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Abstract: Abundant Early Cretaceous magmatism is conserved in the central and southern Great
Xing’an Range (GXR) and has significant geodynamic implications for the study of the Late Mesozoic
tectonic framework of northeast China. In this study, we provide new high-precision U–Pb zircon
geochronology, whole-rock geochemistry, and zircon Hf isotopic data for representative intrusive
rocks from the northern part of the Ulanhot area to illustrate the petrogenesis types and magma source
of these rocks and evaluate the tectonic setting of the central-southern GXR. Laser ablation inductively
coupled plasma–mass spectrometry (LA-ICP-MS) zircon U–Pb dating showed that magmatism in the
Ulanhot area (monzonite porphyry: 128.07 ± 0.62 Ma, quartz monzonite porphyry: 127.47 ± 0.36,
quartz porphyry: 124.85 ± 0.34, and granite porphyry: 124.15 ± 0.31 Ma) occurred during the Early
Cretaceous. Geochemically, monzonite porphyry belongs to the metaluminous and alkaline series
rocks and is characterized by high Al2O3 (average 17.74 wt.%) and TiO2 (average 0.88 wt.%) and
low Ni (average 4.63 ppm), Cr (average 6.69 ppm), Mg# (average 31.11), Y (average 15.16 ppm), and
Yb (average 1.62 ppm) content with enrichment in Ba, K, Pb, Sr, Zr, and Hf and depletion in Ti, Nb,
and Ta. The granitic rocks (e.g., quartz monzonite porphyry, quartz porphyry, and granite porphyry)
pertain to the category of high-K calc-alkaline rocks and are characterized by high SiO2 content
(>66 wt.%) and low MgO (average 0.69 wt.%), Mg# (average 31.49 ppm), Ni (average 2.78 ppm),
and Cr (average 8.10 ppm) content, showing an affinity to I-type granite accompanied by Nb, Ta, P,
and Ti depletion and negative Eu anomalies (δEu = 0.57–0.96; average 0.82). The Hf isotopic data
suggest that these rocks were the product of the partial melting of juvenile crustal rocks. Notably,
fractionation crystallization plays a crucial role in the process of magma emplacement. Combining
our study with published ones, we proposed that the Early Cretaceous intrusive rocks in the Ulanhot
area were formed in an extensional tectonic background and compactly related to the subduction of
the Paleo-Pacific Ocean plate.

Keywords: LA–ICP–MS zircon U–Pb dating; Hf isotopic; early cretaceous; Paleo-Pacific Ocean plate;
central and southern Great Xing’an Range

1. Introduction

Northeast (NE) China, which is well-known for its extensive distribution of Late Meso-
zoic igneous rocks [1–8], is situated in the eastern segment of the Central Asian Orogenic
Belt and bounded by the northern part of the North China Craton, the southern part of the
Siberia Craton and the western Pacific rim (Figure 1a) [9–20]. During the Late Mesozoic,
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this region experienced multi-stage structural superposition and tectonic reformation of the
Paleo-Pacific Ocean (PPO) and Mongol–Okhotsk Ocean tectonic domains, recording multi-
ple tectonic-thermal events of different scales by widespread intrusive rocks [13,21–27]. It
has been a hot area for the interpretation of mantle-crust interactions and crustal evolution
over the past two decades and an important metallogenic belt (Figure 1b) [28–35]. In partic-
ular, as a key component of NE China, the Great Xing’an Range (GXR) exhibits voluminous
Early Cretaceous granitoids (Figure 1c) [2,36–39], indicating that tectonic-magmatic activity
peaked during the Early Cretaceous [1,7,40–44]. Numerous geochronology and geochem-
istry facts show that the granitic rocks of the GXR were formed in an extensional tectonic
environment during the Early Cretaceous [2,29,30,45]. However, there is still some debate
regarding the petrogenesis and geodynamic background of these rocks, including the
following explanations: (1) the upwelling magmas associated with the mantle plume [9,46];
(2) a post-collision gravitational collapse of the Mongol–Okhotsk Ocean plate [47–52];
(3) lithospheric delamination induced by the contribution of westward subduction of the
Paleo-Pacific slab [53–56]; and (4) retreat of the PPO plate and the successive upwelling of
the varying degrees of asthenospheric mantle [35,57–59]. The above disputes indicate that
the GXR has frequent tectonomagmatic activity and complex tectonic settings [56,60–62].
Either way, clarifying the petrogenesis, magma source of the intrusive rocks, and intensive
crust-mantle interaction of the GXR are vital steps in explaining the tectonic evolution
history of the PPO plate and the Mongol–Okhotsk Ocean plate and mastering the GXR
tectonic frameworks during the Early Cretaceous.

Regional geological data show that previous geochronological, geochemical, and iso-
topic studies mainly focused on the northern and southern parts of the GXR [32,34,57,58,63],
but few studies have focused on the central-southern segment [1,16,17,64]. The Ulanhot
area, characterized by extensive intrusions (Figure 2), is affiliated with the central and
southern part of GXR and located at the junction of the Xing’an block and the Songnen
block, which is a favorable place to study the Early Cretaceous tectonic setting of GXR. In
this study, we provided new high-precision U-Pb zircon age testing, whole-rock geochemi-
cal measurements, and zircon Lu-Hf isotopic analysis for representative intrusive rocks
from the northern part of the Ulanhot region, with the purpose of illustrating the formation
time, petrogenesis types, and magmatic origin of these rocks, further discussing their geo-
dynamic implications and evaluating the tectonic background of this place, thus restricting
the evolution of tectonic magmatic history in the GXR during the Early Cretaceous.



Minerals 2021, 11, 1414 3 of 27
Minerals 2021, 11, x 3 of 29 
 

 

 
Figure 1. (a) Tectonic sketch map of Northeast Asia and the position of Figure 1b (modified after Wu et al. [2] and Zhang 
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Figure 1. (a) Tectonic sketch map of Northeast Asia and the position of Figure 1b (modified after Wu et al. [2] and Zhang
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Figure 2. (c) Distribution of the Late Mesozoic granitoids in NE China (modified after Wu et al. [2], Li et al. [38], and Pang
et al. [39]).

