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Abstract: This work aims to evaluate the effect of lattice substitution on adsorption of hexavalent
chromium by three kinds of typical clay minerals, and its common isomorph via experiments and
calculations were performed based on density functional theory. The experiments (25 ◦C, 4 h,
pH = 4 and without stirring) confirmed an order of adsorption capacity as follows: Montmorillonite
(12 mg/g) > Nontronite (9 mg/g) > Beidellite (8 mg/g). Accordingly, the Mulliken populations,
density of states, and band structures of the mineral models with the structural Al, Mg, Fe(II), Fe(III),
and Al (in tetrahedrons) on behalf of five species of isomorph were calculated. The calculation results
explain the differences between hexavalent chromium adsorption capacity of five kinds of isomorph
by means of atom, key populations, overlapping valence electron orbitals, and the variation of energy
band. However, no overlapping orbitals were observed in the adsorption system with structural
Mg. It is implied that the structural Mg has little influence of hexavalent chromium adsorption. In
conclusion, our study contributes to achieving a better understanding of modified clay minerals
materials applications.

Keywords: hexavalent chromium; clay minerals; density functional theory; lattice substitution

1. Introduction

The industrial development has brought heavy metals such as chromium into a wide
range of natural environments [1–3]. Chromium is usually found in soils and rocks in
trivalent form; however, environmental conditions such as pH could convert it into a
hexavalent form [4,5]. Hexavalent chromium can easily enter the food chain and threaten
the human health, since its cellular toxicity can cause cancer and genetic variation [6].
Hence, adsorption and curing of chromium is a means for reducing its mobility.

Clay minerals are vital components of soil system, and the adsorption of cations on
their surface plays an important role in migration and transformation of pollutants in soil.
Montmorillonite, which is a natural adsorbent, and montmorillonite-based modified materials
are widely used and studied to remove heavy metals from aqueous solutions [7–12]. It is well
known that the specific surface and surface radicals make the adsorption of montmorillonite
more complicated. Rathnayake et al. (2017) reported that the maximum adsorption capacity of
Cr(VI) onto octadecyltrimethylammonium bromide-modified montmorillonite is 9.61 mg/g
at pH = 5.0 [13]. Hu et al. (2010) modified montmorillonite with hydroxyaluminium and
cetyltrimethylammonium to obtain a maximum adsorption capacity of 7.64–9.09 mg/g at pH
= 4.0 [14]. Johnatan et al. (2020) reported that the maximum adsorption capacity of Cr(VI)
onto the hexadecyltrimethylammonium bromide-modified bentonite is 10.04 mg/g at 25 ◦C
and pH = 3.4 [15]. Such studies have confirmed that surface complexation provides more
adsorption sites and can enhance the adsorption capacity.

Moreover, the negative surface charge which is resulted from lattice substitution
also determines the adsorption capacity of clay minerals. Montmorillonite consists of
Si-O tetrahedrons and Al-O octahedrons, and exogenous metal cations (2+/3+) could
replace the Al in the octahedrons to cause the mineral to obtain a negative net charge.
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Hu et al. (2010) found that the surface charge and edge sites determine the adsorption of
Cr(VI) by montmorillonite [14]. Abollino et al. (2003) assumed that the original surface
radicals (Si-O-OH and Al-O-OH) of montmorillonite have difficult adsorbing complexes
with bivalent and trivalent cations [16], therefore the edge sites of montmorillonite seem to
be the main adsorption sites. The edge sites mean the bare octahedral central metal cations
and nontronite have a Fe(II/III)-O octahedron, and beidellite has an Al-O tetrahedron
compared to the pure montmorillonite. Namely, they are isomorphs, and the difference of
their electronic constructure is resulted from the atom substitutions. Rajesh et al. (2017)
found that the structural Fe(II) of nontronite combined with chitosan can form complexities
and reduce the Cr(VI) in aqueous solutions [17]. Meanwhile, Fe(II) can directly reduce the
Cr(VI). Based on the previous investigations, the knowledge of cations substitution was
obtained as follows: (1) the Fe(II) adsorbs Cr(VI) by its reducibility; (2) whether the Fe(III)
has a direct interaction with Cr(VI) is unclear, but external reducing agents like organic acids
cause Fe(III) to complement Fe(II) to activate adsorption [18]; (3) beidellite has a stronger
adsorption capacity for some heavy metals (71.07 mg/g [19] >25.50 mg/g [20], Cu(II)); and
(4) montmorillonite from different regions has different adsorption capacity (24.5 mg/g [21]
>7.64–10.04 mg/g [13–15]). The difference between the maximum adsorption capacity of
montmorillonite from different regions is probably caused by Mg, which is a common
dopant component in natural montmorillonite. Even today, the effect of lattice substitution
on Cr(VI) adsorption remains uncertain.

