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Abstract: The study focuses on an assemblage of glass finds from the citadel of Kafir Kala, Uzbekistan,
located along one of the major Eurasian branches of the “Silk Roads” with a consistent occupation
between the 8th and 12th century CE. Glass fragments for this study were selected based on marked
surface alterations they showed, with stratified deposits of different thickness and colours. Starting
from a preliminary observation under Optical Microscope, fragments were clustered into four main
groups based on the surface appearance of the alterations; Scanning Electron Microscopy investiga-
tions of the stratigraphy of the alteration products were then carried out, to evaluate micro-textural,
morphological and compositional features. Data from the analyses allowed identifying preferen-
tial patterns of development of the various degradation morphologies, linkable to compositional
alterations of the glass due to burial environment and the alkali leaching action of the water. Irides-
cence, opaque weathering (at times associated with black stains), and blackening were identified
as recurring degradation morphologies; as all but one sample were made of plant ash-based glass,
results show no specific correlation between glass composition and the occurrence of one or the other
degradation pattern, often found together. Framed in a broad scenario, the paper aims to set the
basis for the development of a study approach dedicated to the degradation morphologies affecting
archaeological glasses, a topic still lacking systematisation and in-depth dedicated literature.
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1. Introduction

The present paper focuses on degradation morphologies, identified in glass assem-
blage from Kafir Kala (Uzbekistan). Glass objects from Kafir Kala are, in fact, affected by
severe alteration products, diversified in terms of colours, thickness, and adherence to the
surface. In addition to compromising the legibility of the fragments and, thus, hindering
their typological study, understanding alterations and the process beyond their occur-
rence is also interesting from a more strictly scientific perspective. According to current
knowledge, it is still unclear to what concomitance of factors the onset and development of
different forms of degradation affecting archaeological glass are attributable, nor to what
extent they can compromise the durability of glass. To date, much of the investigation into
glass deterioration and related mechanisms have been centred around European medieval
window glass, while very little attention has been paid to the degradation morphologies
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affecting archaeological artefacts [1–15]. Moreover, the use of a tailored vocabulary to
describe the visible symptoms of deterioration in the conservation and scientific literature
is inconsistent and confusing [10], thus resulting in the lack of a shared vocabulary among
scholars and experts from different fields working on archaeological glass studies and
conservation.

Ranging from pristine, where no degradation morphology is detectable, to so heavily
degraded that most of the original material has transformed into corrosion products, glass
finds from archaeological excavations can be unearthed in a variety of conditions. As
a material, glass is highly susceptible to the action of water; therefore, when exposed
to this agent, the occurrence of degradation phenomena can affect the conservation of
glass-made archaeological items. For the same reason, glass objects found in dry soils are
generally in better condition than those unearthed from moist soils. Given the presence of
water as a necessary condition, the burial environment and the chemical composition of
the glass are the two key variables impacting the occurrence and growth of degradation
phenomena [2,5,11].