2. Geological Background and Sample Descriptions
2.1. Geological Background

From the point of view of plate tectonics, NE China belongs to the eastern section of the
Central Asian Orogenic Belt (Figure 1a) [4–6,8,9,18,24,39,63] and is confined between the
Solonker–Xar Moron suture zone on the northern margin of the North China Craton and the
Mongol Okhotsk suture zone on the southern margin of the Siberia Craton, with the western
Pacific coastal zone to the east (Figure 1b) [7,10–13,16,17,19,20,32,53,65]. The main body of
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NE China is actually composed of Erguna, Xing’an, Songnen, and Jiamusi block systems,
interspersed with a series of microcontinental masses, which correspond to subduction and
closure of the events in the Paleo-Asian Ocean during the Palaeozoic to Early Mesozoic
eras [25,26,29,35,66]. In terms of the regional structure, the Tayuan–Xiguitu fault zone,
Heihe–Hegenshan fault zone, and Yilan–Yitong fault zone indicate the boundaries of these
blocks from northwest to southeast [6,18,40,67,68], and the Solonker–Xar Moron suture
zone marks the final collage demarcation line between the North China Craton and the
blocks of NE China during the Late Permian–Middle Triassic period [17,35,69,70]. Since the
Mesozoic era, NE China has experienced multi-stage structural superposition and tectonic
reformation of the PPO and Mongol–Okhotsk Ocean tectonic domains, forming extensive
Mesozoic volcanic and granitic rocks (Figure 1c) [16,17,26,43,53,71] and constraining the
patterns of crustal growth and crust-mantle interaction in this region [7,24,25,32,63,72].
With the development of research, the subduction of the Mongol–Okhotsk Ocean plate
dated from the early Mesozoic [45,73,74], and this paleo-ocean closed in a scissor–like mode
from west to east and eventually disappeared in the Amur region in the Late Jurassic [55,74].
Additionally, the age of magmatic rocks in NE China tended to decrease from west to east
during the Early Cretaceous [57], implying that subduction and closing of the Mongol–
Okhotsk Ocean may not have predominated the magmatic evolution of NE China during
this period [4,35]. Notably, the subduction of the PPO plate was a complex multi-stage and
multi-directional evolution process [1,8,61,72,75], and the initial subduction time of the PPO
plate to the Eurasia probably emerged earlier than the Early Jurassic [24,35,45,57]. Since
the Late Mesozoic period, especially after the closure of the Mongolian–Okhotsk Oceanic
during the Late Jurassic [45,55], the intense subduction of the PPO plate has restrained the
tectonomagmatic evolution and crust-mantle interaction of NE China [8,25,35,76].

The NNE-trending GXR lies in the western segment of NE China and maintains a
record of abundant magmatism since the Phanerozoic (Figure 1c) [23,33,39,55,71]. The
GXR comprises various structure-rock assemblages connected with Paleozoic island-arc
evolution theories, including without the limitation of shallow-sea limestones, metamor-
phic and volcanic sedimentary rocks, fine-grained clastic rocks, and widespread igneous
intrusions [2,39], and is almost overlaid by voluminous Mesozoic magmatite [3,38,39]. The
Mesozoic magmatite primarily involves the extensive allocation of the Late Jurassic–Early
Cretaceous volcanics [16,17] and the Late Triassic–Middle Jurassic and Early Cretaceous
granitoids (Figure 1c) [38,68,76]. The volcanic types of the GXR refer to the Tamulangou,
Manitu, Manketouebo, Baiyingaolao, and Meiletu formations [23,64,77,78], mainly contain-
ing basalt, andesite, dacite, rhyolite, and volcanic breccia [79]. The Late Triassic–Middle
Jurassic granites are mainly distributed on the northern sides of the GXR, whereas the
Early Cretaceous granites are distributed throughout the GXR (Figure 1c) [39].

The Ulanhot area is affiliated with the central and southern part of the GXR [16]
and located at the junction of Xing’an and Songliao blocks (Figure 1b). As the western
boundary fault of the Songliao Basin [80], the Nenjiang–Balihan fault zone runs through
the southeast of the study area, primarily presenting as the NE trending sinistral strike-slip
ductile shear deformation, and its strike-slip time was during the Early Cretaceous [78,81].
The main exposed strata in this area are Permian and Jurassic, among which Permian
strata are composed of Early Permian clastic, andesite, and dacite rocks; Middle Permian
carbonate or clastic rocks; and Late Permian turbidite deposits, whereas Jurassic strata
consist of dacite, rhyolite, and rhyolite tuff [16,77]. The intrusive rocks, including Permian
biotite granites, granite gneiss, Early Cretaceous monzonite, quartz monzonite, and granite
porphyry (Figure 2) [23,78,82,83], are in unconformity contact with the volcanic strata,
suggesting that tectonomagmatic activity in the study area is frequent, and a more detailed
understanding of its formation ages and diagenetic processes contribute to explaining the
tectonic evolution patterns of GXR in NE China during the Mesozoic era.
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Figure 2. Simplified 1:200,000 regional geological survey map and sample locations of the Ulan-
hot area.

2.2. Sample Descriptions

Typical intrusive rocks were collected approximately 21 km north of the Ulanhot area.
A total of 14 samples from four rock masses (Figure 2), which have not been previously
reported, were selected for geochronology, geochemistry, and Hf isotope analysis.

The hand specimen of the quartz monzonite porphyry in the Dongbaolidagan area
was light red (Figure 3a), with a lumpy texture and porphyritic structure, and the matrix
exhibited an aphanocrystalline or microcrystalline texture.

The porphyritic crystals were mainly made up of K-feldspar (1.0–3.0 mm; 15%),
plagioclase (0.5–2.5 mm; 5%), and a small amount of quartz (0.5–1.0 mm; 2%), with the
felsic aphanocrystalline matrix (Figure 3b).

The monzonite porphyry samples from the Dongbaolidagan area were celandine
green (Figure 3c), clearly showing a massive structure and porphyritic texture with an
aphanocrystalline matrix structure. Porphyritic crystals were made up of plagioclase
(1.0–2.0 mm; 10%) and K-feldspar (1.0–5.0 mm; 8%), and the aphanocrystalline matrix was
mainly feldspar minerals (Figure 3d).

The sample characteristics of the quartz porphyry from the Xielin area were gray-white
(Figure 3e), revealing a broadly massive structure and a porphyritic texture with a ground
mass of aphanitic matrix structure. The porphyritic crystals were primarily composed
of round quartz (0.5–2.5 mm; 20%), with a visible erosion structure, and the matrix was
mostly aphanocrystalline or microcrystalline quartz and feldspar (Figure 3f).



Minerals 2021, 11, 1414 6 of 27
Minerals 2021, 11, x 6 of 29 
 

 

 
Figure 3. Field photographs and typical microphotographs of the intrusive rocks in the northern 
part of the Ulanhot area: (a,b) quartz monzonite porphyry (Sample DBb04); (c,d) monzonite 
porphyry (Sample DBb08); (e,f) quartz porphyry (Sample XLb04); (g,h) granite porphyry (Sample 
SQb13); Q: quartz; Pl: plagioclase; Kfs: K-feldspar. 