To investigate the effect of lattice substitution on Cr(VI) adsorption, density functional
theory (DFT) was used. The density functional theory is a state-of-the-art approach, and
allows people to solve the Schrödinger equation for a multi-electron system by using
Born-Oppenheimer approximation [22] and the Hartree-Fock approximation [23]. Based
on the coulomb interactions between electrons, it treats all particles in a multielectron
system as identical particles, and the electron density was used as the variable of the energy
functional theory for the calculation of the ground-state energy of the system so as to
describe the physical properties of the ground state of atoms, molecules, and solids, and
the relationships between the electronic structure and energy of the system. Hence, the
famous Hohenberg-Kohn theorem described the energy state of inhomogeneous electronic
gas in detail, and laid the theoretical foundation of density functional [24]. To further
determine the commutative correlation energy functional, Kohn and Sham proposed
the Kohn–Sham equation [25] to solve the electron density and energy of the system
through the self-consistent field cycle [26]. The local density approximation (LDA) and
generalized gradient approximation (GGA) were presented to fill in blank of the potential
energy between electrons in Kohn–Sham equation [27,28]. LDA is more suitable for the
computation of metal systems [29], and GGA is more widely applicable [30,31], especially
for the calculation of mineral surface and interface. Namely, GGA is more suitable for this
research. Thus far, density functional theory has been generally complete but is still in
continuous development.

Meanwhile, some methods and software have been developed to calculate the specific
reaction system based on density functional theory. Examples emerge from the simulated
annealing method based on grand canonical Monte Carlo principle, which is used to calcu-
late the optimum adsorption sites by comparing the configuration energy of adsorption
system [32]; Castep and Dmol3 module of Material studio software used to calculate the
energy of periodic and aperiodic systems, respectively [33,34]. Hence, a mineral reaction
system is more suitable for calculation with the Castep module. Mulliken population of
Castep is used to indicate the bonding nature and electron transfer of systems; however,
results of Mulliken population are incomplete due to the non-localization of ground-state
atoms. Therefore, electron localization function is used in conjunction with Mulliken
population. Besides, the density of state and band structure of minerals not only indicates
the properties of electron energy, but also includes optical properties [35] and electrical con-
ductivity [36]. Consequently, it is highly convenient and effective to use density functional
theory to solve such basic theoretical problems.
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This paper aims to evaluate the effect of different lattice substitution (Mg2+, Fe2+,
Fe3+, and Al3+) of montmorillonite on Cr(VI) adsorption. The experimental results and
adsorption mechanism are explained by the variation of electron transfer and frontier
orbital calculated by density functional theory. Given the effect of cation substitution on
heavy metal adsorption is rarely investigated directly, and differences in adsorption and
electronic properties caused by isomorphism being distinct [37], this study on the adsorp-
tion mechanism of Cr(VI) by montmorillonite and its isomorph has certain significance for
modified clay minerals applications.

2. Materials, Methods and Models
2.1. Minerals

The montmorillonite, nontronite, and beidellite were purchased from Aladdin com-
pany, Shanghai China. The X-ray diffraction (XRD, CuKα-ray, X Pert pro, PANalytical
B.V, Almelo, Netherlands) curves proved the purity at 25 ◦C and the X-ray fluorescence
(XRF, Axios 2.4 kW, PANalytical B.V, Almelo, Netherlands) results showed the chemical
composition of three clay minerals (Figure 1 and Table 1).

Minerals 2021, 11, x FOR PEER REVIEW 3 of 17 
 

 

electrical conductivity [36]. Consequently, it is highly convenient and effective to use den-
sity functional theory to solve such basic theoretical problems. 

