into large-scale natural environments.

3.4. Challenges of Imaging Precipitation in Brines

To date, studies at the microscale were only carried out at low salinities. Applying
available microscopic techniques to study gypsum precipitation from brines may resolve
some of the discrepancies between the microscopic observations at low salinities and
macroscopic rate equations conducted under saline conditions. While there is a lot to learn
from such studies, brines are denser than water, and can also be corrosive. Furthermore,
unintended mineral phases rapidly precipitate if the liquid phase evaporates. These
characters make the experimental work with brines technically challenging.

Research articles tend to focus on scientific “successes” and describe the methodologies
used to produce the data. However, these methodologies are often developed by trial and
error. Sharing less successful attempts and the lessons learned during the development of
methods may provide meaningful and helpful insights for further research. The following
discussion details challenges and difficulties that must be considered when handling
brines in apparatuses used for studying water–rock interactions at the micrometer and
nanometer scales. Furthermore, examples from less successful attempts are given together
with outlines for solving technical issues.

The density at which gypsum precipitates from evaporating seawater is typically
10–20% higher than seawater and may reach values of up to about 1.3 g/cc [9,10,12]. Other
brines that precipitate gypsum such as the Dead Sea (~1.24 g/cc) are also dense. Brine
volume is not a conservative property and pump flow rates are often calibrated by volume.
While these are not technical challenges, the effect of density should be considered when
preparing and carrying out experiments and chemical analysis.

Halides in general and chloride in particular, are aggressive corrosion agents that
harm metals and alloys [144]. Chloride is also the major anion in seawater. Subsequently,
brines from marine evaporitic environments are corrosive and care should be taken to
minimize contact between brines and sensitive apparatuses (e.g., Figures 10 and 11).

Precipitation of other minerals as a consequence of undesired evaporation from the
small experimental volume is the most challenging aspect of working with brines. This
limits the use of certain techniques, and reduces the time a wet sample can be exposed to
air during growth or when dried before a measurement.

Alternatives to in-situ flow-through experiments using the AFM that were previ-
ously used to study the growth of gypsum include open-air fluid cells into which an
aliquot of the solution is injected by a syringe [116,127], or running ex-situ experiments in
either flow-through, or batch reaction cells and drying the sample before scanning the sur-
face [121,128,145]. If the concentration of the background electrolytes is not sufficiently low,
even the slightest evaporation, under such experimental design, is sufficient to attain over-
saturation and precipitation of additional mineral phases. Although Bosbach et al. [121]
conducted their experiments with a low initial concentration of Ca2+ and SO4

2− they noted
that 2D island growth sites nucleate on the surface of gypsum from the thin liquid film that
remained on the surface of the mineral during the procedure of sample drying.
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(a) Syringe pump injects solution into a flow-through cell thereby increasing the pressure within the
cell, which may cause leaks. (b) Syringe pump draws the solution into the cell greatly reducing the
chance of a leak.

The problem of evaporation and precipitation of additional phases during drying is a
challenge for all techniques requiring dry samples for imaging. To prevent precipitation
before imaging, the solution (including any thin film) must be removed from the surface
before sufficient evaporation causes oversaturation, nucleation, and growth of additional
phases. Figure 12 depicts an experimental apparatus designed for in-situ water–rock
interaction studies developed by Luttge and Arvidson [146].
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Even with such a carefully designed experimental setup, halite precipitation was ob-
served when attempting to study gypsum precipitation from an oversaturated (Ωgypsum = 
1.75) brine (I = 3 m), which was originally undersaturated with respect to halite (Ωhalite ~ 
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Figure 12. In-situ water–rock interaction apparatus. The crystal sample is placed within an O-ring
under the objective of a vertical scanning interferometer (VSI). Inlet and outlet ports for the fluid are
situated within the O-ring at opposite sides of the sample. Nitrogen (N2) gas jet is direct towards the
outlet port. The whole apparatus is connected to a controller that is programmed to automatically
run cycles in which the sample is submerged in a reactive solution for a predetermined time interval
and then rapidly dried. The drying is performed by simultaneously activating the N2 jet, directed to
push the solution towards the outlet port, and applying vacuum suction. The dried surface is then
imaged. Figure reprinted from Luttge and Arvidson [147] with permission from Wiley.