The porphyritic crystals were mainly made up of K-feldspar (1.0–3.0 mm; 15%), 
plagioclase (0.5–2.5 mm; 5%), and a small amount of quartz (0.5–1.0 mm; 2%), with the 
felsic aphanocrystalline matrix (Figure 3b). 

The monzonite porphyry samples from the Dongbaolidagan area were celandine 
green (Figure 3c), clearly showing a massive structure and porphyritic texture with an 
aphanocrystalline matrix structure. Porphyritic crystals were made up of plagioclase 
(1.0–2.0 mm; 10%) and K-feldspar (1.0–5.0 mm; 8%), and the aphanocrystalline matrix 
was mainly feldspar minerals (Figure 3d). 

The sample characteristics of the quartz porphyry from the Xielin area were 
gray-white (Figure 3e), revealing a broadly massive structure and a porphyritic texture 
with a ground mass of aphanitic matrix structure. The porphyritic crystals were primar-

Figure 3. Field photographs and typical microphotographs of the intrusive rocks in the northern part
of the Ulanhot area: (a,b) quartz monzonite porphyry (Sample DBb04); (c,d) monzonite porphyry
(Sample DBb08); (e,f) quartz porphyry (Sample XLb04); (g,h) granite porphyry (Sample SQb13); Q:
quartz; Pl: plagioclase; Kfs: K-feldspar.

The granite porphyry samples of Shuiquan were gray-yellow (Figure 3g) and also
revealed a massive structure and a porphyritic texture with an aphanocrystalline or micro-
crystalline texture. The porphyritic crystals were mainly composed of plagioclase (0.5–5.0
mm; 10%) and a small amount of quartz (0.5–1.0 mm; 2%), and the components of the
matrix were mainly composed of quartz and feldspar minerals (Figure 3h).

3. Analytical Methods
3.1. Zircon U–Pb Dating and Hf Isotope Analysis

In this study, the samples of DBT01, DBT02, XLT01, and SQT01 intrusive rocks from
the northern part of the Ulanhot area were selected for zircon U–Pb dating and Hf isotopic
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analysis of in situ zircon. First, the zircon grains were routinely crushed in the Mineral
Separation Laboratory of the Beijing GaoAnalysis Technology Co. Ltd., Beijing, China and
then separated by the technical methods of heavy liquid and magnetic separation. Second,
these particles were observed under a binocular microscope, handpicked, installed onto
gummed tape, encapsulated in an epoxy resin, and polished to a thickness of approxi-
mately 1/3 to 1/2 for further analysis. It is worth mentioning that before we performed
the U–Pb isotope analysis, the internal construction of zircon grains was investigated
using transmission electron microscopy and then by a JEOLJSM-6510 scanning electron
microscope with a MiniCL detector at the Key Laboratory of Mineral Resources in Western
China (Lanzhou, Gansu) to obtain clear images of backscattered electrons and cathode
luminescence (CL). Subsequently, the U–Pb isotope analysis target area was selected by
using the CL images obtained previously to carry out the dating studies, which were
performed on an inductively coupled plasma–mass spectrometry (ICP-MS) spectrometer
(Agilent Ltd.) with a 193-nm Analyte excimer laser-ablation system (Photon Machines Inc.)
at the Key Laboratory of Mineral Resources in Western China (Lanzhou, Gansu). In this
experiment, the laser ablation spot magnitude was approximately 30 µm with a repeat
frequency of 8 Hz, and the carrier gas consisted of high-purity He gas. Harvard zircon
91,500 and silicate glass NIST 610 were regarded as the external standards to normalize
isotope fractionation in the analysis process and calculate the U, Th, and Pb concentrations
of zircons. Meanwhile, the 208 Pb method was always accustomed to Pb correction to
guarantee measurement validity and accuracy [84]. All testing outcomes were handled by
Glitter software, version 4.0, and the diagrams of zircon U–Pb age concordia and weighted
mean age were pictured using Isoplot software [85]. In addition, the error of age data and
consistency graphs were reported at 1σ, and the confidence level of the weighted mean age
uncertainties was reported to be 95%.

In situ zircon Hf isotopic analyses were performed at or near the age point of the
chosen zircon grains and conducted using a Thermo Fisher Neptune MC–ICP–MS system
and linked to a Resolution SE193 nm laser ablation system at the Isotope Geology Labo-
ratory of the Beijing GaoAnalysis Technology Co. Ltd., Beijing, China. The laser ablation
spot magnitude was 38 µm with a repeat frequency of 10 Hz, and the single-spot ablation
mode was utilized for all zircon analyses. More detailed technical theories and methods
have been proposed by Hu et al. [86]. Furthermore, zircon standard 91,500 still served as
alignment, inducing a 176Hf/177Hf percentage of weighted mean at 0.282480 ± 0.000016
(2σ) and in harmony with the preferred values within the scope of error [87]. The zir-
con Hf isotope data were processed using the Geokit software package [88,89], and the
isotopic parameters used to calculate εHf(t) and Hf model ages were mainly as follows:
λ176 = 1.867 × 10−11a−1 [90], (176Lu/177Hf)CHUR = 0.0332 [91], (176Hf/177Hf)CHUR =
0.282772 [91,92], (176Lu/177Hf)DM = 0.0384 [93], (176Hf/177Hf)DM = 0.28325 [93], and
(176Lu/177Hf)CC = 0.015 [94,95].

3.2. Major and Trace Element Determinations

Systematically, 14 intrusive rock samples were selected for whole-rock geochemical
determination of major and trace elements in the Isotope Laboratory of the Beijing GaoAnal-
ysis Technology Co. Ltd., Beijing, China. First, the altered rock faces were removed, and the
fresh rock sample segments were cut and ground through a 200 mesh. The loss on ignition
of the samples was subsequently acquired by baking at 1000 ◦C in a high-temperature
furnace for 1 h. The Shimadzu X-ray fluorescence analysis (XRF; 1800-type) was used for
major element analysis of these samples on a fused glass disk, with an analytical precision
of more than 5%. The abundance of trace elements and rare earth elements (REEs) was
gauged by ICP–MS (Agilent; 7500-type). The main experimental steps included digesting
the prepared samples in a high-pressure Teflon bomb with a HF + HNO3 mixture at 190 ◦C
for 96 h, evaporating, cooling, diluting, and then sending the samples for ICP-MS detection.
For most elements, the analytical indetermination of trace elements was far better than
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10%. The detailed sample preparation techniques and analytical process are mentioned in
Gao et al. [96].

4. Results
4.1. Zircon U–Pb Ages

The LA–ICP–MS zircon U–Pb dating results of the intrusive rock samples (DBT01,
DBT02, XLT01 and SQT01), which were selected from the northern part of the Ulanhot area,
are presented in Supplementary Table S1.

