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Abstract: Mechanical activation as a means of accelerating the mineral dissolution may play an
important role in chalcopyrite bioleaching. In the present work, the mechanical activation by
ball-milling with 10 min, 30 min, 60 min, 90 min, 120 min and 180 min time periods of bioleaching
of chalcopyrite was studied, and then evaluated by a Density Functional Theory (DFT) calculation.
The results showed that the specific surface area increased sharply in the very beginning of mechanical
activation and then increased slowly until the agglomeration of the particles occurred, while the
chalcopyrite lattices increased with the mechanical activation. The reaction activity analyzed by cyclic
voltammetry (CV) increased slowly in 30 min, increased quickly in the following 90 min, and then
decreased, while the hydrophobicity analyzed by contact angles of the chalcopyrite after activation
showed less of a change. The results showed that after 15 days of bioleaching, the Cu leaching
by Sulfobacillus thermosulfidooxidans (S. thermosulfidooxidans) increased from 9.39% in the 0 min of
mechanical activation to 87.41% in the 120 min of mechanical activation, and the copper leaching rate
increased by about 78%. The DFT results provide solid proof that the activated chalcopyrite can be
adsorbed more easily by cells with higher adsorption energies and stronger bonds.
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1. Introduction

Chalcopyrite (CuFeS2), an abundant copper mineral, accounts for almost 70% of the copper
resources and is a strategic nonferrous metal resource to be further developed [1–3]. In nature,
chalcopyrite is associated with complex and low-grade ores that cannot be extracted by traditional
pyrometallurgy, a process of metallurgy at high temperatures [4]. Bioleaching, a process that utilizes
microorganisms for recovering value-added metals from minerals at low temperatures [5], can extract Cu
from low-grade chalcopyrite in a cost-effective and eco-friendly manner [5–9]. However, the bioleaching
rate of chalcopyrite is low because of the high lattice energy of chalcopyrite [10], which makes it difficult
for chalcopyrite to be oxidized by bacteria during bioleaching. Therefore, finding an effective method
to destroy the lattice and promote the bioleaching rate of chalcopyrite would be of great significance.
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Mechanical activation by means of grinding minerals with different size balls is a method to
destruct the structure of solid substances [11], and thus accelerate the dissolution of minerals [12].
The use of mechanical activation can enhance the hydrometallurgical processes [13]. It is known
that mechanical activation by grinding may not only reduce the particle size, and thus significantly
increase the specific surface area of the material, but also may change the lattice parameter and cause
crystal structure distortion [12,14–16]. It is important to note that mechanical activation can destroy the
passivation layer on the minerals’ surface and lower the activation energy; thus, it promotes the leaching
rate of minerals [17]. Tan Q et al., [18] found that mechanical activation could largely increase the Tb
leaching rate with an evident increase in the apparent reaction rate (kap) of leaching; Xu Y et al. [19]
reported that mechanical activation pretreatment of boron concentrate notably improved the leaching
rate of B2O3; and Zhao Z et al. [16] found that the mechanical activation highly improved the activity of
pyrrhotite and remarkably accelerated the leaching rate. There are some studies [15,20–22] focused on
mechanical activation for chalcopyrite chemical leaching, but few studies for chalcopyrite bioleaching.

In this study, the effect and the mechanism of mechanical activation by ball-milling of bioleaching of
chalcopyrite are investigated. The interactions between the functional groups of cells and chalcopyrite
are also elucidated by Density Functional Theory (DFT), a useful method to unravel the interactions
between the small molecules and material surfaces [23–28]. Extracellular polymeric substances (EPS)
are generally very important in bacterial adhesion processes [29,30], and glucose is a major sugar
component in EPS for the bioleaching bacteria [30–34]. Therefore, we utilize glucose to simulate the
interactions by DFT. Overall, this study may help us to find an effective pre-treatment to improve the
bioleaching rate of chalcopyrite and understand the mechanism therein.

