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Abstract: The Lushi gold polymetallic ore-concentration area, located in the southern margin of
North China Craton, is an important polymetallic ore district in the Qinling metallogenic belt. The
Jianbeigou gold deposit is an important quartz vein type gold deposit in this district. In order to
reveal the geological structure of the Jianbeigou gold deposit to guide deep prospecting, the EH4
conductivity image system was used in the Jianbeigou area. The sections obtained by the audio
magnetotellurics method (AMT) indicate that the steeply dipping low resistivity zone in the area
has a good corresponding relationship with the location of the known shallow ore bodies, and an
extension in the deep. The low resistivity anomaly zone obtained by the inversion results are well
correlated with the gold mineralization zone of the ore bodies, indicating good deep prospecting
and exploration potential in this area. Based on geological and geophysical evidences, this paper
inferred the possible occurrence location and depth range of the buried ore bodies. The AMT survey
results reflect good exploration potential of the mining area and provide a geophysical basis for
deep prospecting.

Keywords: EH4 conductivity image system; Jianbeigou gold deposit; deep prospecting; Qinling
metallogenic belt

1. Introduction

The Qinling metallogenic belt, situated in the southern margin of the North China
Craton (NCC), is one of the most important Au-Mo polymetallic ore belts in China, which is
characterized by voluminous gold, molybdenum, and lead-zinc polymetallic deposits [1–3].
The Qinling metallogenic belt was formed under the complex crust–mantle interactions
and the diverse metallogenic processes. A lot of super large-scale or large-scale gold
and molybdenum ore-concentration areas such as Xiaoqinling and Xiong’ershan have
been determined in this area [4–6] (Figure 1). The Qinling metallogenic belt, which is
one of the largest large-scale deposit accumulation areas in the world, has attracted much
attention due to its huge resource potential. Therefore, the Qinling metallogenic belt is
regarded as a good metallogenic condition and exploration potential region [7]. However,
the surface conditions of the Qinling metallogenic belt are complex and changeable, such
as extensively developed surface folds and faults, mostly high-steep structures, harsh
survey environments, and difficult field construction. Compared with other geophysical
prospecting methods, the audio magnetotellurics method (AMT) has the unique advantages
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of high observation efficiency, strong resolving power, portable instrument, and better
resolution for low resistivity objects. Therefore, it is an effective method to study deep
geological structures and explore hidden metal ore bodies.

In the past decades years, geophysical exploration technology has made significant
progress in China [8–13]. The resolution and inversion interpretation capabilities of mid-
deep mineral exploration have greatly improved especially, providing technical support
for the fine detection of metal ore in second depth space (500–2000 m) [14]. The demand
for mineral resources is growing, along with high country economy development. In
order to achieve the sustainable development of the national economy and society, it is
necessary to rapidly strengthen the prospecting, exploration, and resource development
and utilization of the second depth space in the crust [15–18]. AMT has been applied to
solid mineral exploration in the mid-deep because of its large detection depth, which is
suitable for mineral resource exploration in the second space [19,20]. Also, it is widely used
in the structural detection of ore field scale and the delineation of a metallogenic target
area [21]. The AMT method played an important role in the exploration of deposits in
China, like the discoveries of the Chaihulanzi gold concealed deposit, Inner Mongolia [22];
and the exploration of the interlayer slip breccia gold deposit in Pengjiakuang mine,
Shandong Province [23]. Besides, this method has also been successfully applied for the
prospecting of gold and lead–zinc deposits in the Tianshan–Xingmeng orogenic belt [24].
These applications have achieved a series of good results.
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Figure 1. Geological map of the Eastern Qinling area on the southern margin of the NCC showing:
(a) the position of the study area and distribution of Au deposits; (b) the position of the Eastern
Qinling and other tectonic units, and distribution of Au deposits (Modified from [3,25,26]).

Due to its portable mode, no near-field effect, and high working efficiency, the EH4
conductivity image system is an ideal instrument for deep profiling of metal deposits in
the Qinling metallogenic belt. This paper demonstrates application of the AMT method to
the Jianbeigou gold deposit.