Regarding the burial environment, it has been demonstrated that the chemical degra-
dation of glass is initiated by the attack of water, and it is dependent on its pH value as
well [8,12]. Due to the strong polarity of the O-H bonds and the bent shape, the water
molecule has a strongly polar character: as the glass interacts with water, the solvent
molecules cluster around ions on the glass surface so that positive poles of dipoles seek
proximity to anions and negative poles centre over cations. The ions are electrostatically
attracted outwards from the glass surface; as a result, the attractive forces between the ions
are substantially weakened. More precisely, two key mechanisms, de-alkalinisation (also
known as leaching) and network dissolution, contribute to the genesis of alteration layers
with compositions different from that of the bulk glass. As explained in detail by David-
son [13], de-alkalinisation occurs since, due to the chemical structure of glass, positively
charged alkali and metal cations are free to move around within the glass network. When
they are extracted from the glass by water, a sodium or potassium hydroxide solution is
formed. To maintain the electrical neutrality of the glass, hydronium ions (H3O+) from the
water exchange positively charged hydrogen ions for the alkali ions leaching from the glass
network. This process results in a hydrated silica-rich surface layer, referred to by several
terms: alkali-deficient layer, silica-rich layer, gel layer, or hydrogen glass [3]. Because
the hydrogen protons are smaller than the sodium or potassium ions they replace, the
alkali-depleted layer will have a smaller volume than the below glass. An electrochemical
equilibrium is established first within a few tens of milliseconds. Subsequently, alkali
ions (e.g., sodium) are mobilised by excess charge resulting from protons entering the
electron cloud of oxygen atoms at the glass surface, forming ≡Si-OH groups immediately.
If, for instance, Na+ is later leached from the glass structure, the remaining matrix cannot
contain such high amounts of OH- groups, and condensation of molecular water in the
glass structure occurs [16]. The leached layers can protect the remaining glass from further
deterioration, this primarily depends on the composition of the glass and the pH of the
leaching solution: in alkaline environments, the silica network is attacked, eventually
causing the total dissolution of the glass [14]. Leaching re-occurs cyclically, with additional
layers being formed again and overlapping on the glass surface. Moving to network
dissolution, this process mainly affects glasses above ground, like windows. If alkali ions
accumulate in the leach solution, an increase in the pH value occurs and, when the value
of 9 is reached, the breakdown of the network happens. Whereas in the ground alkalis
leached from the glass are washed away, in the atmosphere they tend to remain as salts on
the glass surface, favouring the breakdown of the network [5].

The rate of deterioration of ancient glasses is influenced by compositional features as
well. Glass of a soda-lime-silica composition is almost twice as stable as silica-potash-lime
glass: the greater the percentage of alkali, the greater their potential to be extracted [3]. The
difference in composition of glass is the reason for the difference in deterioration between
relatively stable natron-based glass and less durable plant and wood ash-based ones.
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Medieval European glass made from plant and beechwood ash—and, thus, containing
higher percentages of potash oxide and alkaline earth to ensure its stability—is highly
susceptible to deterioration [13,15]. Soda–lime–silica glassed made by using plant ashes
as fluxing agents would seem to be placed in an intermediate position between the more
stable, natron-based, and less stable, wood-ash-based ones. The degradation morphologies
and related corrosion mechanisms that affect plant ash-based archaeological glass have
not, however, been investigated by systematic studies: apart from a study carried out on
an assemblage of Sasanian glass finds from Veh Ardašı̄r, Iraq [7], the chemical processes
underlying the degradation of plant ash-based glass are not yet entirely understood. It is,
for example, not clear why glass often decomposes in layers and if the layering is linked to
cyclic changes, like seasonal variations in temperature and rainfall, and could, therefore,
be an indicator of how long the degradation has been in process.

The present study intends to provide insights into morphological, micro-textural, and
chemical features of degradation morphologies found on plant ash-based glass finds from
Kafir Kala, Uzbekistan. The paper will not deal with the identification and provenance of
raw materials used for making the glass, the subject of ongoing research. The manuscript is,
instead, aimed at characterising the different types of alterations detected on the analysed
finds; framed in a broader context, the study is intended to set the basis for the develop-
ment of a methodological approach dedicated to the degradation morphologies affecting
archaeological glasses, a topic still lacking systematisation, in-depth dedicated literature,
and a shared lexicon.

Regarding the site background, the archaeological complex of Kafir Kala is located
12 km southeast of Afrasiab, the ancient city of Samarkand, Uzbekistan (Figure 1a). It is in a
strategic position that controlled one of the local north-south passages along the ancient Silk
Road (Figure 1b) [17]. The archaeological trenches conducted between the settlement and
the Dargom canal (excavation code KK-4) (Figure 1c), and in other parts of the settlement,
evidenced sedimentary facies with a noticeable difference in terms of colour and lithology.
This difference can be observed between the ochre-red gravel from the local seasonal
streams of thick hillslope fan deposits, which form the natural substratum of the settlement,
and the dark grey sand originating in the Zeravshan River and borne by artificial canals [18].
The upper citadel (KK-1) was investigated by systematic archaeological excavation by the
Uzbek-Italian Archaeological Project—UIAP in different campaigns (2001–2003, 2005–2008,
2013–2014), which provided evidence of two main occupational periods (Figure 1c) [19].
The earliest is dated to the late 7th–early 8th centuries CE, at the time of the conquest of
Samarkand by the Arab army; after the conquest, the site was immediately resettled for
residential purposes. Alongside the systematic reuse of previous architectural structures,
the excavation unearthed the remains of dozens of fire structures (tandir/domed ovens,
fireplaces, hearths) and a noticeable quantity of pottery.