2. Materials and Methods

2.1. Strain and Culture Medium

The bacteria, Sulfobacillus thermosulfidooxidans YN22 (S. thermosulfidooxidans) comes from the School
of Minerals Processing and Bioengineering. The basal medium (9K) for the experiments consisted of
the following components: (NH4)2SO4 (3.00 g/L), K2HPO4 (0.50 g/L), KCl (0.10 g/L), MgSO4·7H2O
(0.50 g/L), Ca (NO3)2 (0.01 g/L).

2.2. Mechanical Activation

The chalcopyrite concentrate was bought from MingfaYe’s mineral museum in Guangzhou City,
Guangdong Province, China. Chemical analysis shows that the chalcopyrite sample contained (w/w)
35.8% Cu, 31.0% Fe, 29.3% S. The X-ray diffraction spectra (XRD, see in Figure 2b) results show that the
chalcopyrite sample is pure.

The size fraction of the chalcopyrite particles was 200 to 400 mesh (38–74 µm) after crushing and
sieving. Then, the chalcopyrite sample was mechanically activated in a planetary ball mill (UBE-V
0.4 L, DECO, ChangSha, China) loaded with 15 stainless steel balls of 20 mm diameter and milling
with a ball to powder mass ratio of 20:1 at a rotation speed of 450 r/min for 10 min, 30 min, 60 min,
90 min, 120 min and 180 min, respectively [22].

2.3. Characterization of the Structure and Properties of Chalcopyrite

The particle size distribution of chalcopyrite sample in pure water before and after mechanical
activation was analyzed by using a laser particle sizer (Mastersizer 2000, Malvern, UK) to get the mean
particle diameter and specific surface area. The change in the lattices and structure with activation
time was measured by XRD (PANalytical, Eindhoven, The Netherlands), and the data were analyzed
by JADE 5.0 software. The change in morphology with activation time was analyzed by using a FEI
Nano230 scanning electron microscope (SEM) (Nova™ NanoSEM 230, FEI, Hillsboro, OR, USA) at
30 kV. The contact angles with activation time were analyzed by using the JJC-I wetting angle measuring
instrument (Changchun Optics Factory, Changchun, China) to get the change in hydrophobicity.
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The cyclic voltammetry (CV) was performed in 9K medium (pH 2.0) in an electrochemical
working station (INTERFACE 1010E, Gamry, Princeton, NJ, USA), loaded with a tri-electrode system:
chalcopyrite slice as the working electrode, Ag/AgCl as the reference electrode, and carbon rods as the
counter electrode. Before the CV was performed, 1.05 g chalcopyrite sample was mixed with 0.3 g
graphite and 0.15 g solid paraffin, and then compressed at 120 kPa for 10 min. The forward CV was
scanned from −1.0 V to +1.0 V, and the reverse CV from +1.0 V to −1.0 V at a scan rate of 20 mV/s.
Both the forward CV and reverse CV scans began at the open circuit potential (OCP).

2.4. Bioleaching Experiments

The chalcopyrite samples with different mechanical activation times of 0–180 min were used as the
energy substrate for bioleaching experiments with a pulp density of 1% (w/v) and 200 µL yeast (10%)
was added as the energy source. All of the leaching experiments were performed in 250 mL Erlenmeyer
flasks containing 100 mL of sterilized 9K medium, which was adjusted to pH 2.0 by sulfuric acid.
The inoculation concentration was 4 × 107 mL−1, and the bacteria were incubated in a rotary shaker at
170 rpm and 45 ◦C. The relevant bioleaching parameters (cell concentration, pH, ORP, [Cu2+], [Fe3+],
total [Fe] and adsorption curve) were determined. All of the experiments were performed in triplicate.

The cell concentration was determined by a microscope (Olympus CX31) with bacteria counting
chamber, the pH was determined by a pH meter (PHS-3C), and the redox potential was measured by a
platinum (Pt) electrode (Ag0/AgCl reference). After diluting the leaching solution with pH 2.0 ultrapure
water, the [Cu2+] was determined by inductively coupled plasma-optical emission spectroscopy
(ICP-OES) (SPECTROBLUE FMX26, Philadelphia, PA, USA), while [Fe3+] and total [Fe] were determined
by 5-sulfosalicylic acid spectrophotometry [35]. The adsorption quantity of S. thermosulfidooxidans on
chalcopyrite was calculated from the difference in cell concentrations in suspension before and after
adsorption with the initial inoculation amount of 109/mL.