The DBT01 (N46◦15′24′′, E122◦00′26′′) sample of quartz monzonite porphyry was
collected from a small stock in the Dongbaolidagan area. The chosen zircon grains of DBT01
appear euhedral to semi-euhedral, with prismatic structures and colorless diaphanous
characteristics. These zircons have diameters of 50–150 µm and length-width ratios of 0.5:1
to 2:1 and exhibit fine-scale oscillatory growth textures in the CL images. Furthermore,
the Th/U ratios of these zircons ranged from 0.44–8.86 (average 0.63), which is signifi-
cantly higher than the standard value of 0.3 compared to those of the typical magmatic
zircons, revealing their magmatic origin [97]. Excluding the low concordance zircons and
captured zircons (no. 16, 22, and 23), we implemented 22 analyses on 22 zircons with
better consonance from the DBT01 sample, yielding a weighted mean 206Pb/238U age
of 127.47 ± 0.36 Ma (MSWD = 5.26, n = 22; Figure 4a), which we considered to be the
crystallization age of quartz monzonite porphyry.
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The DBT02 (N46◦15′21′′, E122◦00′29′′) sample of the monzonite porphyry, located
approximately 100 m southeast of the DBT01 sample, was selected from a small stock in
the Dongbaolidagan area. The zircon grains of DBT02 also appeared clearly euhedral to
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semi-euhedral, with prismatic structures and colorless diaphanous characteristics. The
zircons had diameters of 40–100 µm and length-width ratios of 0.5:1 to 1.1:1 and exhibited
fine-scale oscillatory growth textures in the CL images. In addition, the Th/U ratios of
these zircons ranged from 0.39–0.99 (average 0.63, indicating their magmatic origin [97]).
After eliminating the low concordance zircons and captured zircons, we implemented
seven analyses on seven zircons (no. 4, 15, 16, 17, 18, 20, and 22) with better consonance
from the DBT02 sample, yielding a weighted mean 206Pb/238U age of 128.07 ± 0.62 Ma
(MSWD = 0.40, n = 7; Figure 4b), which was interpreted as the crystallization age of
monzonite porphyry.

The XLT01 (N46◦16′33′′, E121◦53′10′′) sample of quartz porphyry was collected from
a small stock in the Xielin area. The zircon grains of XLT01 still appeared euhedral to
semi-euhedral, with prismatic structures and colorless diaphanous characteristics. The
zircons had diameters of 30–100 µm and length-width ratios of 0.5:1 to 1:1 and exhibited
fine-scale oscillatory growth textures in the CL images. Additionally, the Th/U ratio of
these zircons ranged from 0.35–0.71 (average 0.51), revealing their magmatic origin [97].
After the removal of one low concordance zircon grain (no. 9), we implemented 21 analyses
on 21 zircons with better consonance from the XLT01 sample, yielding a weighted mean
206Pb/238U age of 124.85 ± 0.34 Ma (MSWD = 1.06, n = 21; Figure 4c), which was regarded
as the crystallization age of quartz porphyry.

The SQT01 (N46◦17′10′′, E122◦10′24′′) sample of granite porphyry was collected from a
small stock in the Shuiquan area. The zircon grains of SQT01 still appeared visibly euhedral
to semi-euhedral, with prismatic structures and colorless diaphanous characteristics. The
zircons had diameters of 50–150 µm and length-width ratios of 0.5:1 to 1.5:1 and exhibited
fine-scale oscillatory growth textures in the CL images. Additionally, the Th/U ratios of
these zircons ranged from 0.52–1.08 (average 0.68), revealing their magmatic origin [97].
After the elimination of one low concordance zircon grain (no. 22), we implemented 26
analyses on 26 zircons with better consonance from the SQT01 sample, yielding a weighted
mean 206Pb/238U age of 124.15 ± 0.31 Ma (MSWD = 15.8, n = 26; Figure 4d), which we
viewed as the crystallization age of granite porphyry.

4.2. Major and Trace Elements Geochemistry

To explore the petrogeochemistry of intrusive rocks in the northern part of the Ulanhot
area during the Early Cretaceous, a total of 14 fresh samples were selected from four
intrusive bodies in the study area; the results of the chemical analyses are summarized in
Supplementary Table S2.

The quartz monzonite porphyry samples (DBD01, DBD02, DBD03, and DBD04)
from the Dongbaolidagan area were characterized by SiO2 (65.65–66.95 wt.%; average
66.27 wt.%), Al2O3 (15.45–15.95 wt.%; average 15.62 wt.%), Na2O (4.34–4.57 wt.%; aver-
age 4.45 wt.%), K2O (3.47–3.69 wt.%; average 3.56 wt.%), K2O + Na2O (7.85–8.17 wt.%;
average 8.01 wt.%), K2O/Na2O (0.78–0.82), MgO (1.06–1.17 wt.%), CaO (2.39–2.82 wt.%),
P2O5 (0.134–0.143 wt.%), TiO2 (0.45–0.47 wt.%), FeOT (3.39–3.63 wt.%), and FeOT/MgO
(3.04–3.23). According to the total alkali K2O + Na2O versus SiO2 diagram and the K2O
versus SiO2 diagram, with a Rittman index (σ) of 2.57–2.92, all samples were found to be in
the field of quartz-monzonite and high-K calc-alkaline series, respectively (Figure 5a,b).

The A/CNK values (0.95–1.00) suggested that these rocks belonged to the metalumi-
nous rocks series (Figure 5c). In the chondrite-normalized REE patterns, the samples had
∑REE contents of 117.99–126.99 ppm with LREE/HREE values of 9.63–9.76 and (La/Yb)N
ratios of 10.18–10.40, implying the modest fractionation of the LREE and HREE (Figure 6a).