This paper aims to evaluate the effect of different lattice substitution (Mg2+, Fe2+, Fe3+, 
and Al3+) of montmorillonite on Cr(VI) adsorption. The experimental results and adsorp-
tion mechanism are explained by the variation of electron transfer and frontier orbital 
calculated by density functional theory. Given the effect of cation substitution on heavy 
metal adsorption is rarely investigated directly, and differences in adsorption and elec-
tronic properties caused by isomorphism being distinct [37], this study on the adsorption 
mechanism of Cr(VI) by montmorillonite and its isomorph has certain significance for 
modified clay minerals applications. 

2. Materials, Methods and Models 
2.1. Minerals 

The montmorillonite, nontronite, and beidellite were purchased from Aladdin com-
pany, Shanghai China. The X-ray diffraction (XRD, CuKα-ray, X Pert pro, PANalytical 
B.V, Almelo, Netherlands) curves proved the purity at 25 °C and the X-ray fluorescence 
(XRF, Axios 2.4 kW, PANalytical B.V, Almelo, Netherlands) results showed the chemical 
composition of three clay minerals (Figure 1 and Table 1). 

Table 1. The XRF results of three clay minerals. (Unit: wt%). \: undetected 

Components Montmorillonite Nontronite Beidellite 
SiO2 50.19 59.54 59.22 

Al2O3 22.42 11.18 11.78 
Fe2O3 3.16 1.68 0.89 
MgO2 1.94 1.06 3.76 

Cl 0.74 \ <0.01 
SO3 0.59 \ 0.02 
TiO2 0.36 0.26 \ 
CaO 0.18 2.75 3.06 
K2O 0.14 2.11 0.43 

Na2O 0.12 1.06 0.53 

 
Figure 1. The XRD curves of three clay minerals.  Figure 1. The XRD curves of three clay minerals.

Table 1. The XRF results of three clay minerals. (Unit: wt%). \: undetected

Components Montmorillonite Nontronite Beidellite

SiO2 50.19 59.54 59.22
Al2O3 22.42 11.18 11.78
Fe2O3 3.16 1.68 0.89
MgO2 1.94 1.06 3.76

Cl 0.74 \ <0.01
SO3 0.59 \ 0.02
TiO2 0.36 0.26 \
CaO 0.18 2.75 3.06
K2O 0.14 2.11 0.43

Na2O 0.12 1.06 0.53
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2.2. Adsorption Experiments

The Cr(VI) stock solution (30 mg/L) was prepared by dissolving sodium chromate
(Na2CrO4) in 50 mL deionized water. In view of the strong oxidizing property of CrO4

2−,
the dilute sulfuric acid was used to control the solution pH = 4 [14]. 0.5 g montmorillonite,
nontronite, and beidellite were added to the 50 mL Cr(VI) solution, respectively. The
reaction lasted for 4 h [38] at the room temperature without stirring. The supernatant was
filtered with a 0.45-micron aqueous microporous membrane and stored at 4 ◦C, and tested
within 24 h. The residual minerals were washed slightly with deionized water 10 times
and dried at 60 ◦C, stored at 4 ◦C, and tested within 24 h.

2.3. Analyses

The residual Cr(VI) of upper liquid was measured by inductively coupled plasma
optical emission spectroscopy (ICP-OES, Thermo iCAP6500, Thermo Fisher, Waltham,
MA, USA). The scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS,
TM4000, Hitachi, Tokyo, Japan) was used to confirm that adsorption had occurred.

2.4. Computational Methods

The structure mode of Ca-montmorillonite [39] and nontronite [40] were obtained
through the geometric optimization, whereas the structure mode of beidellite was ob-
tained through atom substitution. The crystal parameter after geometric optimization
(montmorillonite: a = 1.04 nm, b = 0.89 nm, c= 1.50 nm, α = β = γ = 90◦; nontronite:
a = 0.53 nm, b = 0.91 nm, c = 1.00 nm, α = γ = 90◦, β = 104◦; beidellite: a = 1.01 nm,
b = 1.00 nm, c = 1.51 nm, α = γ = 90◦, β = 89◦) were consistent with the reported values
(montmorillonite: a = 1.04 nm, b = 0.90 nm, c = 1.50 nm, α = β = γ = 90◦; nontronite:
a = 0.53 nm, b = 0.91 nm, c = 0.98 nm, α = γ = 90◦, β = 101◦; beidellite: a = 1.04 nm, b = 0.90
nm, c = 1.50 nm, α = β = γ = 90◦) [39,40]. To investigate the edge sites adsorption process,
a 2-nm vacuum region in the x direction was employed. Afterwards, a 2 × 1 × 1 super
cell was built, which has 76 atoms (Figure 2). Moreover, under acidic conditions, there is a
conversion reaction of CrO4