Among other classes of artefacts found, coins [20] and glass are the most relevant in
number and to understand the Islamic transition this settlement underwent. The glass
finds selected for this study belong to three main phases unearthed on the citadel: (1) pre-
Islamic, with layers associated with the fire that occurred at the time of the Arab conquest
(late 7th–early 8th centuries CE); (2) early Islamic (8th–early 12th century CE); (3) the
upper layers indicating post-depositional activities (after 12th century CE)—mainly natural
erosion—following the abandonment of the site. An additional sample (KK-d2) comes
from 2003 sounding at the western base of the eastern tower at North (excavation code
KK3, NEW), which exposed a pottery workshop presumably ascribable to the Timurid
period (13th–14th centuries CE).
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Figure 1. (a) location of Uzbekistan (https://d-maps.com/carte.php?num_car=54&lang=it; accessed on 31 October 2021); (b) 
main Silk Road local routes in the Samarkand region (basemap: ASTER GDEM 2013, © UIAP 2015); (c) aerial view of the 
archaeological complex of Kafir Kala with the main excavated areas (drone acquisition and data processing by G. Luglio, 
© UIAP 2018). 
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analysing both the surface of untreated fragments and cross-sectioned samples, to inves-
tigate micro-textural and micro-morphological features of the alteration layers. Semi-
quantitative elemental analyses were carried out on cross-sectioned samples in high vac-
uum, on areas and spots for the preliminary characterisation of the base glass and the 
inclusions; measurements were carried out at 20 kV, with a tungsten filament current of 
100 µA, 100 s of acquisition and 10 mm working distance. Due to accessibility problems 
to the aforementioned SEM-EDS facility, energy dispersion measurements on finds 
KK_d3, KK-d4, KK_d8 and KK_d12 were performed by using an LEO EVO 40XVP-M 
Zeiss scanning electron microscope (SEM), connected to an energy dispersion 

Figure 1. (a) location of Uzbekistan (https://d-maps.com/carte.php?num_car=54&lang=it; accessed on 31 October 2021);
(b) main Silk Road local routes in the Samarkand region (basemap: ASTER GDEM 2013, © UIAP 2015); (c) aerial view of the
archaeological complex of Kafir Kala with the main excavated areas (drone acquisition and data processing by G. Luglio,
© UIAP 2018).

2. Materials and Methods

Among an assemblage of 329 finds, 15 fragments have been selected for in-depth
analysis of the degradation phenomena (Table S1). The selection was based on the visual
appearance of the degradation patterns: colour, morphology and adhesion to the surface
were the main features considered. The following samples were selected for the analyses:
KK_d1, KK_d2, KK_d3, KK_d5, KK_h3, affected by iridescence; KK_b2, KK_d4, KK_d6,
KK_d7, KK_11, KK_r4, showing opaque weathering; KK_b5, KK_d9, KK_d12, KK_d14
with blackening; black staining was found on samples affected by both iridescence (KK_d5,
KK_h3) and opaque weathering (KK_b2, KK_d4, KK_d7, KK_r4).