2.5. Computational Details

The crystal structure of chalcopyrite is shown in Figure 1, which belongs to the space group
I-42D [36]. All of the DFT calculations were performed by using CASTEP and GGA-PBE. Only the
valence electrons were considered explicitly by using ultrashort pseudopotentials [37]. Based on
the results of convergence test, the cut-off energy of 450 eV and k-points of 2 × 2 × 1 were used
for all of the calculations. After getting the S-terminal chalcopyrite (0 0 1) surface, the most stable
surface of chalcopyrite [38,39], a 2 × 2 × 1 supercell was built with a vacuum slab of 15 Å [40].
In all of the slab calculations, the top three surface layers of S-Fe(Cu)-S were allowed to relax
while the other layers remained fixed at positions consistent with bulk chalcopyrite. Glucose was
placed inside a 15 × 15 × 15 Å slab for optimization. The convergence tolerances were set to the
maximum displacement of 0.002 Å; the maximum force of 0.08 eV/Å, the maximum energy change of
2.0 × 10−5 eV/atom and the maximum stress of 0.1 GPa, while the SCF convergence tolerance was set
to 2.0 × 10−6 eV/atom. Spin polarized was considered for all of the calculations.Minerals 2020, 10, x FOR PEER REVIEW 4 of 16 
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Figure 1. Unit cell of chalcopyrite. Red represents Cu atom, blue represents Fe atom, and yellow
represents S atom.
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The adsorption energies (Eads) of the adsorbate, glucose, and on the chalcopyrite (0 0 1) surface
can be determined using the following equation:

Eads = E(chalcopyrite-glucose) − (Echalcopyrite + Eglucose)

where Echalcopyrite, Eglucose, and E(chalcopyrite-glucose) represent the total energies for the chalcopyrite
(0 0 1) surface, glucose, and the chalcopyrite-glucose system, respectively.

3. Results and Discussion

3.1. Structure and Properties of Chalcopyrite

3.1.1. Mean Diameter, Specific Surface Area and X-ray Diffraction Analysis

The change in mean diameter (Figure 2a) shows that during the grinding process, the mean
diameter of chalcopyrite decreases sharply with ball-milling in 10 min, followed by a gradual decrease
until 180 min, when a slight increase occurs due to the agglomeration of the particles [16]. The change
in specific surface area (Figure 2a) is contrary to that observed for the mean diameter.

The XRD results (Figure 2b,c) show that during the mechanical activation process, there are no
changes in 2θ angles of the peaks, indicating that no new substances are formed. Moreover, the strength
of the diffraction peaks gradually decreases and widens, which may be due to the destruction of
the chalcopyrite crystal structure into an unfixed structure [11,15]. Figure 2c further shows that the
lattice parameter increases rapidly with ball-milling in 30 min, followed by a slow increase (from
30 min to 120 min), and then stabilizes at a constant value (from 120 min to 180 min). These results
indicate that during the mechanical activation process, defects on the chalcopyrite surface occurred [22].
This finding is the basis used for building the chalcopyrite surface models in the DFT calculations.
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3.1.2. Morphological Analysis

The SEM results (Figure 3) show that the activated chalcopyrite particle sizes gradually decrease
with the surface becoming rough in comparison with that of the unactivated chalcopyrite. During the
grinding process, the chalcopyrite particles size decrease until 180 min, when a slight increase occurs
due to the agglomeration of the particles. This result is consistent with that of the mean diameter
analysis (Figure 2a).
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Figure 3. SEM micrographs of chalcopyrite ground for 0 min (unactivated) (a), 10 min (b), 30 min (c),
60 min (d), 90 min (e), 120 min (f), and 180 min (g).

3.1.3. Surface Hydrophobicity and Redox Properties

Table 1 shows that the contact angle obtained by droplet contact angle measurement does not
change significantly at different activation times, indicating that the mechanical activation does not
change the chalcopyrite surface hydrophobicity.