2− and Cr2O7
2−. As a result, the molecular model of Cr2O7

2−

(0.655 nm) was built to simulate the adsorption.
The conversion reaction at pH = 4:

2CrO2−
4 + 2H+ → Cr2O2−

7 + H2O (1)

All grand canonical Monte Carlo and quantum mechanical calculations were based
on adsorption locator and Castep modules from Materials Studio 7.0, respectively. The
adsorption locator found the optimum adsorption sites with the lowest energy configu-
ration through the simulated annealing method [32,41]. The structure optimization and
properties calculation of all models were performed by quantum mechanical calculations
based on DFT using the GGA (generalized gradient approximation) and PBE (Perdew-
Burke-Ernzerhof) exchange correlation functional [42–45]. The short-range van-der-Waals
and long-range electrostatic interactions were simulated by the atom-based and Ewald
methods, respectively. Therein, the Tkatchenko-Scheffler method for DFT + D correction
was used to the correct dispersive interaction [46]. The highly accurate full potential projec-
tor augmented wave (PAW) method with ultra-soft pseudopotentials was used to describe
the electron-ion interactions in the valence band region. Brillouin-zone integrations were
calculated with a γ–centered 3 × 3 × 3 Monkhorst-Pack k-point mesh. The convergence
criteria for the energy, maximum force, maximum displacement, and SCF tolerance were set
to 1.0 × 10−5 eV/atom, 1.0 × 10−2 eV/A, 1.0 × 10−3 nm, 1.0 × 10−4 eV/atom, respectively.
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3. Results and Discussion
3.1. The Remaining Cr(VI) Content in the Solution

The residual Cr(VI) content is displayed in Table 2. The adsorption capacity of montmo-
rillonite, nontronite, and beidellite were 12, 9, and 8 mg/g, respectively. As shown in Figure 2,
the lattice of these three minerals consists of X-O octahedron and two Y-O tetrahedrons; the
cation-doped X, Y-site is the main difference between these three minerals. Therefore, it may
be concluded that the cations substitution weakens the adsorption of Cr(VI).

Table 2. Residual chromium content in the solution.

Minerals Residual Concentration (mg/L) Initial Concentration (mg/L)

Montmorillonite 18 30
Nontronite 21 30
Beidellite 22 30

3.2. The Adsorption of Cr(VI) on Mineral Surfaces

The adsorption of Cr(VI) by three clay minerals was investigated through SEM and
EDS. At ×5000 times magnification, the SEM images displayed the surface morphology
directly, and the mapped images showed that O, Si, and Al from the basic mineral skele-
ton and the Cr(VI) are distributed on the surface, which indicates adsorption occurred
(Figure 3). Therein, a bumpy surface of nontronite gathers Cr(VI) more densely compared
to the relatively smooth surface of montmorillonite. The uneven surface provides more
adsorption sites by means of increasing specific surface area or increasing number of bared
atoms [47], which contributes to a denser gathering of chromium or directly enhances
the maximum adsorption capacity. However, a surface structural defect of beidellite has
sparse distribution of Cr(VI). Since montmorillonite with a flat surface also adsorbs more
Cr(VI) than nontronite and beidellite with uneven surface, we believe the SEM-EDS results
of the effect of cation substitution on Cr(VI) adsorption rather than surface morphology
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would be prominent. It is implied that Al3+ replacement by Si4+ in tetrahedron reduced
the adsorption of Cr(VI) by exposed atoms. The recent research shows that the adsorption
of edge surfaces of montmorillonite is more efficient for heavy metals than beidellite [48].
However, the adsorption of bedonite to organic matter such as metachromatic dye acridine
orange is greater than that of montmorillonite [49], and there is little difference of adsorp-
tion of uranyl between beidellite and montmorillonite [50]. The selective adsorption may
have resulted from the electronic structure of the adsorbate. In addition, the approximate
values of mass fraction as a supplement are identical to the ICP-OES results that suggest
montmorillonite has the highest Cr(VI) mass fraction of 3.422 wt%, while nontronite and
beidellite have a declining Cr(VI) mass fractions of 1.918 and 1.627 wt%, respectively
(Figure 4).
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3.3. Mulliken Populations of Crystal Structure and Adsorption Bond