Glass fragments were analysed by optical microscopy (OM) and scanning electron
microscopy coupled with semi-quantitative elemental analysis with an energy disper-
sion system (SEM-EDS). Preliminary visual inspection and documentation of the finds
were performed using a DinoLite USB microscope, with magnification up to 100×. An
SEM-EDS Quanta Inspect S FEI, equipped with a Philips New XL-30 microprobe, located
at the Department of Cultural Heritage, University of Bologna—Ravenna Campus, was
used for analysing both the surface of untreated fragments and cross-sectioned samples,
to investigate micro-textural and micro-morphological features of the alteration layers.
Semi-quantitative elemental analyses were carried out on cross-sectioned samples in high
vacuum, on areas and spots for the preliminary characterisation of the base glass and
the inclusions; measurements were carried out at 20 kV, with a tungsten filament current
of 100 µA, 100 s of acquisition and 10 mm working distance. Due to accessibility prob-
lems to the aforementioned SEM-EDS facility, energy dispersion measurements on finds
KK_d3, KK-d4, KK_d8 and KK_d12 were performed by using an LEO EVO 40XVP-M Zeiss
scanning electron microscope (SEM), connected to an energy dispersion microanalysis
system (EDS) INCA Energy 250—Oxford Analytical Instruments Ltd. (UK), available at the
Department of Industrial Chemistry, University of Bologna. Analytical parameters were
kept the same.

Quantitative chemical analyses, aimed at acquiring data on major and minor elements
characterising the pristine glass of Kafir Kala assemblage, were carried out by using electron
microprobe (EPMA). To avoid any contamination ascribable to the altered surface, micro-
samples (of the order of a few square millimetres) were taken from the core of the selected
fragments. To perform EPMA analyses, the glass micro-samples were embedded in blocks
of resin. The surface of each block was then polished with a series of diamond pastes down
to 1 µm grade and coated with conductive carbon film. The EPMA employed was a JEOL
8200 Super Probe, equipped with five WDS spectrometers and located at the Department
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of Earth Sciences of the University of Milan “La Statale”. Electron beam operated at 5 nA
and 15 KV, with counting times of 30 s for peak and 10 s for background. Standards used
for quantitative analyses were grossular for Si, Al and Ca, omphacite for Na, olivine for
Mg, K-feldspar for K, rhodonite for Mn, fayalite for Fe, and pure element for Sb. All the
certified analyses are available at the Unitech COSPECT of the University of Milan “La
Statale”.

A preliminary chrono-typological study was also performed on a smaller group of
4 fragments (KK-r4; KK-b2; KK-b5; KK-h3), linkable to specific shapes. Fragment KK-r4
is an everted and flat rim in an emerald green shade, with a diameter of 3 cm. From a
chrono-typological perspective, these rims are not particularly informative as they recur in
several historical periods and are generally associated with different types of small or large
bottles. Rims comparable to fragment KK-r4 can be found among bottles and unguentaria
from the Roman period [21,22], while subsequent comparisons from Eastern contexts can
be identified between the early Islamic material coming from the Ramla train station,
the Beirut Souk [23,24] and from the Abbasid strata of Jaffa [25]. Later comparisons can
also be found in the Mamluk layers from Quseir al-Qadim (Egypt) [26]. Fragment KK-b2
is a flat bottom with a recessed conoid, in light green glass; the fragment has a mould-
blowed honeycomb decoration pattern with a central rosette stamp. Its circumference
is about 8.2 cm, a size that is compatible with a bottle or a bowl; this is in line with the
literature, identifying the occurrence of this decoration in both open and closed forms,
from Abbasid and Fatimid periods in Middle Eastern contexts, testifying the great appeal
of the honeycomb decoration [27–30]. Sample KK-b5 is the bottom of a small bottle; the
fragment, with a recessed conoid and the pontil mark on the lower surface, has a diameter
of 4.8 cm. The original colour of the glass cannot be verified, as the fragment is completely
altered. The fragment was unearthed together with a slightly everted rim, indistinct with
respect to the wall, having a diameter of about 1.4–1.5 cm; the rim has been attested among
assemblages from Jordan and southern Syria, dated to the 7th century AD [31]. Fragment
KK-h3 is a ring handle made of blue glass. In ancient glassware, the use of handles is
recurrent on cups, lamps or bottles; the closest parallel was found in a long-necked bottle
with two ring handles applied along the neck, coming from the late antique layers of the
Beirut Souk [24]. However, the model probably remained in use in the following ages, also
applied to other types of objects.