2. Geological Setting

The NCC is bounded by the Qinling-Dabie-Sulu Mesozoic orogenic belt in the south
and the Xing-Meng Late Paleozoic orogenic belt in the north, and the eastern margin adja-
cent to the Pacific Plate [27]. From the early period to the Mesozoic, the NCC has undergone
complex tectonic evolution. Tectonic regime transformation and crustal activation appeared
in the NCC during Mesozoic, and the thinning of the lithosphere and the appearance of
voluminous crust-derived granites were the main characteristics [28]. Previous studies
have shown that the destruction of the craton and the Mesozoic magmatism in eastern
North China are closely related to the subduction of the paleo-Pacific plate [29–31]. Since
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the Early Jurassic, the paleo-Pacific plate has changed from a low-angle subduction to a
high-angle subduction, accompanied by the retreat of the subduction zone, which induced
strong destruction in the eastern part of the NCC. It caused large-scale tectonic-magmatic
activities, and a large number of gold and other metal deposits were formed [32]. In the
Early Devonian, the NCC collided with the North Qinling microcontinent [33,34]. The
southern margin of the NCC and its adjacent Qinling Dabie metallogenic belt were in
an extensional setting during Early Cretaceous in eastern China, forming a large-scale
magmatic hydrothermal metallogenic system in the shallow [5]. It makes the Qinling
metallogenic belt, where Lushi area is located, one of the important metallogenic areas in
the tectonic-magmatic activity belt of the NCC.

The Lushi gold polymetallic ore-concentration area is situated in the southeastern part
of the Qinling metallogenic belt. The geotectonic location spans two major structural units,
the southern margin of the NCC and the Qinling orogenic belt (Figure 2). With superior ore-
forming geological conditions, it is an important metal resource base in western Henan. In
the Late Mesozoic, magmatic activity was extremely developed and it played an important
role in the formation of contemporaneous endogenetic metal minerals [35,36]. Quartz
vein type gold deposits, structural altered rock-type gold deposits, porphyry-skarn type
iron-copper polymetallic deposits, hydrothermal vein type copper-lead-zinc deposits, and
rare metal pegmatites have developed in this ore-concentration area [37–39].
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Figure 2. Geological map of Lushi gold polymetallic ore concentration area and distribution of metal
deposits (Modified from [40]).

In the region, the strata of the NCC are situated in the northern section of the Lu-
anchuan fault (Figure 1), which are characterized by a typical double-layer structure. The
lower part is dominated by the Archean Taihua Group gneiss. Mesoproterozoic Xiong’er
Group Volcanic rocks, Meso-Neoproterozoic sedimentary formations, and Meso-Cenozoic
sedimentary formations make up the cover strata of the upper part. The strata of the North
Qinling orogenic belt are seated in the southern section of the Luanchuan fault, which are
composed of the Middle Proterozoic Qinling rock complex, Lower Paleozoic Erlangping
Group sedimentary metamorphic rocks, Triassic marine strata, and Cenozoic sediments.

The overall geological structure of this area is NWW-trending, and each structural
zone and structural unit is separated by large shear zones. The Waxuezi fault and the
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Zhuyangguan fault are the major faults in this area. The Paleozoic granites are the mainly
intrusive rocks in this area, and the Late Mesozoic intrusive rocks consisting of minor rock
stocks are widely distributed in the north part of Heigouzi fault [41].

3. Jianbeigou Gold Deposit

The Jianbeigou gold deposit is situated between the Waxuezi fault and the Zhuyang-
guan fault (Figure 2). The deposit mainly occurs within the Lower Paleozoic Xiaozhai
Formation (slate, sandstone) and consists of Au-bearing quartz veins and disseminated ore
(Figure 3). The other strata mainly include the Lower Paleozoic Huoshenmiao Formation
spilite keratophyre, Upper Triassic feldspathic quartz sandstone, carbonaceous slate, and
the Quaternary sediments (Figure 3). The Au-bearing quartz veins are controlled by steeply
dipping faults and the disseminated ores are dominated by the gently dipping interlayer
fractured zone. The igneous rocks exposed in the area are Jianbeigou and Dongping
plutons, both are gneissic granites.
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Figure 3. Geological map and the distribution of AMT survey lines in Jianbeigou gold deposit
showing: (a) Line 10 and Line 5 in Xinping section; (b) Line DDS1 in Dongdashan section (Modified
from [40]).