Further, all the samples showed high Sr (401–574 ppm; average 480 ppm) and Ba (982–
1077 ppm; average 1038 ppm) content and low Y (14.1–15.9 ppm; average 15.1 ppm) and
Yb (1.71–1.83 ppm; average 1.75 ppm) content, with weakly negative Eu (δEu = 0.82–0.89;
average 0.86) anomalies (Supplementary Table S2). Moreover, in the primitive mantle-
normalized spider diagram (Figure 6b), these samples were characterized by relative
enrichment in Ba, K, Pb, and Hf content, and obvious depletion in Nb, Ta, P, and Ti content.
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The monzonite porphyry samples (DBD06, DBD07, DBD08, and DBD09) from the
Dongbaolidagan area were characterized by SiO2 (59.01–59.83 wt.%; average 59.45 wt.%),
Al2O3 (17.14–18.67 wt.%; average 17.74 wt.%), Na2O (4.03–5.79 wt.%; average 4.77 wt.%),
K2O (3.08–3.59 wt.%; average 3.37 wt.%), K2O + Na2O (7.11–9.12 wt.%; average 8.14 wt.%),
K2O/Na2O (0.57–0.77), MgO (0.98–1.43 wt.%), CaO (3.04–4.49 wt.%), P2O5 (0.292–0.324
wt.%), TiO2 (0.84–0.93 wt.%), FeOT (4.41–4.95 wt.%), and FeOT/MgO (3.21–4.72). From
the total alkali K2O + Na2O versus SiO2 diagram, with the Rittman index (σ) of 3.03–5.19
(average 4.07), all samples were found to be in the field of monzonite and alkaline series
(Figure 5a,b). The A/CNK values (0.95–1.03; average 0.99) suggested that these rocks
belonged to the metaluminous rocks series (Figure 5c). In the chondrite-normalized REE
patterns, the samples had ∑REE contents of 120.45–123.99 ppm with LREE/HREE values of
9.09–9.63 and (La/Yb)N ratios of 9.84–10.71, implying the modest fractionation of the LREE
and HREE (Figure 6a). All the samples hardly showed any Eu anomalies (δEu = 1.02–1.10;
average 1.07; Supplementary Table S2). Moreover, in the primitive mantle-normalized
spider diagram (Figure 6b), these samples were characterized by relative enrichment in Ba,
K, Pb, Sr, Zr, and Hf content and obvious depletion in Ti, Nb, and Ta content.

The quartz porphyry samples (XLD03 and XLD04) from the Xielin area were charac-
terized by SiO2 (75.26–75.96 wt.%; average 75.61 wt.%), Al2O3 (11.99–12.42 wt.%; average
12.21 wt.%), Na2O (3.79–4.21 wt.%; average 4.00 wt.%), K2O (3.27–3.81wt.%; average
3.54 wt.%), K2O + Na2O (7.48–7.61 wt.%; average 7.54 wt.%), K2O/Na2O (0.78–1.00), MgO
(0.43–0.45 wt.%), CaO (0.66–0.97 wt.%), P2O5 (0.092–0.100 wt.%), TiO2 (0.28–0.30 wt.%),
FeOT (1.71–1.77 wt.%), and FeOT/MgO (3.83–4.10). From the total alkali K2O + Na2O ver-
sus SiO2 diagram and the K2O versus SiO2 diagram, with the Rittman index (σ) of 1.73–1.76
(average 1.74), all samples were found to be in the field of granite and high-K calc-alkaline
series, respectively (Figure 5a,b). The A/CNK values (1.02–1.03; average 1.03) suggested
that these rocks belonged to the weakly peraluminous rocks series (Figure 5c). In the
chondrite-normalized REE patterns, the samples had ∑REE contents of 82.02–95.16 ppm
with LREE/HREE values of 11.99–12.00 and (La/Yb)N ratios of 12.53–13.36, implying the
modest fractionation of the LREE and HREE (Figure 6a). All the samples showed slightly
negative Eu anomalies (δEu = 0.95–0.96; average 0.96; Supplementary Table S2). Moreover,
in the primitive mantle-normalized spider diagram (Figure 6b), these samples were charac-
terized by relative enrichment in Ba, K, Pb, and Hf content and obvious depletion in Nb,
Ta, P, and Ti content.

The granite porphyry samples (SQD11, SQD12, SQD13, and XLD04) from the Shuiquan
area were characterized by SiO2 (69.44–72.03 wt.%; average 71.17 wt.%), Al2O3 (14.27–16.00 wt.%;
average 14.92 wt.%), Na2O (3.73–4.97 wt.%; average 4.37 wt.%), K2O (3.29–5.79 wt.%; average
4.65 wt.%), K2O + Na2O (8.26–9.55 wt.%; average 9.03 wt.%), K2O/Na2O (0.66–1.55), MgO
(0.30–0.50 wt.%), CaO (0.51–1.66 wt.%), P2O5 (0.054–0.138 wt.%), TiO2 (0.25–0.35 wt.%), FeOT
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(1.83–2.01 wt.%), and FeOT/MgO (3.85–6.71). From the total alkali K2O + Na2O versus SiO2
diagram and the K2O versus SiO2 diagram, with the Rittman index (σ) of 2.42–3.15 (average
4.07), all samples were found to be in the field of granite and high-K calc-alkaline series to
shoshonitic series, respectively (Figure 5a,b). The A/CNK values (1.05–1.07; average 1.06)
suggested that these rocks belonged to the weakly peraluminous rocks series (Figure 5c). In
the chondrite-normalized REE patterns, the samples had ∑REE contents of 105.70–150.75
ppm with LREE/HREE values of 8.47–12.49 and (La/Yb)N ratios of 8.72–14.63, implying the
modest fractionation of the LREE and HREE (Figure 6a). All the samples showed negative
Eu anomalies (δEu = 0.57–0.86; average 0.72; Supplementary Table S2). Moreover, in the
primitive mantle-normalized spider diagram (Figure 6b), these samples were characterized
by relative enrichment in Rb, Ba, K, and Pb content and obvious depletion in Nb, Ta, P, and
Ti content.

4.3. Zircon Hf Isotopes

Five representative zircon grains were chosen from the DBT01, DBT02, XLT01, and
SQT01 samples from the northern Ulanhot area for in situ Hf isotopic analyses (Supple-
mentary Table S3).

The magmatic zircons of the quartz monzonite porphyry sample DBT01 had initial
176Hf/177Hf ratios of 0.282903–0.282937, εHf(t) values of +7.25 to +8.48 (average + 7.82),
and two-stage model ages (TDM2) of 641–722 Ma.

The magmatic zircons of the monzonite porphyry sample DBT02 had initial 176Hf/177Hf
ratios of 0.282923–0.282982, εHf(t) values of +8.05 to +10.10 (average + 9.04), and two-stage
model ages (TDM2) of 538–670 Ma.

The magmatic zircons of the quartz porphyry sample XLT01 had initial 176Hf/177Hf
ratios of 0.282977–0.283020, εHf(t) values of +9.83 to +11.35 (average + 10.37), and two-
stage model ages (TDM2) of 453–552 Ma. However, one of the magmatic zircons had an
initial 176Hf/177Hf ratio of 0.283161 and an abnormal εHf(t) value of +16.31; this was thus
invalid data.

The magmatic zircons of the granite porphyry sample SQT01 had initial 176Hf/177Hf
ratios of 0.282912–0.282968, εHf(t) values of +7.57 to +9.51 (average + 8.22), and two-stage
model ages (TDM2) of 574–697 Ma.