The Mulliken populations directly display the distribution of electrons among atoms
in crystal structure and describe the stability of chemical bonds. The Mulliken atom
populations are compared with reported data [41,51–53] in Table 3. The obtained atom
populations are similar to the reported values, with the exception of Mg. Therein, the
deviation of charges is due to the different initial montmorillonite model and species of
interlayer cations. In general, the crystal structure of montmorillonite and beidellite, and
nontronite–(II) and nontronite–(III) are similar to each other, respectively. The AlT (Al in the
tetrahedron) donates fewer electrons than AlO (Al in the octahedron). Meanwhile, in the
presence of AlT, the AlO also has a reduced electron donation by approximately 0.14 e. The
structural Fe(II/III) of nontronite has almost no influence on atom populations. Moreover,
the Fe donates the fewest electrons compared to the other three kinds of lattice substitution.
The Mg substitution in octahedrons results in the redistribution of electrons between Si
and O atoms. In other words, electrons are transferred from Si to O atoms. Comparing
Tables 3 and 4, for montmorillonite adsorption system, the Cr(VI) adsorption leads to a
slight loss in O and Si charge by approximately 0.01 e, whereas Al shows a 0.09 e increase
in charge. The AlO and AlT of the beidellite adsorption system gain 0.06 e and 0.01~0.02 e,
respectively. A slight atom population increase is also observed in the montmorillonite–Mg
adsorption system (i.e., 0.04 e). However, the Fe(II) and Fe(III) give a 0.03 e charge to the
lattice. Since the electronegativity of Fe3+ is 0.22 higher than Al3+(1.83 > 1.61) and the
charge population of Fe3+ is 0.89 e lower than Al3+ (Table 3), the structural Fe seems to
possess more charge to donate to other atoms while adsorption occurs. In addition, the O
in Cr2O7

2−, which has formed adsorption bonds with bare central octahedral atoms, has
an increased charge population by approximately 0.3~0.4 e in all adsorption systems, and
the nearby Cr6+ has experienced an increase of 0.01~0.06 e. It is implied that more charge
is induced in O atom which used to form the adsorption bond.
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The bond populations intuitively describe the stability of bonds and its bond type,
namely ionic or covalent bond [54,55] (Table 5). The higher the bond populations, the
more intensive the density of the overlapping electron clouds in orbitals, and the more
stable the bonds. The charge of Al–O bonds of montmorillonite has increased by 0.09 e
and the charge of the Si–O bonds remains the same. As a result, the octahedrons become
unstable, while the tetrahedrons remain unaffected. Similar to the case of the nontronite–(II)
adsorption system, the octahedrons become unstable with a 0.11 e charge obtained, and
tetrahedrons remain the same. The variations of nontronite–(III) bond populations are the
opposite. The charge of Fe–O bonds only changed by 0.01 e and the Si–O bonds obtained
0.22 e charge, which resulted in the reinforcement for tetrahedrons stability. The bond
populations (0.08~0.44 e) for beidellite implied that the structure of beidellite is less stable
than the other four isomorphs. The adsorption enhanced the Al–O bonds, which obtained
a charge equal to 0.17~0.32 e. Peng et al. (2019) calculated the adsorption bond of surface
hydroxy with Y3+ is 0.24~0.41 e, and it is a covalent bond [56]. The values of obtained
adsorption bond populations of all systems except montmorillonite–Mg are 0.12~0.52 e,
which are covalent bonds. It is worth mentioning that the antibonding orbitals were found
in the octahedrons of montmorillonite—Mg and the corresponding adsorption system.
Meanwhile, the value of Mg–O adsorption bond is −0.47 e, which appears to be a covalent
bond. In view of molecular orbital theory, bonding orbitals and antibonding orbitals always
appear in pairs, and antibonding orbitals require higher energy electrons to occupy them.
Hence, a covalent bond seems hardly formed in an antibonding orbital since the high energy
barrier of antibonding orbital seems to be in contradiction to electron sharing. Considering
the bond population of octahedrons of montmorillonite–Mg, there are covalent and ionic
bonds. Zhang et al. (2021) considered the antibonding orbital valued −0.02~−0.09 e as the
covalent bonds [57]. However, the obtained antibonding orbital valued −0.24~−1.67 e are
at least 20 times higher than Zhang’s results, thus the bonds connecting Mg and octahedron
perhaps are ionic bonds. Hence, discovering whether the octahedrons constructed by
antibonding orbitals are stable requires further calculation of electrons energy. It is clear
that by considering only the variations of bond populations, the antibonding orbitals in
octahedrons and bonding orbitals in tetrahedrons both become more stable. Comparing
all adsorption bond populations, the nontronite–Fe(II/III) adsorption systems have the
most stable chemical bonds (0.50~0.52 e), and beidellite has 0.12 e bond strength, indicating
that beidellite has the weakest chromium adsorption capacity. This is consistent with the
ICP-OES and SEM-EDS results.