Two main groups of ore-bearing structures exist within this mining area. One group is
a steeply dipping ore-bearing structure. The NWW-striking ore-controlling structures were
observed to dip toward the north at angles of 75–85◦. The main structure of this group
occurred in the Early Paleozoic granite, and the early deformation of the structures was
ductile shear deformation. The other group (interlayer fracture zone) is a gently dipping
ore-bearing structure, with a dip angle of 0–20◦.

The overall exploration level of the deposit is relatively low. The Xinping mine is only
about 150 m deep (Figure 4). The contact between the Xiaozhai Formation and the Early
Paleozoic granite is exposed at elevation of about 800 m above sea level (Figure 4). The
presence of ore bodies (Au1 and Au2) on the study profile (Line A; Figure 3a) was indicated
by ore bodies exposed in the Xinping mine. There are even less data for the Dongdashan
mine section, except for geochemical anomalies of gold [40].
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deposit (Modified from [40]).

The quartz veins are steep and the surrounding rocks are Early Paleozoic granites,
as shown in Figure 5. Diabase dykes and quartz veins occur within the same ductile
deformation ore-bearing structural belt. The banded structure formed by shearing in
the ore-bearing veins can be clearly observed (Figure 5a,b). The contact surface between
quartz vein and granite is straight, and ore boundaries are regular (Figure 5a,c). The
gold-bearing quartz veins are white, greasy luster, with massive structure. The shapes
of the disseminated ores are lenticular, sac-like, vein-like, lentil-like, beaded-like, and
irregular (Figure 5d,e). The metallic minerals are mainly composed of pyrite, chalcopyrite,
pyrrhotite, galena and sphalerite, with minor amounts of electrum detected (Figure 5b,d).
The gangue minerals are mainly composed of sericite, quartz, calcite, and chlorite. The
alteration types include silicification, chloritization, sericitization, and carbonatization.
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vein body.

4. Methodology

The electromagnetic method plays an important role in mineral exploration and has
been widely used in searching for metal resources such as gold, copper, molybdenum,
lead-zinc, bauxite, and uranium [42–44]. In this paper, detailed field geological surveys
and AMT survey were carried out to investigate the Jianbeigou gold deposit in the Qinling
metallogenic belt. The purpose of the AMT survey is to identify the resistivity characteristic
of the gold ore bodies and the extension of ore-controlling structures (or ore bodies). In
combination with the 850–700 m exploration adit prospecting project, two ore bodies Au1
and Au2 in the north-west trending (280◦) were selected for AMT geophysical survey (Line
10 and Line 5). The target area with Au element geochemical anomaly was selected for the
DDS1 line, and its mineralization fracture zone discussed.

4.1. Experimental Method

Audio magnetotelluric sounding is an important geophysical method that uses natural
electromagnetic fields as the field source to study the electrical structure of the earth’s
interior [45,46]. The earth is seen as the horizontal medium and the magnetotelluric field is
vertically projected into the ground in the form of plane electromagnetic waves. Orthogonal
electromagnetic field components are observed on the ground, and its frequency response
reflects the vertical distribution of the electrical properties of the underground medium.
Through a certain inversion method, the resistivity distribution at different depths can be
obtained [47].

A mixed-source frequency domain electromagnetic sounding system, called the EH4
Conductivity Image Systems, was jointly produced by Geometrics and EMI in the 1990s [48].
It combines the advantages of both CSAMT and MT. The passive source electromagnetic
method is the core, the natural background field source reflects the deep structure, and
the artificial transmitted signal is the radiator to compensate for the shortcomings of some
frequency bands of the natural signal. In areas with weak or no signal, it ensures that
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a reliable signal can be observed in the entire frequency band to obtain high-resolution
resistivity imaging [49].