The Hf isotopic characteristics of zircons from these intrusive rocks were relatively
consistent with those of zircons from the Late Mesozoic granitoids in the GXR (Figure 7a,b).
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5. Discussion
5.1. Timing of Intrusive Rocks

Previous studies have shown that the tectonic magmatic activities from the Paleozoic
to the Mesozoic in the GXR were frequent and complex [55,72], especially marked by the
large-scale outcropping of Late Mesozoic granitic rocks (Figure 1c) [8,18,26,38,71,105–107].
Numerous geochronological data indicate that the magmatic activities in the GXR area
reached a peak during the Early Cretaceous, with the formation age of the granitic
rocks ranging from 140 to 125 Ma (Supplementary Table S4; Figure 8) [2,14,19,23,108].
However, these studies were mainly focused on the northern and southern parts of the
GXR [5–7,20,24,26,32,34,35,57,63] and few have focused on the central-southern segment
(1, 16, 17, 64). In this study, we selected intrusive rock samples (DBT01, DBT02, XLT01, and
SQT01) from the northern Ulanhot area in the central-southern GXR for the first time to
conduct high-precision zircon U–Pb age testing (Figure 2), and it was concluded that the
crystallization ages of these rocks were approximately 128–124 Ma (Figure 4). These results
were basically harmonious with the zircon ages for granitoids in the central-southern GXR
and adjacent areas (Figure 8) and were in accordance with the main stage of the Early Cre-
taceous tectonomagmatism and lithospheric thinning in GXR, NE China [4,16,17,25,29,35].
It is also the main metallogenic period of medium- to large-scale Pb-Zn-Ag and Mo de-
posits [24,26,28,32,108,109].

5.2. Petrogenesis and Magma Source of Intrusive Rocks
5.2.1. Monzonite Porphyry

The monzonite porphyry samples were characterized by high Al2O3 (17.14–18.67 wt.%;
average 17.74 wt.%) and K2O + Na2O (7.11–9.12 wt.%; average 8.14 wt.%) content and low
SiO2 (59.01–59.83 wt.%; average 59.45 wt.%), MgO (0.98–1.43 wt.%), CaO (3.04–4.49 wt.%),
and P2O5 (0.292–0.324 wt.%) content; they belonged to alkaline series rocks (Figure 5b),
suggesting an extensional geological setting. There are several models of the origin of
alkaline rocks: (a) crystallization differentiation of alkaline basalt magma derived directly
from the mantle [110,111]; (b) partial melting of materials in the lower crust [112,113]; and
(c) magmatic mixing of mantle-derived magma and crust-derived magma [114].
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The samples showed low Ni (2.61–8.09 ppm; average 4.63 ppm), Cr (6.21–7.29 ppm; av-
erage 6.69 ppm), and Mg# (27.61–35.89; average 31.11) content but high TiO2 (0.84–0.93 wt.%;
average 0.88 wt.%) content, which was inconsistent with high Ni (300–400 ppm), Cr
(50–300 ppm), and Mg# (>60) content and low TiO2 (<0.50 wt.%) content geochemical char-
acteristics of the mantle-derived magma [115,116], suggesting that these rocks were not
from the mantle magma. Furthermore, due to the absence of mafic or ultramafic accumula-
tion, it is ruled out that these rocks were derived from an extreme differentiation pattern
of mantle-derived magma [34,117]. Conversely, these rocks were relatively enriched in
Ba, K, Pb, Sr, Zr, and Hf and depleted in Ti, Nb, and Ta, implying the possibility of crust-
derived magma with the magma characteristics of island arc or active continental margin
arc [118,119]. Moreover, the Ce/Pb (3.64–3.93), Nb/U (4.66–4.74), Nd/Th (5.03–5.22), and
La/Nb (3.44–3.70) values of the samples were more similar to those of crustal rocks (4, 10,
3, and 2.2, respectively) than the primitive mantle (9, 30, 15, and 0.94, respectively), further
elucidating the origin of crustal magma [87,120,121]. In addition, the magmatic zircons
of the monzonite porphyry had initial 176Hf/177Hf ratios of 0.282923–0.282982, εHf(t) val-
ues of +8.05 to +10.10 (average +9.04), and two-stage model ages (TDM2) of 538–670 Ma
(Figure 7a,b), indicating that the magma sources of the samples had the quality of juve-
nile crustal materials, which were accreted during the Neoproterozoic [53]. Additionally,
it is worth noting that the Eu (δEu = 1.02–1.10; average 1.07) anomalies of these rocks
were not prominent, with lower contents of Y (14.4–16.1 ppm; average 15.16 ppm) and
Yb (1.53–1.68 ppm; average 1.62 ppm), suggesting that the rocks were derived from the
partial melting of the lower crust at high pressure with the garnet residue instead of the
plagioclase residue in the source area [122–124]. Therefore, we propose that the monzonite
porphyry in the Ulanhot area is the product of partial melting of juvenile crustal materials
at high pressure.