Even with such a carefully designed experimental setup, halite precipitation was ob-
served when attempting to study gypsum precipitation from an oversaturated (Ωgypsum = 1.75)
brine (I = 3 m), which was originally undersaturated with respect to halite (Ωhalite ~ 0.1).
When imaging the gypsum, halite cubes were often observed on the surface of the min-
eral (Figure 13).

Minerals 2021, 11, x FOR PEER REVIEW 24 of 38 
 

 

 
Figure 13. Halite cubes on the (010) surface of gypsum. The halite crystals precipitated from a solu-
tion originally undersaturated (Ωhalite ~ 0.1) with respect to the mineral. 

These halite crystals occasionally appeared after short periods (several seconds) of 
contact with the gypsum sample. It is unlikely that during such a short time interval the 
solution became oversaturated with respect to halite. Rather it is more likely that halite 
precipitation occurred during the drying process. Indeed, optimizing the rate and angle 
in which the N2 jet pushes the solution towards the exit port reduced the occurrence of 
halite on the gypsum sample. However, a single short step of exposing the gypsum sam-
ple to the brine did not result in sufficient growth for detection. Repeated cycles of expo-
sure increased the possibility that halite would precipitate, as the N2 jet had to be aligned 
perfectly over several cycles. 

Overcoming precipitation of unintended minerals can also be performed by either 
increasing the degree of oversaturation and precipitation potential of the desired phase or 
lowering the salinity of the brine. Lowering the salinity may extend the duration in which 
the thin film can be removed from the gypsum sample before halite becomes oversatu-
rated and precipitates. 

The technical difficulties and challenges arising from the properties of brines that are 
presented here should not be a barrier for studying gypsum precipitation under saline 
conditions at the scale at which crystal–brine interactions occur. However, these chal-
lenges should be considered and merit careful attention when designing the protocol and 
carrying out such a study. 

4. Crystal Habit and Size Distribution 
4.1. Gypsum Morphology 

Gypsum appears in various forms. In nature gypsum pre-dominantly appears as sel-
enite, alabaster, or satin spar (Figure 14). Alabaster and satin spar are aggregates. Whereas 
the orientation of the crystals forming alabaster is randomly distributed, the crystals in 
satin spar are attached along their length axis. Selenite is mostly found as idiomorphic 
single crystals that are often twinned [148] and may form mega-crystals. Famous amongst 
these are the Naica mine selenite with dimensions that exceed 10 × 1 m and are the largest 
naturally occurring crystals known to humans [149]. 
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These halite crystals occasionally appeared after short periods (several seconds) of
contact with the gypsum sample. It is unlikely that during such a short time interval the
solution became oversaturated with respect to halite. Rather it is more likely that halite
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precipitation occurred during the drying process. Indeed, optimizing the rate and angle
in which the N2 jet pushes the solution towards the exit port reduced the occurrence of
halite on the gypsum sample. However, a single short step of exposing the gypsum sample
to the brine did not result in sufficient growth for detection. Repeated cycles of exposure
increased the possibility that halite would precipitate, as the N2 jet had to be aligned
perfectly over several cycles.

Overcoming precipitation of unintended minerals can also be performed by either
increasing the degree of oversaturation and precipitation potential of the desired phase or
lowering the salinity of the brine. Lowering the salinity may extend the duration in which
the thin film can be removed from the gypsum sample before halite becomes oversaturated
and precipitates.

The technical difficulties and challenges arising from the properties of brines that are
presented here should not be a barrier for studying gypsum precipitation under saline
conditions at the scale at which crystal–brine interactions occur. However, these challenges
should be considered and merit careful attention when designing the protocol and carrying
out such a study.