Table 1. Contact angle under different ball grinding time.

Grinding Time (min) Contact Angle (◦)

0 107.2
10 111.7
30 112.4
60 111.9
90 112.0

120 114.5
180 110.8

The surface redox properties measured by CV (Figure 4a,b) show that during the grinding process,
the current of chalcopyrite increases slowly with ball-milling in 30 min, followed by a rapid increase
until 120 min, when a sharp decrease occurs due to the agglomeration of chalcopyrite. This indicates
that the reaction activity increases slowly in 30 min, then increases rapidly in the following 90 min,
and decreases after that. The anodic peak a in the range of 200 mV to 400 mV can be assigned to copper
oxidation [41]. In addition, peak b in the range of 600 mV to 800 mV to the formation of covellite [10,42].
The cathodic peak c (200 mV to 400 mV) can be associated with the reduction of covellite forms during
the oxidation [41,43], and peaks d, e (−700 mV to 0 mV) to the reduction of bornite or covellite and
copper(I) to metallic copper [44,45], respectively. These results indicate that mechanical activation can
promote the surface redox, and thus accelerate the dissolution of chalcopyrite, which may function in
reducing the passivation of the secondary products during the bioleaching [46].
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3.2. Bioleaching Behavior

The bioleaching behavior is characterized by redox potential values, pH values, cell densities,
bacterial adsorption, [Fe3+], total [Fe] and [Cu2+] in Figure 5.
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Figure 5a shows that the redox potential of the activated chalcopyrite increases faster in the early
stage of bioleaching and has higher values compared to the unactivated chalcopyrite. Under 500 mV,
the chalcopyrite dissolves more significantly, which may be due to the bacteria being in the logarithmic
growth period and accelerating dissolution.

Figure 5b shows a two-stage of changes in pH for the activated chalcopyrite: The faster increase
caused higher values in the early stage (before 2 days), and then the faster decrease caused lower
values while the unactivated chalcopyrite only shows a gradual decrease in pH values during the
all-bioleaching period.

The changes in cell densities (Figure 5c) show that in comparison with the unactivated chalcopyrite,
the cell densities for the activated chalcopyrite are significantly higher. It is important to note that
the highest increase occurs for the activation at 30 min and a longer time activation does not lead to a
further increase of cell densities in solution. This may be due to the adsorption of more cells to the
chalcopyrite surface [47], and it is demonstrated by the adsorption curves of S. thermosulfidooxidans
(Figure 5d), which shows increase in adsorption capacity of cells with the activation time due to the
larger specific surface area and lattice defects of chalcopyrite.

Figure 5e,f shows that the [Fe3+] and total [Fe] for activated chalcopyrite increase faster causing
higher values when compared with that of unactivated chalcopyrite, suggesting that mechanical
activation can improve the bioleaching of the chalcopyrite, as verified by the changes in [Cu2+] in
Figure 5g.

Figure 5g shows that during the bioleaching process, the [Cu2+] for the activated chalcopyrite
increases with ball-milling in 120 min, followed by slight decrease until 180 min due to the agglomeration
of the particles [15,48]. After 15 days bioleaching, the [Cu2+] increased from 9.39% in the 0 min of
mechanical activation to 87.41% in the 120 min of mechanical activation, and the copper leaching
rate increased by about 78%. These results show that the optimal activation time is 120 min in this
experiment, which is consistent with the mean diameter (Figure 2a) result.

All of the experimental results above indicate that the mechanical activation can significantly
promote the leaching of chalcopyrite because of the smaller mean diameter, the larger specific surface
area, the higher surface activities and the lattice defects. In order to demonstrate the effect of surface
defects, we controlled the same surface area to do the CV, adsorption of bacterial cells and Cu dissolution
experiment (an additional and independent experiment), and the results seen in Figures S1 and S2
in Supplementary Materials, according to which we can conclude that after mechanical activation,
the bacteria cells are more likely to adhere to chalcopyrite surfaces due to the defects on this surface.
Therefore, we use DFT calculations to explore the adsorption mechanism of bacteria in the next step.
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3.3. Computational Results

3.3.1. Bulk Chalcopyrite Calculation

In order to validate the calculation methodology, the chalcopyrite bulk parameters were first
calculated, and then compared with the experimental parameters [36]. The results (Table 2) show that
the calculation results adhere to the previous experimental data and the XRD results, indicating that
the calculation methods can provide reliable results for chalcopyrite.