5.2.2. Granitic Rocks

The quartz monzonite porphyry, quartz porphyry, and granite porphyry samples
from the Ulanhot area exhibit high SiO2 content (average 66.27 wt.%, average 71.17 wt.%,
and average 75.61 wt.%, respectively) and low Al2O3 content (average 15.62 wt.%, average
14.92 wt.%, and average 12.21 wt.%, respectively), pertaining to the category of high-K
calc-alkaline rocks (σ < 3.3; Supplementary Table S2) and acid granitic rocks. In general
terms, granitic rocks are classified into S-, I-, and A-types based on the characteristics of
provenance and geochemistry [125–128]. S-type granite shows high A/CNK values (>1.1)
and the presence of cordierite, garnet, and muscovite minerals, which are mainly derived
from metamorphic sedimentary source rocks [125]. In this work, the A/CNK values of
granitic rocks samples from the Ulanhot area were 0.95–1.00, 1.02–1.03, and 1.05–1.07
for quartz monzonite porphyry, quartz porphyry, and granite porphyry, respectively,
notably lower than the standard values of S-type granite (A/CNK > 1.1). Simultaneously,
the low content of P2O5 (Supplementary Table S2) and the absence of cordierite, garnet,
and muscovite minerals (Figure 3d) precludes the probability of S-type granite [129,130].
In addition, the experimental petrology showed that for the metaluminous to weakly
peraluminous rocks, the solubility of P in I-type granite melts decreased with an increase
in SiO2 content and exhibited a negative correlation between P2O5 and SiO2 [131], whereas
the strongly peraluminous S-type granites showed no such trend [132]. In the Harker
diagram (Figure 9f), these granitic rocks showed a negative correlation between P2O5
and SiO2, further verifying the prototypical properties of I-type granites rather than S-
type granites [129], which are consistent with the K2O versus Na2O diagram (Figure 10f).
A-type granite belongs to an alkaline series formed at high temperature (840 ◦C; King
et al. [113]) and is characterized by high FeOT/MgO, 10,000 × Ga/Al, and (Zr + Nb
+ Ce + Y) values [128,133]. From the results of the total alkali K2O + Na2O versus SiO2
diagram, these granitic rocks fell into the subalkaline field (Figure 5a). The zircon saturation
temperatures of these rocks (727–821 ◦C; average 774 ◦C; Supplementary Table S2) were
significantly lower than those of A-type granites (840 ◦C) and more similar to those of
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I-type granites (764 ◦C; King et al. [113]) [134]. Meanwhile, the samples displayed low
FeOT/MgO (3.04–6.71; average 4.12, lower than 10), (Zr + Nb + Ce + Y) (135.80–304.64
ppm; average 207.55, lower than 350 ppm), and 10,000 × Ga/Al (2.19–2.78; average 2.39,
lower than 2.6), suggesting that the granitic rocks have an affinity for I-type granite instead
of A-type granite [128,133,135], which is also in line with the diagrams of discriminate
genesis of the intrusive rocks (Figure 10). Therefore, we consider that the Early Cretaceous
quartz monzonite porphyry, quartz porphyry, and granite porphyry rocks in the Ulanhot
area have an affinity for I-type granites.
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However, the material sources of I-type granites have been debated [12,13]. Several
models have been used to explain the genesis of I-type granite, suggesting it is generated
by: (1) fractional crystallization of the mixed magmas formed by mantle-derived mafic
magmas and felsic magmas [136]; (2) direct fractionation crystallization of mantle-derived
mafic magmas [137]; and (3) partial melting and crystal fractionation of the lower crustal
rocks after the intrusion of mafic magmas [135].
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The granitic rocks exhibited high SiO2 content (>66 wt.%) and low MgO (average
0.69 wt.%), Mg# (average 31.49 ppm), Ni (average 2.78 ppm), and Cr (average 8.10 ppm)
content, suggesting that these rocks were not from the mantle magma [115,116]. Further-
more, the undiscovered mafic microgranular enclaves [138] and the few variations in εHf(t)
values (Supplementary Table S3) [34] suggest that the mixed magma model is insufficient
for the formation of the Ulanhot granitic rocks. These granitic rock samples had low ΣREE
values (82.02–150.75; average 116.43), LREE/HREE values (8.47–12.49; average 10.47), and
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(La/Yb)N values (8.72–14.63; average 11.47), with apparent depletion of Nb, Ta, P, and
Ti, indicating the characteristics of crust-derived magmas [139]. The Zr/Hf (24.24–39.33;
average 30.62) and Nb/Ta (6.59–18.89; average 13.59) values approached the crust values
(33 and 11, respectively) and were lower than those of the primitive mantle (37 and 17.8,
respectively) [103]. Moreover, the Ce/Pb (2.47–4.00; average 3.28), Nb/U (3.26–10.49; aver-
age 5.80), Nd/Th (2.22–4.00; average 2.97), and La/Nb (2.26–3.37; average 2.95) values of
the samples were more similar to those of the crustal rocks (4, 10, 3, and 2.2, respectively)
than to those of the primitive mantle (9, 30, 15, and 0.94, respectively) [103,120,121]. In
addition, the εHf(t) values (+7.25 to + 11.35) and TDM2 ages (453–722 Ma) of zircons within
this research (Supplementary Table S3; Figure 7a,b) show that the magma sources of the
samples also had the essential property of juvenile crustal materials. Significantly, the La
versus La/Sm diagram (Figure 11a) showed that conspicuously fractional crystallization
occurred during the emplacement process of magma. The granitic rock samples of the
Ulanhot area were characterized by Nb, Ta, P, and Ti depletion and negative Eu anomalies
(δEu = 0.57–0.96; average 0.82; Supplementary Table S2; Figure 6), suggesting that the crust-
derived magmas may be accompanied by fractional crystallization of plagioclase, titanite,
and apatite minerals in the process of ascending emplacement at low pressure [139,140],
which is consistent with the Harker diagrams (Figure 9) and Sr versus Ba/Sr diagram
(Figure 11b). Thus, we propose that the primary magmas of the granitic rocks in the
study area were derived from the partial melting of juvenile crustal rocks at low pressure,
accompanied by strong plagioclase fractional crystallization.
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5.3. Tectonic Implications

As mentioned earlier, the Ulanhot intrusive rocks consist of alkaline monzonite por-
phyry and highly fractionated I-type granites (e.g., quartz monzonite porphyry, quartz
porphyry, and granite porphyry rocks) and are the consequence of tectonic magmatic events
during the Early Cretaceous (ca. 128–124 Ma). It is generally considered that the tremen-
dous volcanic and plutonic rocks distributed in the GXR are the products of the lithospheric
thinning events that occurred during the Early Cretaceous in eastern China [2,7,8,53,60].
However, the geodynamic setting of these large-scale NNE-trending plutonic rocks in the
GXR is still in dispute, mainly focusing on the following models: (1) the upwelling magmas
associated with the mantle plume [9,46]; (2) a post-collision gravitational collapse of the
Mongol–Okhotsk Ocean plate [30,47–52,74,141]; (3) lithospheric delamination induced by
the contribution of westward subduction of the Paleo-Pacific slab [53–56]; and (4) retreat of
the PPO plate and the succedent upwelling of the varying degrees of the asthenosphere
mantle [4,8,35,57–60].