The EH4 Conductive Image System realizes continuous acquisition of electromagnetic
signals in the range of 0.1 Hz to 100 kHz. It can receive and analyze the electric and magnetic
fields in both X and Y directions at the same time, and invert the X-Y conductivity tensor
profile, which is particularly beneficial for judging the underground two-dimensional
structure. It uses artificial electromagnetic fields (1–100 kHz) combined with natural
electromagnetic fields (10 Hz–1 kHz) to measure earth resistivity. By first observing the
orthogonal components of the electromagnetic field at the measuring point, the mutually
orthogonal time-domain electric field components Ex, Ey, and magnetic field components
Hx, Hy can be obtained, and the spatial attributes established. Then the time series data
collected in the field can be edited to remove the time series fragments and obvious
interference signals. For the measuring points curve, it can be smoothened or the frequency
points with too large errors can be discarded, and the high-quality frequency point data
retained. The variation of the magnetotelluric field component with time is converted into a
frequency spectrum, and the magnetotelluric frequency domain response such as apparent
resistivity and impedance phase can be calculated. Using the following expression:

ρ = (1/5f) |Ex/Hy|2 (1)

where, f is the frequency in Hz, and ρ is the resistivity in Ωm.
The initial geoelectric model of the inversion process can use the apparent resistivity

profile just obtained. The 2D analysis function (EMAP) was used to invert the measurement
results and obtain the resistivity-depth profile.

4.2. AMT Survey of the Jianbeigou Gold Deposit

Three EH4 profiles were carried out according to the geochemical anomaly charac-
teristics and the geological characteristics of ore-controlling structures. The AMT survey
lines are shown in the Figure 3. Measurement sites were set at 20 m intervals along with
exploration lines. Among them, the EH4–5 line and the EH4–10 line were measured in
the Xinping mine section, and the EH4–DDS1 line was measured in the Dongdashan mine
section for investigating the resistivity structures of the main mineralization belt (Figure 3).
In order to eliminate the influence of terrain, the obtained sounding data were processed
with terrain elevation correction. For AMT profile, the vertical axis is the altitude, the
abscissa is the measurement point number, and the terrain line is obtained by interpolation
using high-precision GPS data.

In this measurement, each electric field measurement point was soaked with clean
water to reduce the contact resistivity of the detection point. Based on the analysis of the
AMT data curve and the inversion resistivity model, the results show that the underground
conductivity image of EH4 data inversion can display the deep extension of the ore-
controlling shear structure and the variation characteristics of rock mass. It obviously
reflects the differences in resistivity between the surrounding rock and the ore body. The
resistivity of metal sulfide metallogenic belt is lower than host rocks such as intrusive rocks,
granite, and metamorphic rocks. This geophysical information provides important and
direct evidence for determining the location of concealed ore bodies in the study area.

5. Discussion

In this paper, Line 5 and Line 10 were measured on known shallow ore bodies. Their
deep parts were extended and predicted in combination with geophysical methods. No
ore bodies were previously investigated in the section of Line DDS1, but the metallogenic
target area was circled by previous work using the primary halo geochemical method. The
ore bearing fault zone were predicted and discussed to connect with this AMT survey.
Considering its geological characteristics, prospecting engineering control characteristics,
previous primary halo research results, and AMT measurement results, the three sections
are discussed as follows.
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5.1. AMT Survey Results and Imaging Data of EH4–10

The EH4–10 profile was measured in the middle of the Xinping mine section. The
profile was 500 m in length, with 26 measurements set at 20 m intervals along with the
north-eastern trending (at 15◦). The inversion data of the EH4–10 line were plotted as a
profile shown in Figure 6.
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The inversion altitude of the AMT survey is 1000 m, and the minimum inversion
altitude is –100 m. The AMT survey Line 10 (Figure 6) shows the following main features:
(1) the low resistivity anomaly zone was mainly located in the shallow part of the section,
and the high resistivity anomaly zone was known to occur within the deep part of the
profile. (2) It is worth noting that there are two steeply dipping low resistivity anomaly
belts in the high resistivity section, and the centers of the two low resistivity anomalies
measured at 100 m and 360 m in the survey line, respectively.