Table 2. Optimized lattice parameters (in Å) of bulk chalcopyrite.

a = b c

5.289 10.423 Experiment
5.275 10.393 XRD
5.311 10.417 Calculation

3.3.2. Chalcopyrite (0 0 1) Surface

The configurations of the perfect and surface-defect chalcopyrite (0 0 1) surfaces (Figure 6) show
that after S2 or Cu3 defecting, the configuration of chalcopyrite (0 0 1) surface has changed less than
that when Fe1 defects. For the surface Mulliken charges (Table 3), the charge of S2 atom on the defect
surface increases in comparison with the perfect surface, while the charge of Fe1 and Cu3 atom on
the defect surface decrease, indicating that after defecting, S atom loses electrons and Fe or Cu atom
get electrons.
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Table 3. Surface charge comparison.

Optimized Configuration Charge of S2 Charge of Fe1 Charge of Cu3

Perfect surface −0.250 0.390 0.350
S-defect surface - 0.330 0.320

Fe-defect surface −0.180 - 0.330
Cu-defect surface −0.170 0.190 -

3.3.3. Bond Length and Mulliken Bond Population of the Glucose Adsorption on the Chalcopyrite
(0 0 1) Surface

The optimized glucose adsorption configurations (Figure 7) and bond lengths (Table 4) show that
when a single hydroxyl of glucose adsorbs on the Fe, S, or Cu site, the chalcopyrite (0 0 1) surface
configurations change less, while on the S, Fe, or Cu defect site, the chalcopyrite (0 0 1) surface
configurations noticeably change. The corresponding bond lengths (Å) are 3.233 (a, O-Fe), 2.738
(b, O-S), 3.118 (c, O-Cu), 2.714 (d, O-Cu), 3.312 (e, O-S2), and 2.983 (f, O-Fe1). For the adsorption of
polyhydroxyl of glucose (Figure 7g–k), the chalcopyrite (0 0 1) surface configurations change more,
and the corresponding bond lengths (Å) are 3.080 (g, O-S1), 2.675 (h, O-Cu2), 2.032 (i, O-Cu1), 2.343
(j, O-Cu1), and 3.337 (O-S8). The configurations and the bond lengths indicate that the defect of the
chalcopyrite (0 0 1) surface is the glucose preferred adsorption site through chemical or the physical
adsorption than the perfect surface, in another word, the defect surface is in favor of the bacteria cells
adsorption, which is consistent with the experiment results above. In addition, from the bond length,
it can be concluded that the polyhydroxyl of glucose adsorbs easier than the single hydroxyl.

Table 4 also shows the Mulliken bond population of these configurations, which can give the
character and the strength of the bonds between atoms. Notably, a higher bond population value
represents a stronger covalent interaction; on the contrary, a smaller bond population value represents
a stronger ionic bond [27,49]. As seen in Table 4, when single hydroxyl of glucose adsorbs on the defect
sites of chalcopyrite (0 0 1) surface, the value of the population is 0.09 (d, O-Cu1; f, O-Fe1), while for the
S site, the value is negative (−0.05). which indicates an anti-bonding [50] and an unstable chemical bond.
For the Fe site and the Cu site, the bond lengths are too large to calculate the populations; when the
polyhydroxyl of glucose adsorbs on the hollow site and the defect site, the values of the populations
are 0.07 (h, O-Cu2), 0.25 (i, O-Cu1), and 0.19 (j, O-Cu1). Notably, the interaction in configuration I
tends to be a covalent bonding, while the interactions in configuration h tend to be ionic bonding
compared with the other interactions. From the analysis above, it can be deduced that the glucose in
configurations b, d, f, h, j adsorbs on the surface both chemically and physically, while glucose in the
other configurations physically adsorbs on the surface because the distance between the glucose and
the surface is too far to form a chemical bond.
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Table 4. Bond Lengths and Mulliken bond populations.