The model of upwelling magmas associated with mantle plumes generally showed a
circular-shaped distribution of igneous rocks, and the duration of magmatic eruption was
only a few million years [142], which were broadly inconsistent with the NNE-trending
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linear distribution of Early Cretaceous granites and the duration of magmatism of ap-
proximately 40 Ma in the GXR area [35,38]; therefore, it was excluded. Previous studies
have revealed that from the Early Mesozoic to Late Jurassic, the Mongol–Okhotsk Ocean
plate underwent a long descent into closure [17,34], and through a scissor-like mode from
west to east eventually led to closures in the Amur region. [26,49,74,143]. Furthermore,
the NE tendency of the Mongol–Okhotsk Ocean suture zone did not correspond to the
NNE direction of the GXR main ridge, indicating that the Mongol–Okhotsk Ocean tectonic
domain probably failed to efficaciously control the Early Cretaceous magmatism in the
GXR area [4,8]. With the development of geological and tectonic evolution of NE China, an
increasing number of studies have revealed that the PPO plate was already subducted to
the Eurasia prior to the Early Jurassic [8,24,35,45,57,61,144], including those on the Nadan-
hada accretionary complex in NE China [144], which effectively recorded the incipient
subduction of the PPO plate during the Late Triassic. Meanwhile, as the main body of
the Nadanhada accretionary complex, the Raohe accretionary complex was formed by
the continuous subduction of the PPO plate to the Eurasian continent, with abundant ter-
rigenous debris and oceanic crust fragments mixed and accumulated in the trench during
the Middle Jurassic to Early Cretaceous [145]. Geophysical evidence also suggests that
the PPO plate subducted westward to the GXR region in the late Jurassic [56], which is
consistent with the opinion that the PPO subduction plate front is in the mantle transition
zone east of the GXR gravity gradient zone [62]. In addition, Ji et al. [59] considered that
the PPO plate had already been subducted to the northern GXR by the occurrence of low-K
adakitic lavas (ca. 163Ma) in the Hailar Basin, and the basin was in an extensional regime
associated with the subducted PPO plate during the Early Cretaceous [57], confirming
that the Mongol–Okhotsk Ocean plate had limited influence on the magma evolution of
the GXR during the Early Cretaceous. Notably, the subduction mode of the PPO plate
was a complex multi-stage and multidirectional evolution process [1,8,61,72,75,146,147].
With the subduction direction and velocity turnaround [148], the emplacement age of
Early Cretaceous volcanic and plutonic rocks in NE China show a younger tendency from
west to east stage by stage [55,57], indicating that the retreat of the subducted PPO plate
occurred during the Early Cretaceous [35,45,76], and the lithospheric delamination model
induced by the subduction of the PPO plate is insufficient to explain the formation of the
Early Cretaceous magmatism in the GXR area. New research has declared that during
the 130–120 Ma period, the PPO plate changed into a high-angle subduction mode at a
maximum receding rate and eventually formed the residual material, which was gener-
ated in the mantle transition zone [4]. In addition, at this stage, the Tan–Lu Fault Zone
experienced a variation from a north-south compressional strike-slip environment to a
strong extensional environment [60,149]. All the above lines indicate that the retreat of
the PPO plate restrained the tectonic magmatism of the GXR during the Early Cretaceous.
In this study, according to the (La/Nb) versus (Ba/Nb) diagram (Figure 12a) [150] and
Zr versus (Nb/Zr) diagram (Figure 12b) [151], the monzonite porphyry samples were
plotted in the field of arc igneous and subduction zones, suggesting an oceanic plate
subduction environment. In the (Y + Nb) versus Rb and (Y + Ta) versus Rb diagrams
(Figure 12c,d) [152], the granitic rock samples fell into the VAG field and showed a ten-
dency of transition to intraplate granite. Moreover, the exposure of metamorphic core
complexes in the Harkin and Ganzhuermiao areas [51,52], the extensional strike-slip of the
Nenjiang–Balihan fault [78,80,81], and the widespread distribution of A-type granites in
the GXR area during the Early Cretaceous [18,20,63] suggest that the study area was in an
extensional tectonic environment.
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Figure 12. Tectonic discrimination diagrams for the Early Cretaceous intrusive rocks. (a) (La/Nb)
versus (Ba/Nb) diagram (Jahn et al. [150]); (b) Zr versus (Nb/Zr) diagram (Luchitskaya et al. [151]);
(c) (Y + Nb) versus Rb diagram (Pearce et al. [152]); (d) (Yb + Ta) versus Rb diagram (Pearce et al. [152]).
Abbreviations: VAG: volcanic arc granite; Syn COLG: syn-collisional granite; WPG: within-plate
granite; ORG: ocean ridge granite.

In summary, the Ulanhot area was in an extensional tectonic background during the
Early Cretaceous, and the formation of intrusive rocks was closely related to the retreat of
the PPO subducted plate [4,16,18,23,24,32,35,55,57,64,76]. According to the experimental
petrological data, the plagioclase residue in the magma source suggests that the magmas
were derived from a low-pressure environment, whereas the garnet residue represented a
high-pressure environment [67,124]. The residual plagioclase in the magma source indicates
that the magmas were generated at a depth of approximately 40 km (<1.2 GPa) [122]. The
monzonite porphyry (ca. 128 Ma) had low Y and Yb contents, and the Eu (δEu = 1.02–1.10;
average 1.07) anomalies of these rocks were not prominent, suggesting the presence of the
garnet residue in the monzonite porphyry and a magma formation depth of >40 km. The
granitic rocks (ca. 127–124Ma) showed negative Eu anomalies (δEu = 0.57–0.96; average
0.82), suggesting the presence of the plagioclase residue and a magma formation depth of
<40 km. In addition, from 128–124 Ma, the depth of the magma source became shallower
with continuous extension. Liu et al. [8] considered that the motivation for retreat of the
PPO subduction plate was the eastward migration of the deep mantle convection and
shallow mantle convection. As the PPO subducted plate retreated, the lithosphere became
thinner and the pressure gradually decreased (Figure 13b,c), which contributed to the
partial melting of the juvenile crustal rocks [8,35], expressively emerging the Ulanhot
intrusive rocks in the central and southern part of the GXR during the Early Cretaceous
(Figure 13a) [16,29,35,39,64,83,105,153–155].
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Figure 13. (a) Schematic model for the Early Cretaceous geodynamic processes in the central-southern
GXR (modified from Tang et al. [75]); (b) Conceptual model for the formation of the monzonite
porphyry (modified from Feng et al. [26]); (c) Conceptual model for the formation of the quartz
monzonite porphyry, quartz porphyry, and granite porphyry rocks (modified from Feng et al. [26]).

6. Conclusions

LA-ICP-MS zircon U–Pb dating showed that the magmatism in the Ulanhot area
(monzonite porphyry: 128.07 ± 0.62 Ma, quartz monzonite porphyry: 127.47 ± 0.36, quartz
porphyry: 124.85 ± 0.34, and granite porphyry: 124.15 ± 0.31 Ma) occurred during the
Early Cretaceous.

The monzonite porphyry belongs to the metaluminous and alkaline series rocks,
which is the product of partial melting of juvenile crustal materials at high pressure. The
granitic rocks (e.g., quartz monzonite porphyry, quartz porphyry, and granite porphyry)
are I-type granite and belong to the category of high-K calc-alkaline rocks and the primary
magmas derived from the partial melting of juvenile crustal rocks, accompanied by strong
plagioclase fractional crystallization.

The Early Cretaceous intrusive rocks in the Ulanhot area were formed in an extensional
tectonic background and compactly related to the retreat of the PPO subducted plate.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/min11121414/s1. Table S1: LA-ICP-MS zircon U–Pb dating results for the intrusive rocks
(DBT01, DBT02, XLT01, and SQT01) in the Ulanhot area, Table S2: Major (wt.%) and trace elements
(ppm) results of the intrusive samples from the Ulanhot area, Table S3: Zircon Hf isotopic composi-
tions of the Early Cretaceous Ulanhot intrusive rocks, Table S4: Geochronological data of the Late
Mesozoic intrusive rocks in the central-southern Great Xing’an Range.
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