4. Crystal Habit and Size Distribution
4.1. Gypsum Morphology

Gypsum appears in various forms. In nature gypsum pre-dominantly appears as
selenite, alabaster, or satin spar (Figure 14). Alabaster and satin spar are aggregates.
Whereas the orientation of the crystals forming alabaster is randomly distributed, the
crystals in satin spar are attached along their length axis. Selenite is mostly found as
idiomorphic single crystals that are often twinned [148] and may form mega-crystals.
Famous amongst these are the Naica mine selenite with dimensions that exceed 10 × 1 m
and are the largest naturally occurring crystals known to humans [149].
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is 2.2 cm. Gypsum samples are from the Mineralogy and Petrology collection at the Institute of Earth Sciences, the Israeli
National Natural History collections at the Hebrew University of Jerusalem.
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Gypsum is a monoclinic crystal often defined by the c2/c space group. With this
convention, the main crystal surfaces are the (010), (120), (111), and (011). However, the unit
cell of the mineral can be reasonably represented by different selections. As different selec-
tions can be made, the same gypsum face can be found in the literature with different Miller
indexes. This multiple assignments of indexes is a cause for confusion. Indeed, different
selections were made to represent a crystal and growth elements on that same crystal [150].
An overview of the different reasonable selections and the transformation matrices between
the different unit cells is discussed in a previous review by Aquilano et al. [129].

The bonding energy of lattice ions to the different surfaces of a single crystal vary.
If one assumes that the morphology of a crystal would correlate to the minimum energy
(i.e., “equilibrium morphology”), then thermodynamic considerations of energy minimiza-
tion can be used to explain and predict the morphology of a crystal. Previous studies have
studied the equilibrium morphology of gypsum ([129,151–153], and references within)
with varying degrees of agreement between theoretical calculations and observed crystal
morphology. However, other studies have shown that the morphology of gypsum is af-
fected by the presence of organic [134,154–156] or inorganic [88,156–158] ions or molecules
including commercially used scale inhibitors [39,131,145,159,160].

The “growth morphology” of a crystal is shaped by the relative growth rate of the
different crystal faces. As such, it is affected by factors that influence growth kinetics such
as the ratio between the lattice ions in solution, the presence of organic and inorganic
molecules, or ions, etc. Thus, the morphology of gypsum in natural and industrial brines
cannot be explained solely by thermodynamic considerations.

Reiss et al. [158] have recently studied the morphology of gypsum single-crystals
precipitating from oversaturated hypersaline mixtures of calcium-rich Dead Sea brine
(Ca2+/SO4

2− ~ 130) and sulfate-rich seawater (Ca2+/SO4
2− ~ 0.36). The different mixtures

were each enriched with calcium and sulfate salts in order to control and increase the
oversaturation without altering the Ca2+/SO4

2− ratio of the solution. Different hypersaline
compositions with a similar Ca2+/SO4

2− ratio (~13, 24, and 45) were prepared with Ωgypsum
of ~ 1.7–7. The ionic strength of the experiments ranged from 5.5 to 10 m. Each mixture
was divided into aliquots. At designated times, the crystals from a given aliquot were
separated from the solution and studied. The study showed that individual crystals that
have precipitated from a given aliquot had different morphologies (Figure 15), implying
that the effect of brine composition on crystal habit must be viewed in terms of crystal
populations. Reiss et al. [158] therefore suggested to use the average aspect ratio (crystal
length/crystal width) of crystal populations that precipitated from different aliquots to
distinguish between the habits of populations that precipitated from different compositions.
This statistical approach, which highlights the differences between crystal populations
while averaging out the different morphologies of individual crystals comprising a pop-
ulation, was found to be useful in studying the effect brine composition has on gypsum
crystal habit.

1 
 

 
Figure 15. SEM images of individual gypsum crystals. While these crystals show different proportions between different
surfaces (i.e., different morphology), they have all precipitated from the same brine (comprised of 85% wt. Dead Sea brine
and 15% wt. seawater). Reprinted from Reiss et al. [158] with permission from the American Chemical Society.
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The Ca2+/SO4
2− molar ratio in Dead Sea–seawater mixtures decreases with the % wt.

seawater. The study found that at a given Ωgypsum, the crystal population’s average aspect
ratio increases (i.e., the gypsum crystals have become more elongated) with an increase in %
wt. seawater in such mixture [158]. This is contrary to the results of experiments conducted
with simple low ionic strength solutions that found that the aspect ratio of single crystals
of gypsum increases with an increase in Ca2+/SO4

2− ratio ([127], and references within).
In the case of Reiss et al. [158], changing the ratio between the two end-members also
changes the concentration of the various background electrolytes. The presence of major
cations in solutions, particularly Mg2+, has already been reported to increase the aspect
ratio of gypsum [88]. Since Mg2+ is the major cation in the Dead Sea, its presence should
also cause elongation of the gypsum as the fraction of the Dead Sea in solution increases.
The contradictions between the effect the Ca2+/SO4

2− ratio and Mg2+ have on the habit
of gypsum precipitating under low ionic strengths and hypersaline Dead Sea–seawater
mixtures is yet to be explained.