Optimized Configuration Bond Bond Lengths(Å) Populations

a O-Fe1 3.233 -
b O-S2 2.738 −0.05
c O-Cu3 3.188 -
d O-Cu1 2.714 0.09
e O-S2 3.312 -
f O-Fe1 2.983 0.09
g O-S1 3.080 -
h O-Cu2 2.675 0.07
i O-Cu1 2.032 0.25
j O-Cu1 2.343 0.19
k O-S8 3.337 -

3.3.4. Adsorption Energies

The adsorption energies of glucose on the chalcopyrite (0 0 1) surface (Table 5) show that all
of the adsorption energy values are negative, indicating that adsorption is exothermic. Notably,
the adsorption energies of polyhydroxyl of glucose are higher than that of the single hydroxyl of
glucose. For both cases of the single hydroxyl and polyhydroxyl of glucose adsorption, the adsorption
energies values of the defect surfaces are larger than that of the perfect surfaces, indicating that the
defect sites occurring on the (0 0 1) surface are in favor of glucose adsorption, agreeing with the results
above. When glucose adsorbs on Fe defect site, the adsorption energies are −1.23 eV for single hydroxyl
adsorption and −1.76 eV for polyhydroxyl adsorption, larger (absolute value) than that of the others,
indicating that the Fe defect chalcopyrite (0 0 1) surface may be the most thermodynamically preferred
for glucose [51].
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Table 5. Adsorption energies of glucose on the chalcopyrite (0 0 1) surface.

Optimized Configuration Ead (eV)

a −0.34
b −0.13
c −0.23
d −0.96
e −1.23
f −1.06
g −0.98
h −0.71
i −1.58
j −1.76
k −1.42

“−” represents exothermic reaction.

3.3.5. PDOS of the Interaction between Glucose and Chalcopyrite (0 0 1) Surface

To further understand the interactions between the glucose and chalcopyrite (0 0 1) surface in
detail, the projected density of states (PDOS) is investigated. In this research, only the configurations d,
f, h, i, and j are analyzed since other configurations cannot form stable chemical bonds according to the
analysis above. Figure 8a,c,e,g,i shows the PDOS of the Cu or Fe atom and O atom before adsorption
in the configurations d, f, h, i, and j, while Figure 8b,d,f,h,j shows PDOS after adsorption, respectively.
The EF value, representing the position of Fermi level, is 0 eV. Comparing the PDOS before and after
adsorption, it is conspicuous that the PDOS changes, which means that there are interactions occurring
between glucose and chalcopyrite (0 0 1) surface after adsorption. Moreover, the overlap areas at −10
to 0 eV in Figure 8h is larger than that of the others, indicating that the O-Cu1 bond in configuration i
tends to be the most covalent [52].
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4. Conclusions

In this work, the mechanical activation contributed to bioleaching process of chalcopyrite was
investigated, and the results can be concluded as follows: (1) The structure of chalcopyrite changes
significantly in 30 min of mechanical activation; the surface hydrophobicity does not change but the
surface redox activities are clearly promoted during mechanical activation; (2) The copper leaching
increases after mechanical activation due to smaller sizes of particles, lattice expansion, surface defects
and higher surface activities of the activated chalcopyrite. (3) The DFT results show that the activated
chalcopyrite has the advantages of larger adsorption energy and stronger bond, and thereby, an easier
adsorption by cells.

In the mining industry, due to the mechanical activation process being energy-consuming,
the smaller particle size represents higher costs; thus, a possible solution is to find an optimal activation
time that is profitable and can improve its economic sustainability. Furthermore, the industrial
application of low-grade chalcopyrite bioleaching is limited due to its long cycle and low leaching rate.
In our work, the chalcopyrite bioleaching cycle is shortened by using mechanical activation while the
Cu leaching rate is improved, which provides a treatment option for its industrial application.
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different time.
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