Table 3. Atom populations(e) of original minerals. \: null value

Minerals O AlO Si Fe Mg AlT

Montmorillonite
−1.16~−1.20/−1.12 [41]/
−1.00~−1.06 [51]/
−1.05 [52,53]

1.98/2.01 [41]/
1.58 [53] 1.88~2.27/2.10 [53] \ \ \

Nontronite–Fe(II) −0.90~−0.96/−1.16 [41] \ 1.83~2.22 1.08/1.03 [41]/
1.58 [53] \ \

Nontronite–Fe(III) −0.90~−0.96/−1.16 [41] \ 1.86~2.22 1.09/1.03 [41]/
1.58 [53] \ \

Montmorillonite–Mg −1.26~−1.29/−1.12 [41] \ 1.79~2.18 \ 1.69/2.40 [41]/
1.36 [53] \

Beidellite −1.18~−1.20 1.84/2.01 [41] \ \ \ 1.66~1.88/
1.58 [53]

Notes: The AlO and AlT represent Al in the octahedrons and tetrahedrons, respectively.
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Table 4. Atom populations (e) of adsorption system. \: null value

Substance O(mineral) Al(mineral) Si(mineral) Mg Fe O(Cr2O72−) Cr−1 Cr−2

Cr2O7
2 \ \ \ \ \ −0.32~−0.34 1.29 1.29

Montmorillonite −1.15~−1.18 1.87 1.85~2.26 \ \ −0.43~−0.83 1.33 1.27
Nontronite–Fe(II) −0.85~−0.92 \ 1.79~2.21 \ 1.12 −0.39~−0.63 1.30 1.24
Nontronite–Fe(III) −0.84~−0.91 \ 1.81~2.24 \ 1.14 −0.42~−0.59 1.30 1.25

Montmorillonite–Mg −1.14~−1.27 \ 1.75~2.13 1.65 \ −0.32~−0.71 1.31 1.23
Beidellite −1.18~−1.19 1.79/1.65~1.86 a \ \ \ −0.33~−0.79 1.35 1.28

Notes: 1.65~1.86 a represents Mulliken populations of Al in Tetrahedrons. Cr−1 represents the Cr6+ near O(Cr2O7
2−) and Cr−2 is short for

another.

Table 5. Comparison between bond populations(e).

Minerals
Original Mineral Adsorption System Cr2O72−

X–O Y–O X–O Y–O X–O

Montmorillonite 0.19~0.39 0.47~0.63 0.18~0.48 0.49~0.62 0.48
Nontronite–Fe(II) 0.17~0.41 0.53~0.60 0.17~0.52 0.48~0.60 0.52
Nontronite–Fe(III) 0.17~0.41 0.50~0.82 0.17~0.42 0.48~0.60 0.50

Montmorillonite–Mg −0.24~−1.52 0.47~0.67 −0.31~−1.67 0.39~0.78 −0.47
Beidellite 0.08~0.44 0.08~0.44 0.40~0.62 0.38~0.61 0.12

Notes: X represents the octahedral central atoms (Al3+, Fe2+, Fe3+ or Mg2+) and Y represents the tetrahedral central atoms (Si4+ or Al3+).