It has been observed that the Xiaozhai Formation, which was mainly comprised of
slate, schist, and bi-mica schist, was exposed in the 850 m exploration adit (white line).
Occasionally, granite can be observed in the exploration adit. Thus, the low resistivity
anomaly is presumed to be the geophysical response of the Lower Paleozoic Xiaozhai For-
mation, and the local resistivity increase at 280–340 m and 420–480 m is caused by shallow
granite. This geological understanding of an investigated region is a good explanation for
geophysical anomaly data.
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The main ore body of the Xinping section consists of Early Paleozoic granite. At the
same time, Early Paleozoic granite rock branches can be seen in the measured section of
the surface, suggesting that granite still exists in the deep part of the section. Therefore, the
mid-to-high resistance anomaly in the inverted section map is inferred and interpreted as
the geophysical response of the Early Paleozoic granite.

Two large, steeply dipping, low resistivity zones in the inverted section are clearly
highlighted from the surface down to the deep. The 100 m of the low resistivity zone was
found to coincide with the location of a known ore body (Au1), which extended to a depth
of about 1000 m. An Au1 ore body can be observed in the exploration adits of 740–850 m,
as detailed at Figure 4. It has been observed that the shallow part of the low resistivity
zone slopes steeply toward the south, and the deep part slopes steeply toward the north.
In general, both the high resistivity zone and low resistivity zone dip toward the north.
Thus, this low resistivity anomaly should be interpreted as the geophysical response of the
Au1 quartz vein ore body, revealing that the Au1 ore body has a deep structural extension,
showing good prospects for deep prospecting.

The 360 m of the low resistivity zone on the south side of the section was found to
coincide with the location of a known Au2 ore body, which extended to a depth of about
650 m. Au2 ore body is controlled by the exploration adits of 740–850 m, as detailed at
Figure 4. Consequently, it is assumed that the low resistivity anomaly zone is precisely
related to the geophysical response of the Au2 quartz vein ore body. The Au2 ore body has
a structural extension to a depth of more than 650 m, appearing a good prospect for deep
prospecting. These findings also show no difference in this interpretation and the actual
observations of the exploration adit. Meanwhile, it indicates that the low resistivity anomaly
zone obtained by AMT inversion has a good correlation with the gold mineralization zone
of the ore body.

5.2. AMT Survey Results and Imaging Data of EH4–5

In the present study, the EH4–5 profile was measured at the westernmost side of the
Xinping mine section, which is 80 m away from the EH4–10 profile. Line 5 was 500 m in
length, with 26 measurements at 20 m intervals along with the north-eastern trending (at
15◦). The processing method of EH4 sounding data is the same as the EH4–10 profile. The
obtained data of the EH4–5 line were plotted as a profile detailed in Figure 7.

The inversion altitude of the AMT survey is 1000 m, and the minimum inversion
altitude is –100 m. It has been determined that the Lower Paleozoic Xiaozhai Formation
was observed in the shallow part. It can be seen from the profile that the underground
resistivity image along Line 5 is complex, especially at 260–460 m. Whereas, from the
surface down to a depth of about 200 m, the resistivity presents a trend of gradually
increasing. Based on appearance of the Lower Paleozoic Xiaozhai Formation, the low
resistivity anomaly in the shallow part was caused by it. Following the completion of this
geological survey, Early Paleozoic granite was found at an altitude of 830 m on the west
side of the profile, indicating that the Xiaozhai Formation was under-embedded by the
granite. The Xiaozhai Formation was limited in thickness and is less than 20 m. Thus, the
high resistivity anomaly in the inverted profile at around 300 m is inferred and interpreted
as the geophysical response of the Early Paleozoic granite.

The obtained resistivity section (Figure 7) showed that there were two resistivity
anomalies located in the study area. The centers of the two low resistivity anomaly
were measured at 100 m and 360 m, respectively. The 100 m point of the low resistivity
zone was found to essentially correspond to the location of a known Au1 ore body in the
mineralization belt. An Au1 ore body can be observed in the exploration adits of 740–850 m,
as detailed at Figure 4. The shallow part of the low resistivity zone has a secondary low
resistivity zone that slopes northward, and the deep part slopes steeply toward the north,
extending to a depth of 1000 m. These findings show that the ore body has a structural
extension in the deep. It was believed that this low resistivity anomaly represented the
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possible location of a buried ore body. Also, a similarly resistive anomaly was found to exist
at the 360 m mark. This is very important from the viewpoint of exploration prospectives.
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Figure 7. EH4 sounding image of Line 5 in the Xinping section of the Jianbeigou gold mine. The
dashed line in the profile is the inferred geological boundary between the strata and the granite. The
thick dashed red lines are the presumed mineralized zone. The white lines are the location of the
exploration adit at 750 m and 850 m.