3. Results and Discussion

Weathered glass can have a significant variation of appearances, the visual effects most
commonly found on the excavated glass being dulling, iridescence, opaque weathering,
pitting, cracking, discolouration and blackening [13]. In the perspective of laying the
foundations for a more systematic definition of the morphologies of degradation afflicting
glass from archaeological excavations and to encourage the use of a well-defined and
shared lexicon, the results obtained from the investigations carried out for this study
will be presented divided into sub-paragraphs, each dedicated to a specific degradation
morphology among those identified on the analysed assemblage.

Except for sample KK-d12, which is completely altered, a preliminary evaluation of
quantitative data obtained by EPMA on pristine glass (Table S2) allow characterising all
the glass fragments from Kafir Kala as silica-soda-lime, made by using plant ash as fluxing
agent (SiO2 between 58.2 wt% and 67.92 wt%; Na2O between 14.15 wt% and 18.90 wt%;
CaO between 3.66 wt% and 8.96 wt%; K2O between 2.05 wt% and 6.44 wt%; MgO between
2.74 wt% and 4.98 wt%). The only exception is sample KK_d11 (having K2O = 0.41 wt%
and MgO = 0.48 wt%), made by using natron as a fluxing agent. As this article focuses upon
degradation morphologies affecting plant ash-based glass, a more in-depth discussion on
compositional data, aimed to establish possible comparisons with assemblages datable to
the same chronological frame and unearthed from neighbouring geographical areas, will
be carried out in a forthcoming paper.
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3.1. Iridescence (without and with Opaque White Weathering)

Iridescence is the first alteration layer found in direct contact with pristine glass. Also
named “rainbow iridescence” [14], “rainbow-like effect” [8] or “shelly layer” [32] this
morphology of degradation can be distinguished for its peculiar chromatic features: it
resembles a thin layer of oil on a water surface, caused by the interference between rays of
light reflected from thin alternating layers of air and weathered glass [13].

This degradation morphology has been detected, at different stages, on fragments
KK_d1, KK_d2, KK_d3, KK_d5 and KK_h3. Under OM a heterogeneous colouration of the
surface can be observed on KK_d1 and KK_d2, with vivid colours in the shades of purple,
blue, violet or pink (Figure 2a). Often superimposed, the iridescence layers are extremely
thin (a few microns) and highly unstable, with a strong tendency for delamination even
during gentle handling. Back Scattered Electrons (BSE) images acquired on the surface
of untreated fragments show a laminated structure with a marked cracking network at
a micrometric scale. The occurrence of micro-pores with a diameter between 20–35 µm
can also be observed (Figure 2b). These crater-shaped structures can be interpreted as
preferential sites for capillary infiltration of water and consequent growth of the iridescence
layers, resulting, at a later stage, in the so-called “shelly layer” identified by Emami and
colleagues [32]. As demonstrated by Silvestri and co-authors [33], the typical iridescence
effect of degradation products could be due to ordered periodic nano-lamellar structure
which, being characterised by nano-lamellae spacings in the range of the visible-light
wavelength, give rise to selective light diffraction processes.
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Figure 2. Iridescence on glass fragment KK_d1: (a) OM documentation, highlighting the occurrence of bubbles due to the
leaching progress followed by pitting; (b) BSE image of the surface, with details of the cracking network and a micrometric
pore, in the white rectangle.

On samples KK_d3, KK_d5 and KK_h3 iridescence is found at a more advanced state.
Under OM, these samples show a much more compact weathering layer compared to
KK_d1 and KK_d2, with a pearlescent white appearance and the sporadic occurrence
of micrometric black stains, resembling the shape of leaves (Figure 3a,b). Micro-textural
and micro-morphological analyses under SEM-BSE allowed gaining further insights into
this different type of iridescence: the layer is more compact and devoid of the lamellae
conformation observed for KK_d1 and KK_d2 samples (Figure 3c); EDS measurements
performed on the black stains showed their hue is ascribable to manganese, whose content
ranges between 2.34 wt% and 5.71 wt% (Figure 3d). EPMA data exclude that the manganese
found in the black stains had migrated to the surface from the glassy matrix, as samples
KK_d3, KK_d5 and KK_h3 all have negligible manganese contents (MnO < 0.04 wt%). The
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detected dark stains can be interpreted as the first symptoms of the onset of the morphology
of degradation defined as “black staining”, which will be discussed in more detail in the
dedicated sub-paragraph.
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3.2. Opaque Weathering