3.4. Electron Localization Function Interprets the Nature of Bonding

In view of the ground-state atoms provided by the plane wave basis group are non-
locality, electron localization function (Elf) needs to be calculated as a supplement to
describe the bonding nature of adsorption systems. The electron localization function nor-
malizes the degree to which an electron is bound, so the desired Elf–value is between 0~1.
Long pair electrons should be considered highly localized, and covalent bond electrons
should be considered relatively delocalized [58]. Hence, the adsorption bonds of montmo-
rillonite, nontronite–Fe(II/III), and beidellite are the covalent bonds due to an Elf–value
lower than 0.5 (Figure 5a–e). The adsorption bond of montmorillonite–Mg seems to be an
ionic bond (Figure 5d), owing to bond electrons close to O atom which are highly localized;
however, the electrons close to Mg atom are highly delocalized [59]. From the aspect of the
Pauling electronegativity (EN, scale is 0~3.98) [60] of atoms, the Mg (1.31) forms an ionic
bond with O (3.44) easier than Al (1.61) and Fe (1.83). Moreover, the lattice structure of
montmorillonite–Mg appears more highly localized electrons (the red areas in Figure 5d).
The red area means that a large number of electrons are bound around by atoms, and
it is in accordance with the bond population results that montmorillonite–Mg has many
antibonding orbitals, which have high energy barrier to prevent electrons from entering
into orbitals. Therefore, electrons are restricted in a small space, namely they embody a
highly localization. It is worth noting that the O atoms of Cr2O7

2− in montmorillonite–Mg
system also appear highly localized, which may imply that the adsorption does not occur.
If the adsorption forms an ionic bond, the O atom that connects to Mg is supposed to have a
different degree of localization from other O atoms of Cr2O7

2− due to the different bonding
atoms. In other words, O atoms only form bonds with Mg and Si atoms in octahedrons of
montmorillonite–Mg, thus identical localization of O atoms happens to prove formation of
ionic bonds. In conclusion, all the isomorph forms a covalent bond after adsorption with
the exception of montmorillonite–Mg, which maintains its constructure via ionic bonds.
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3.5. Density of States Reveal the Formation of Adsorption Bond

The density of states demonstrates the distribution of valence electron orbitals and
the valence electron energy of atoms (Figure 6). As shown in Figure 6a,b, the p–orbital
of O atom splits into two orbitals at −2 and +2 eV, and the d–orbital of Cr splits into
three orbitals at −15, −3 and 3 eV. The degeneracy of s–orbitals and p–orbitals of Al of
montmorillonite after Cr(VI) adsorption was observed at 7.5 and 17 eV (Figure 6). The
splitting and left shift of electron orbitals indicates that the energy of the atom/molecule
becomes lower, and the structure becomes more stable [61]. The energy overlaps of p–
orbital of O atom and s–orbitals, p–orbitals of Al verified that the adsorption is caused by
formation of Al–O bond (Figure 6c,d). The disappearance of d–orbital electrons located
at 3 eV (Figure 6b,e) implied that electrons have been transferred to the nearby O atom
to form the adsorption bond. The overlaps of d–orbital of Fe and p–orbitals of O from
−7.5 to 0 eV confirmed that Fe has a strong Cr2O7

2− adsorption capacity including Fe(III),
which is regarded as unable to reduce and adsorb Cr(VI) (Figure 6f,g,i,j). The Cr appears to
play the same roles that gives its d–orbital electrons to nearby O atoms in all adsorption
systems (Figure 6b,e,h,k,n,q). Meanwhile, it is worth noting that the electrons in p–orbital
of Cr are also transferred to the nearby O atom, since the height of PDOS (partial density
of states) peak is reduced (Figure 6k), and such excessive electron transportation may
have resulted from the electronegativity of Fe(III). Pecini et al. (2013) considered that the
tetrahedral substitution leads negative charges within mineral layers [62], which has an
effect on surface properties [63]. Hence, it is inferred that reduction of overlapping area of
s,p–orbitals of Al atoms caused by replacement of Si4+ by Al3+ in tetrahedrons. The DOS
distribution of beidellite is similar to montmorillonite, and the degeneracy of s–orbitals and
p–orbitals at −15, 0 eV is also caused by AlT. The valence electrons of montmorillonite–Mg
are only observed as p–orbital electrons located at −40 eV (Figure 6l). It is implied that
Mg is unable to form an adsorption bond with Cr2O7

2− owing to a lack of orbital energy
overlaps (Figure 6l,m). Thus, the antibonding orbital valued −0.47 e does not exist, which
is consistent with bond populations and Elf results. Given the high energy of valence
electrons of Mg, which is 2 to 20 times higher than the other four adsorption systems, it is
reasonable to believe that the antibonding orbitals can build up octahedrons as ionic bonds.
This is consistent with the Mg replacing the Al in natural clay minerals.
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3.6. Band Structures Reveal the Strength of Adsorption Bond and the Distinctive Valence Electrons