A microscopic study that focuses on the kinetics of growth of individual surfaces
and the mechanisms that drive the growth may be required to resolve this conundrum.
However, conducting such experiments is a challenging task (Section 3.4).

At above Ωgypsum = 3 the habit of the gypsum precipitated from Dead Sea–seawater
mixtures changed from idiomorphic (needle-like or tabular) to stellate (also termed rosette
or spherulite morphology) (Figure 16). Such a change in morphology with an increase
in oversaturation is not unique for gypsum and is known to occur in many natural and
industrial solids (i.e., crystals, polymers, metallic glasses., etc.) [161] and has also already
been reported for gypsum [29,162].
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Figure 16. Gypsum crystals that precipitated from Dead Sea–seawater mixtures enriched with Ca2+ and SO4
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oversaturation. (a,b) stellate crystals that precipitated from mixtures with Ωgypsum = 4. Blue line for scale is 100 µm and
(c) crystals that precipitated from solutions with a Ωgypsum = 1.75.

A plot of the logarithm of the measured Tind versus 1/log2(Ω) for solutions with a sim-
ilar composition but different Ω gives two linear lines with different slopes and intercepts
(Figure 17). The oversaturation at which these lines intersect is interpreted, based on the
CNT (Equation (3)), as the oversaturation at which the dominant nucleation mechanism
changes from homogenous to heterogeneous [78]. For gypsum, this change of slope report-
edly occurs between 2.15 and 4.4 [77,79,99,100,162]. Reznik et al. [79] have determined that
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for Dead Sea–seawater mixtures the slope changes over Ωgypsum range of 2.8–3.7 (Figure 17).
Thus, the idiomorphic crystals observed by Reiss et al. [158] at Ωgypsum ≤ 3 correspond to
the heterogeneous nucleation range while the stellate crystals at Ωgypsum ≥ 4 correspond
to the homogenous nucleation range. This is also in agreement with the study of Alimi
and Gadri [162] who observed idiomorphic and stellate crystals at Ωgypsum that correspond,
respectively, to the heterogeneous and homogenous regions in their experiments. Alimi
and Gadri [162] have attributed the change in gypsum morphology to the change in the
mechanism of nucleation.
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Figure 17. A plot of the measured LogTind vs. 1/log2(Ω) for different saline compositions. The
Ωgypsum at which the slope changes is interpreted, based on the CNT as the oversaturation at
which the mechanism of nucleation changes between homogeneous and heterogeneous. Series C–G
represent different mixtures between Dead Sea brine and seawater. Reprinted From Reznik et al. [79]
with permission from Elsevier.

While Tind is considered a proxy for the rate of nucleation, it also includes the initial
stages of crystal growth [78]. Single crystals with an equal mass would have a larger surface
area if their morphology is stellate rather than idiomorphic. Thus, all else being equal, a
change in the habit of gypsum from idiomorphic needle-like or tabular to stellate would
lower the induction times in proportion with the increased surface area. This will affect
the slope of a log(Tind) versus 1/log2(Ω) plot. It is, therefore, possible that the change of
slopes, is a result of a morphological change rather than an actual change in the dominant
mechanism of nucleation.

Alternative explanations to the formation of stellate morphology, other than het-
erogeneous vs. homogeneous nucleation are: a) surface nucleation that can affect the
diffusion field around the crystal or create a polycrystalline “mineral”, or b) agglom-
eration/attachment of particles [163] Recently Stawski et al. [164] studied the internal
structure of gypsum. Their study suggests that single crystals of gypsum are mesocrystals,
i.e., crystals that are built of distinguishable sub-domains but have defined crystal surfaces
and diffract as a single crystal. Based on this observation they suggested that the stellate
morphology is an external representation of internal misalignment of the internal sub-
domains. Such misalignment develops when the sub-domain aggregation becomes rapid
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compared to the diffusion of the water molecules within the forming lattice. This supports
the formation of stellate gypsum at elevated oversaturation by a process of agglomeration,
rather than a transformation between heterogeneous and homogenous nucleation.