The resistivity model for the EH4–5 line was found to be similar to that of the EH4–10
line. However, the inverted profile has a good corresponding relationship with the actual
position of the ore body. The 360 m of the low resistivity zone on the south side of the section
was found to coincide with the location of a known Au2 ore body, which extended to a
depth of about 500 m. The Au2 ore body is controlled by the exploration adits of 740–850 m,
as detailed at Figure 4. Therefore, this low resistivity anomaly can be interpreted as being
caused by the Au2 quartz vein ore body. Furthermore, the EH4 sounding image could
strongly reveal that the gold-bearing mineralization belt was steeply dipping.

5.3. AMT Survey Results and Imaging Data of EH4–DDS1

In the current study, one EH4–DDS1 profile was measured in the Dongdashan mine
section, which was 860 m in length. A total of 44 measurements sites were set at 20 m
intervals along with the northern trending. The processing method of EH4 sounding data
is the same as the EH4–10 profile. The obtained data of the EH4–DDS1 line were plotted as
a profile detailed in Figure 8.
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Figure 8. EH4 sounding image of Line DDS1 exploration line in the Dongdashan section of the
Jianbeigou gold mine. The dashed line in the profile is the inferred geological boundary between the
strata and the granite. The thick dashed red lines are ore-bearing abnormal structural belts.

The inversion altitude of the AMT profile is 1000 m, and the minimum inversion
altitude is 260 m. The dotted line in the inversion profile is the inferred geological boundary
between the strata and the granite. It was observed that Xiaozhai Formation, which was
mainly composed of chlorite slate and mica schist, exists in the shallow part of this mining
section. Also, granite was found on the south side of the section. From the surface down
to a depth of about 100 m, the overall performance is low resistance; only minor amounts
of resistivity increase at around 860 m. Therefore, the resistivity anomaly in the shallow
part of the inverted profile is influenced by the Xiaozhai Formation and a small amount of
exposed granite.

However, a medium-high resistivity anomaly background was also observed on the
middle-deep part of the profile. Five low resistivity anomaly zones which dip steeply
toward the north in the background were identified and numbered from south to north as
F1–F5. The centers of low resistance anomalies are located at 60 m, 260 m, 280 m, 370 m,
and 760 m, respectively. Based on the obtained results, it was inferred in this paper that the
high resistivity zone of the mid-deep part caused by the Early Paleozoic granite, and the
low resistivity anomaly is identified as the geophysical response of the low resistivity fault
zone in the granite.

According to previous geochemical surveys [40], typical pathfinder element associa-
tion (Ag-As-Sb-Pb) for gold ores [50] was indicated in the field, besides Au geochemical
anomalies. The Au anomaly extends about 210–580 m across the survey Line DDS1 (N-S
trending), including the F2–F4 fault zones. The width of the anomaly indicated by other
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elements is wider, roughly 80–760 m in survey Line DDS1, and includes F1 and F5 fault
zones. The presence and overlapping of the above-mentioned geochemical anomalies with
fault zones indicated by the AMT method provide promise for the existence of Au-bearing
ore zones. These, however, should be verified by drilling.

6. Conclusions

The following conclusions were reached in this paper:

(1) In the exploration work of this research, the EH4 conductivity image system success-
fully identified the differences in resistivity between the host rock and the ore bodies.
It is seen that the low resistivity anomaly zone in the AMT coincides with the known
ore body in shallow exploration adit. The AMT results show a good extension of the
known ore-controlling structures, which can reach a depth of 1000 m in the Xinping
mine section and the possible existence of ore-bearing structures in the Dongdaishan
mine section, which provides support for deep prospecting in this area.

(2) The survey results indicated that the AMT method is effective and feasible in detecting
the distribution of deep rock masses and strata in the Jianbeigou gold deposit in the
Qinling metallogenic belt, China. The EH4 conductivity image system is an effective
geophysical tool for detecting concealed metal deposits. It can provide basic geological
information for deep resource exploration. This method can be used as an available
exploration technology for deep prospecting in similar areas.
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