Synonym of “opalescent weathering”, the term describes opaque white surface alter-
ation products. The alteration is generally made up of overlapping layers, which develop
on the surface of the glass. According to the literature, in its incipient stage, when small
whitish spots are only visible on the surface, this degradation morphology is termed
“milky” weathering [3]; conversely, at a more severe stage, the alteration is named “enamel-
line” and it can penetrate inside the glass, eating into it [14]. Opaque weathering also tends
to chip off, exposing thinner, iridescent layers below.

In the assemblage of glass finds from Kafir Kala, opaque weathering has been detected
on fragments KK_b2, KK_d4, KK_d6, KK_d7, KK_r4. Observation under OM highlighted,
on fragment KK_b2, a smooth, opalescent white alteration layer that is not superimposed
on the surface but penetrates inside the glass (Figure 4a). BSE images of the stratigraphy
confirm a penetration of the alteration layer—having an average thickness of about 570 µm—
inside the vitreous matrix, which is being eaten (Figure 4b). Qualitative EDS analysis carried
out on the stratigraphic section showed a depletion of Na and decrease of concentration of
alkaline earth elements (Ca, Mg), as demonstrated by line scans through the altered surface
compared with pristine glass below (Figure 4c).



Minerals 2021, 11, 1364 8 of 14Minerals 2021, 11, x  9 of 15 
 

 

 
Figure 4. Opaque weathering: (a) OM documentation of fragment KK_b2; (b) BSE image of KK_b2 cross-section, with 
detail of the alteration layer penetrating inside the glass; (c) EDS line scan through the altered surface and the pristine 
glass; (d) OM documentation of fragment KK_d7, with enamel-like weathering; (e) BSE images of fragment KK_d7, un-
treated sample. 

Last, a note is deserved by sample KK_d11, showing a degradation pattern that is 
slightly different, in terms of macro-morphological features, from all the other fragments 
with opaque weathering. The thin layer of surface alteration is milky and whitish in col-
our, with a superimposed, spotted iridescence (Figure 5a). EDS mapping and line profile 
analysis were performed on a cross-sectioned sample (Figure 5b–d). A layer with the evi-
dent laminated system as well as semi-circular/oval units originating from the upper sur-
face can be observed: thermal shock followed by physical defects introduced due to tech-
nological procedure together with the influence of the environmental burial conditions 
could be responsible for the deterioration process. Analyses demonstrated that the alter-
ation layer is depleted from sodium and calcium, thus leading to the conclusion that this 
degradation morphology is ascribable to the leaching of alkaline elements from the glassy 
matrix. 

Figure 4. Opaque weathering: (a) OM documentation of fragment KK_b2; (b) BSE image of KK_b2 cross-section, with detail
of the alteration layer penetrating inside the glass; (c) EDS line scan through the altered surface and the pristine glass; (d) OM
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On fragments KK_d4, KK_d6, KK_d7 and KK_r4, opalescent weathering is found at
an even more advanced stage. Unlike fragment KK_b2, they are almost entirely covered in
a thicker, opaque layer of a whitish colour (Figure 4d). The thickness of the alteration layer
is higher, reaching a few millimetres and, as evidenced by the BSE images, it is compact
and well adhered to the glass surface (Figure 4e).

All glass fragments from Kafir Kala with opalescent weathering are characterised by
small, dark coloured stains on the surface (Figure 4a,d). The occurrence of such dark dots
on glass affected by opaque weathering is sometimes reported in the literature, responsible
for progressively leading to a colour shift towards brown [3,13,14]. According to data from
this study, these spots could be consistent with the so-called “black staining”.