There are corresponding relationships between band structures and density of states.
Every energy band represents the energy level of orbitals. Therefore, the width and
intensity of the energy band in a specific energy range indicate the strength of chemical
bonds. It is obvious that Cr(VI) adsorption introduces its orbital electrons into the electron
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hybrid orbitals of clay minerals at −5 to 0 energy range (Figure 7a,c,e,i). Hence, based
on the bond populations and Elf results, it is discovered that the covalent bond formed
by spd hybridization from density of states (Figure 7a,c,e,g). Correspondingly, the band
structure of every adsorption system showed denser (Figure 7b,j) or wider (Figure 7d,f)
energy bands.
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However, the d–orbital electrons of Cr were not found in the montmorillonite–Mg
adsorption system (Figure 7g). The band structure showed no obvious variation between
pure montmorillonite–Mg and the adsorption system (Figure 7h). From the results of bond
populations, Elf, and density of states and band structures of montmorillonite–Mg, it can
be inferred that the bare octahedral edge Mg has no interaction with Cr2O7

2−. Much of the
previous research in chromium-adsorbed synthetic materials has proved that magnesium
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composite has a promising application in the field of adsorption of heavy metals, such as
chromium and lead [64–69]. Given the peripheral electron configuration of Mg ([Ne]3s2),
the crystal field generated by the T–O–T(tetrahedron–octahedron–tetrahedron) structure
results in the uniform transportation of the s-orbitals valence electrons to neighboring atoms.
Therefore, the observed valence electrons were p–orbital electrons. In other words, in such
synthetic materials, Mg probably maintains its 3s–orbitals as the active valence electrons
participating in the adsorption. In other words, different crystal/coordination fields give
rise to different frontier orbitals, such as the DOS of magnesium in chlorophyll [70]. Without
the influence of coordination fields, Mg has the ideal valence electron state for adsorption
of hexavalent chromium [71]. From another point of view, even if the valence electrons of
magnesium are disturbed by the coordination fields, its high–energy p–orbitals electrons
(about 8 eV) are sufficient to enter the antibonding orbitals, forming an ionic bond to
maintain bond stability.

4. Conclusions

This paper investigated the adsorption mechanism of montmorillonite, nontronite,
beidellite by means of density function theory. Therein, the structural Fe(II/III) of nontron-
ite and the structural Mg of montmorillonite were discussed separately. The ICP-OES and
SEM-EDS results indicated the adsorption capacity of Cr(VI) as follows: montmorillonite
(12 mg/g) > nontronite (9 mg/g) > beidellite (8 mg/g). The calculation results supplement
and illustrate the experimental results, especially for the role of structural magnesium of
montmorillonite. The Mulliken populations considered montmorillonite and nontronite
to be in the same category, with key populations of 0.48~0.52 e, and beidellite to be in
another category with key populations of 0.12 e, and explained why beidellite has the
lowest hexavalent chromium uptake. Moreover, the adsorption bonds of all adsorption
systems except the Mg doped system were covalent bonds due to the bond populations.
The electron localization function further confirmed that the adsorption bonds are covalent
bonds, except the Mg doped isomorph. The density of states demonstrated the formation
of adsorption bonds via the overlapping p–orbitals of O and s/p/d–orbitals of different
substitutional atoms (−5~0 eV). The band structures testified that the overlapping orbitals
led to wider and denser energy bands, which indicates the formation of a strong adsorption
bond. However, while Mg replaces the Al in octahedrons, the antibonding orbitals were
observed inside the octahedrons and at the adsorption sites by Mulliken populations. Elec-
tron localization function showed that an ionic bond may form in octahedrons, and that no
bond is formed between mineral and Cr2O7

2−. Based on the density of states and band
structures, antibonding orbitals supporting the octahedrons were occupied by p–orbital
electrons of Mg due to the high electron energy of approximately 8 eV. Since there were
no overlapping orbitals and the unchanged energy bands, the structural Mg would not
adsorb the Cr2O7

2−.
This work provides new perspectives to understand the effect of lattice substitution

of clay minerals on hexavalent chromium adsorption, and is beneficial for modified clay
mineral materials applications.
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