Previous publications, including by some of the co-authors of this paper, have sug-
gested that understanding the effects that brine composition has on the morphology and
habit of gypsum can help in determining the paleo-conditions from which gypsum has
precipitated [128,156,165]. Yet, the study by Reiss et al. [158] is, to our knowledge, the only
study to explicitly explore the effect of brine composition on the morphology of gypsum
under hypersaline conditions with multiple background electrolytes. The discrepancies
between the suggested effects of Ca2+/SO4

2− and Mg2+ on gypsum habit between the
latter study and previous studies performed at low salinities are unexplained. Thus, further
research is required before the morphology of gypsum could be used to determine the
conditions from which gypsum precipitates in saline environments.

4.2. Gypsum—Crystal Size Distribution and Its Implications

The crystal size distribution (CSD) of a given crystal population embodies the chemical
(i.e., nucleation, growth, and dissolution) and physical (i.e., agglomeration or breakage of
crystals) processes that have affected the individual crystals. If the mutual effect of these
processes is understood, then the CSD can be used to interpret the geological history under
which the crystal population has developed. In fact, the CSD of gypsum was recently used
to interpret the paleo-conditions on Mars [22]. Gypsum is also manufactured for different
purposes and forms undesired scale. Therefore, the CSD of gypsum is important in various
industrial processes. For example, the CSD of gypsum determines the filtration rate during
wet industrial processes in which the mineral precipitates [166]. Thus, understanding the
interaction between the chemical and physical processes, and the mechanisms that control
gypsum shape and size, may help develop protocols to direct the precipitation process
towards the formation of preferable CSDs.

CSD of gypsum is also a crucial parameter that would determine some of the envi-
ronmental impacts on the Dead Sea if and when seawater or reject brine from desalination
will be introduced to the Dead Sea. As shown above, mixing between these two waters
will lead to gypsum precipitation. The CSD of this gypsum will determine if the crystals
will quickly settle to the bottom or remain suspended and whiten the surface waters [167].

Lognormal size distribution is a distribution in which the logarithm of the size is
normally distributed. Different studies have shown that the CSD of gypsum populations
precipitated in natural environments [168], on desalination membranes [29], and from
batch solutions of hypersaline brines [158] follow a lognormal distribution (Figure 18).
Kah et al. [22] have recently studied the size distribution of pseudo-morphs after gypsum in
Gale Crater, Mars. The size of these pseudo-morphs which have retained the characteristics
of the original mineral assemblage, also follows a lognormal distribution.

The mathematical generation of a lognormal distribution has been discussed within
the theoretical realm of statistics and within the context of geological or biological pro-
cesses [169–172]. However, currently, no liable physical model to generate a lognormal CSD
is compatible with crystal growth in which at a certain ∆time, a given surface of a given
crystal (e.g., 010, 120, etc. for gypsum) would grow by a constant ∆length regardless of
crystal size. Thus, growth models that relate growth rate to the deviation from equilibrium
cannot explain the size distribution of gypsum.

The realization that geologic samples, including grain size in sediments and minerals
in rocks, often follow or closely approximate a lognormal distribution has been made
decades ago. Middleton [169] had made the first rigorous attempt to explain the develop-
ment of such CSD within a geological context. He showed that a lognormal distribution
can be mathematically modelled in several ways, and mathematically describe the log-
normal distribution in sediments. However, Middleton [169] also noted that his model
pre-supposed probability assumptions that are not necessarily valid from the underlying
physical process. He then concluded that to be convincing, the proposed model should: a)



Minerals 2021, 11, 141 29 of 36

be based on principal assumptions of physical nature, and b) be able to explain deviations
from a lognormal distribution.

1 

 

 Figure 18. A lognormal crystal size distribution (CSD). CSD1 and CSD2 are the CSDs of two crystal populations that have
precipitated from a Ca2+ and SO4

2− enriched mixture of 85% wt. Dead Sea brine and 15% wt. seawater. The data are
reprinted from Reiss et al. [158] with permission from the American Chemical Society.