Last, a note is deserved by sample KK_d11, showing a degradation pattern that is
slightly different, in terms of macro-morphological features, from all the other fragments
with opaque weathering. The thin layer of surface alteration is milky and whitish in
colour, with a superimposed, spotted iridescence (Figure 5a). EDS mapping and line
profile analysis were performed on a cross-sectioned sample (Figure 5b–d). A layer with
the evident laminated system as well as semi-circular/oval units originating from the
upper surface can be observed: thermal shock followed by physical defects introduced
due to technological procedure together with the influence of the environmental burial
conditions could be responsible for the deterioration process. Analyses demonstrated that
the alteration layer is depleted from sodium and calcium, thus leading to the conclusion
that this degradation morphology is ascribable to the leaching of alkaline elements from
the glassy matrix.
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the alteration layer; (c) SEM-EDS mapping, with details of Ca (yellow) and Si (blue) contents; (d) EDS
line scan through the altered surface and the pristine glass.

3.3. Black Staining and Blackening

Black staining has frequently been observed on both windows and archaeological glass
and it is extensively reported in conservation literature [2–5,34–37]. From a morphological
perspective, two kinds of staining have mainly been detected: the first feature resembles
leaf-shaped deposits on the glass surface, termed dendrites; the second feature is that of
micrometric pits, often occurring in concentric ring-shapes.

Dendrites were detected on several fragments from Kafir Kala which, at a first macro-
scopic examination, had a different appearance: fragments KK_d5 and KK_h3, with severe
iridescence; above discussed fragments KK_b2, KK_d4, KK_d7, KK_r4, with opaque weath-
ering; samples KK_b5, KK_d9, KK_d12 and KK_d14, affected by the so-called blackening.

On glass fragments affected by severe iridescence (KK_d5, KK_h3) and opaque weath-
ering (KK_b2, KK_d4, KK_d7, KK_r4), OM images showed that black stains have the actual
shape of small leaves, resembling dendrites (Figure 6a–d). SEM-EDS analyses allowed
characterising dendrites as mainly made of manganese, the chromophore element respon-
sible for their brown colour and, thus, for the progressive colour shift towards brown
and/or black of the alteration noticed on enamel-like alterations by [3,13,14]. As man-
ganese and iron oxides are common soil components, both internal and external sources
could be responsible for the black/brown staining of buried archaeological glasses. Watkin-
son and colleagues [34] carried out laboratory experiments on replicas of potash-based
glasses, to simulate the possible effect of dissolved manganese from external environ-
ments on scratched, cracked and alkali-leached glass of an archaeological composition
without manganese. Results demonstrated that manganese could enter the glass through
cracks, forming insoluble brown/black manganese compounds. This corrosion mechanism
could explain the occurrence of localised blackening in buried archaeological glass and the
dendrite-like inclusions that have been observed. The data obtained from EPMA analyses
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of Kafir Kala glass finds support the above hypothesis because fragments with dendritic-
shaped growths do not contain intentionally added manganese compounds; MnO contents
are negligible, being <0.04 wt% in samples KK_d3, KK_d5, KK_h3, KK_b2, KK_d4, KK_d7
and equal to 0.07 wt% in sample KK_r4.
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Figure 6. Dark growths in the shape of small leaves detected on fragments, documented under OM
(a) KK_h3; (b) KK_b2; (c) KK_d4; (d) KK_d7.

Among the assemblage of finds from Kafir Kala, ring-shaped pits were found on
green-coloured glass fragments KK_b5, KK_d9, KK_d12 and KK_d14. Upon preliminary
visual inspection, the surface of the fragments shows a dark, metallic shade (Figure 7a);
images acquired by OM highlight the presence of dark-coloured stains (Figure 7b), which
can be found over the entire extension of the surface alteration layer. The observation
of the fragments under SEM made it possible to investigate in more detail the micro-
morphological and micro-textural features of blackening alteration. BSE images show that
the alteration consists of thin, overlapping lamellar layers (Figure 7c); here the occurrence
of pits was observed, with circular conformations and having a diameter between 5 and
20 µm (Figure 7d). As demonstrated by EDS spot analysis, the higher electron backscatter
shown by these concentric pits is due to an increase in the manganese content, up to
9.30 wt% (Figure 7e).
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SEM-EDS analysis was also performed on micro-samples prepared as stratigraphic
sections. BSE images allowed to estimate a thickness of the dark alteration layer, equal
to about 500 µm. The layer is made up of several overlapping lamellae, each of a sub-
micrometric thickness. The elemental mapping of the chemical composition (Figure 8)
highlights a composition mainly made of Si; moreover, it can be observed that the lamellar
layers with higher electron backscattering are characterised by Mn enrichment.