Eberl and co-authors [168,170,173–175] have studied CSD in geologic materials and
developed a mathematical framework for interpreting the geologic history based on the
CSD. According to their mathematical framework, the initial CSD is determined by the
conditions under which nucleation occurs (constant nucleation, decreasing nucleation rate,
etc.) and subsequent crystal growth that follows the law of proportionate effect (LPE)
shapes the distribution. According to LPE, crystal growth is described by [169,170]:

Xj+1 = Xj + ε jXj (12)

where X is crystal size and ε is a random positive value that in each growth cycle varies
between 0 and 1. Subscripts j and j + 1 represent the growth cycle.

Growth according to LPE has been able to accurately describe the lognormal distri-
bution of many naturally formed crystal populations, as well as deviations from such
a distribution [168,170,173–175]. However, contrary to the deterministic nature of rate
equations, the LPE as presented in Equation (12) is probabilistic. Moreover, according
to Equation (12), the growth of a crystal depends on its previous size (i.e., Xj) and it has
a random element to it (i.e., εj). Thus, according to LPE, crystals having the same size
may grow at different rates and larger crystals are likely to grow faster than small crystals.
Such behavior is in stark contrast to crystal growth theory that relates growth rate to the
deviation from equilibrium.

At the nanometer and micrometer scales, the interfacial tension depends on crystal
size. Adding a term relating the interfacial tension to crystal size into standard rate
equations demonstrates that the growth of small crystals is size-dependent [176]. However,
Eberl et al. [168] have not limited the size-dependent growth to any particular scale and
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have used the LPE theory to describe CSD of gypsum with crystals ranging from about
0.5–15 cm.

The ability of LPE growth to describe a lognormal distribution and the typical de-
viations from this distribution satisfy Middleton’s second requirement [169]. However,
Eberl et al. [168] have conceded that “there are no obvious thermodynamic or kinetic
reasons to assume that ions would be transported or incorporated into a crystal at a rate
that is proportionate to its diameter” and that the exact mechanism leading to propor-
tionate growth is not adequately explained in the literature. They have later suggested
that size-dependent growth may be due to fluid dynamics being turbulent around larger
crystals. However, the results of their experiments to test this hypothesis were inconclu-
sive [166]. Thus, to date, LPE growth cannot be explained by physical principals and this
growth model does not fulfill Middleton’s requirement that a model would be based on
the assumption of physical nature.

Currently, CSDs cannot be explained by typical precipitation paradigms, while expla-
nations of the evolution of CSD for geological materials do not comply with the accepted
paradigms of growth. It should be stated that while LPE growth is compatible with the
development of lognormal CSD and accurately replicates both this CSD and deviations
from it, the theory only considers chemical processes. Reiss et al. [158] have recently
suggested that agglomeration of particles during the early stages of gypsum precipitation
may be a mechanism affecting the final CSD. This suggestion is in agreement with the
observation made by Stawski et al. [164] that gypsum crystals are mesocrystals. However,
the extent to which agglomeration shapes the final CSD still requires further study.

5. Summary and Outline for Future Research

The abundance of gypsum in the geological record and its precipitation under var-
ious conditions in both natural and engineered environments make this mineral and its
precipitation significant in many fields of science and engineering. Therefore, the study of
gypsum and its precipitation has been the focus of many studies over the last decades. In
this article, we outlined the current knowledge regarding the thermodynamics involved in
the precipitation of gypsum, the kinetics of nucleation and growth, and the effect of the
above on the morphology and size distribution of the precipitating gypsum.

Discrepancies exist between experimental studies of gypsum precipitation from low
salinity and high salinity solutions. Moreover, disagreement exists between microscopic
and macroscopic observations. These discrepancies include the reaction order of gypsum
and the mechanisms that control it, the effect of brine composition and the Ca2+/SO4

2− ratio
in solution on the habit of gypsum, the mechanism by which Mg2+ retards the nucleation
and growth of gypsum. Moreover, the nucleation pathway and growth mechanisms of
gypsum under saline conditions have yet to be studied with the advanced techniques
available today to observe and image reactions at the micrometer and nanometer scales
at which crystal–water interactions occur. While such studies will greatly increase our
understanding of these reactions in the natural and industrial conditions at which they
occur, such experiments are challenging. Moreover, the lognormal CSD of gypsum (and
other minerals) remains an enigma that requires further consideration by the community.
Thus, while the last decades have resulted in a tremendous advance in our understanding
of gypsum and its precipitation, many questions remain to be answered.
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