As the occurrence of these black stains can also result in an entirely black surface,
the term “blackening” has also been found to describe this alteration. According to the
literature, three main hypotheses have been formulated regarding the genesis of surface
blackening on archaeological glass [1,4]: the oxidation of iron and manganese ions present
in the glass; the action of sulphur-reducing bacteria actively producing hydrogen sulphide
in anaerobic conditions; the formation of lead sulphide, only occurring in glasses with a
high lead content, buried in anaerobic conditions where sulphate-reducing bacteria are pro-
ducing hydrogen. This darkening effect has mainly been found on medieval potash-based
glass, with a tendency to develop dark spots and an opaque lamellar crust during burial,
often dark brown or black in colour [3]. Data obtained from EPMA analyses performed on
fragments from Kafir Kala are in line with the theory stated by Davidson [3] on the genesis
of this blackening effect, ascribable to the oxidation of iron (II) and manganese (II) ions
found in the glass; samples KK_b5, KK_d9 and KK_d14 show, in fact, relatively higher
manganese contents in the vitreous matrix (MnO ranging between 0.65 wt% and 1.64 wt%)
and iron as the only chromoforous ion (FeO ranging between 0.51 wt% and 1.38 wt%).
Taking into account that the majority of the analysed samples are pale green in colour, we
can hypothesise that the colour is due to iron and manganese dispersed into the vitreous
matrix in their reduced state and, because of the leaching process, hydrated Mn (II) and Fe
(II) ions are then converted into dark brown MnOOH and FeOOH [38]. Specifically, the
concentric circular accretions with a higher manganese content represent preferential sites
for the genesis of the leaching of Fe (II) and Mn (II) ions, with consequent formation of a
hydrated precipitate held in the pores of the leached hydrated silica layer.
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4. Conclusions

The study carried out on the degradation morphologies affecting plant ash-based
glass set the basis for a preliminary systematisation of the alteration phaenomena found
on archaeological glass, moving from a scientific approach to their characterisation and
understanding of the underlying dynamics and impacting factors.

The analyses showed that the presence of a single morphology of degradation on the
fragments is rarely found as the coexistence of several alteration phenomena is the most
frequent occurrence. As for the iridescences, those at a more advanced state (stratified and
more adherent to the glass surface) show traces of genesis sites for dendritic growths, the
first step towards the subsequent black stains.

All the fragments affected by the so-called opalescent weathering show an alteration
with the stratified, lamellar and well-adherent structure to the underlying glass; the latter
is also found, in the most severe cases, eaten from the inside. On fragments with opalescent
weathering, the presence of preferential sites for the growth of black stains in the shape of
dendrites has been observed; here, the conformation of the dendrites begins to be better
defined.

Last, concerning the black stains, the following was observed: both the dendritic-
shaped and the ring-shaped pits are mainly made up of manganese; however, the processes
underlying their formation appear to be different. Regarding the growth of dendrites, the
most plausible hypothesis would seem to be the one formulated by [34], stating that man-
ganese could enter the glass through cracks, forming insoluble brown/black manganese
compounds. EPMA data support this hypothesis as the presence of MnO in the glass matrix
of the samples affected by this degradation morphology was not highlighted. Otherwise,
the formation of concentric pits was found exclusively on glass fragments characterised by
higher levels of manganese; data support, thus, the theory by Davidson [3] on their genesis,
ascribable to the oxidation of iron (II) and manganese (II) ions found in the glass.
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