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Abstract: This study was carried out in Złoty Stok, a historical centre of gold and arsenic mining.
Two kinds of soil material, containing 5020 and 8000 mg/kg As, represented a floodplain meadow
flooded in the past by tailings spills and a dry meadow developed on the plateau built of pure
tailings, respectively. The effects of soil treatment with a cattle manure and mineral fertilizers were
examined in an incubation experiment. Soil pore water was collected after 2, 7, 21, 90, and 270 days,
using MacroRhizon samplers and analyzed on As concentrations and toxicity, and assessed in three
bioassays: Microtox, the Microbial Assay for Risk Assessment (MARA), and Phytotox, with Sinapis alba
as a test plant. In all samples, As concentrations were above 4.5 mg/L. Fertilization with manure
caused an intensive release of As, and its concentration in pore water of floodplain soil reached
81.8 mg/L. Mineral fertilization caused a release of As only from the pure tailings soil. The results of
bioassays, particularly of Phytotox and MARA, correlated well with As concentrations, while Microtox
indices depended additionally on other factors. Very high toxicity was associated with As > 20 mg/L.
Despite an effect of “aging”, pore water As remained at the level of several mg/L, causing a potential
environmental risk.

Keywords: mining; arsenic; tailings; Złoty Stok; MacroRhizon; fertilization; manure; Microtox;
MARA; Phytotox

1. Introduction

A historical mining and ore processing complex in Złoty Stok (formerly Reichenstein), situated
at the foothill of Złote mountain range, for over two centuries, until 1962, was one of the largest
producers of arsenic in Europe [1,2]. Old type facilities used for ore enrichment were modernized
in the years 1930–1937 to apply an efficient flotation technology. The concentrates produced in the
flotation process contained ca. 40% of As in mass, while As concentrations in tailings, disposed
in the impoundments, were initially in the range 1.5–2.5%, and later, after the next improvement
of technology, in the range 0.8–1.5%. After stormy rainfall events, relatively frequent in that area,
tailings overflew the dams and were disposed in the valley of a stream Trująca, causing a considerable
soil enrichment in arsenic within a distance of at least 2 km down the stream. The valley has been
partly forested, but its large parts are abandoned or used as grasslands, and recently also as recreational
areas. Some grasslands, situated within a floodplain of the stream, can be classified as fresh meadows.
An almost 2 ha large area of the valley, at the foreland of tailings impoundments, is covered by a thick
layer of pure tailings that form a plateau, with the surface elevated by 2–3 m over the neighboring
terrain [1,3]. This area is covered by grassy vegetation, and can be classified as a dry meadow. Soils of
both meadows were previously the targets of research that examined a spatial distribution of As and
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its extractability [1]. Those works indicated that large areas are covered by soils with very high As
content, of several thousand mg/kg. Despite such high total As concentrations in soils, its solubility
and ammonium-sulphate extractability was in general very low owing to particularly strong binding
of this metalloid by iron oxyhydroxides [4,5]. It was proved, however, that negatively charged
particles present in soil pore water at high concentrations, in particular phosphates or dissolved
organic compounds, under oxidized conditions, can cause desorption of arsenates from the solid
phase. Numerous studies reported a release of As from soils upon treatment with phosphates [6–8].
Such effects were also described for soils of the Trująca stream valley [9]. Similarly, there is evidence
that organic matter, particularly its easy soluble fractions, can act as the factors of temporary As release
into pore water [4,10,11]. Such effects were reported from the field and laboratory experiments that
examined As solubility and bioavailability in soils polluted with As and fertilized with pig slurry or
manure [11,12], sewage sludge [13], or various organic waste materials [14]. It has also been proven
that decomposition of forest litter can act as a trigger for mobilization of As from highly enriched
mine soils [15]. A mechanism of As release from phosphate- and organic matter-treated soils is mainly
based on anionic competition for sorption sites on iron (oxy)hydroxides. That effect can be accelerated
under flooded conditions, both via reductive dissolution of iron oxyhydroxides and owing to microbial
transformations [4,14,16]. The increase in As concentrations in pore water may not be necessarily
associated with an increased uptake of As by plants [6,9,17,18], as the phytoavailability of As in soils
depends on various factors, including the relationships between As and P concentrations in pore water,
and the net effects of As and P competition for their uptake by plant roots [8,19].

Similarly, the reactions of microbes and other biota that live in soils to high As concentrations in
soil solution are in fact very difficult to predict. Various authors proved that chemical extractability of
As and other potentially toxic elements present in soils can only party explain their real bioavailability
and toxicity [7,20]. Arsenic ecotoxicity depends on numerous factors, including its speciation in
pore water, oxidation state As (III) versus As (V), water pH, co-existing components, and their
concentrations [4,21,22]. In order to assess the environmental risk associated with the presence of
toxic elements in real soil systems, it is necessary to examine both soil chemistry and the effects posed
to biota.

Ecotoxicological examination of environmental samples should thus be an important complement
to chemical analysis in a comprehensive assessment of environmental risk [23]. Numerous assays,
which use various groups of biota, representative of different food chain levels, have been adopted
as ISO or OECD norms [24–26]. Several bioassays are now available as easy in maintenance and
standarizable commercial products, and have gained increasing acceptance and popularity. They are
now commonly used in environmental research, particularly in the analysis of acute toxicity, determined
usually in the first step of tiered environmental risk assessment procedures. Bacterial bioassays
are used particularly extensively for the assessment of acute toxicity as they are rapid, simple,
and highly reproducible [27,28]. A worldwide used Microtox® toxicity test is based on the inhibition
of bioluminescence produced by bacteria Vibrio fischeri (reclassified recently as Allivibrio fischeri) when
exposed to toxic compounds present in water [28–30]. It can be applied for the risk assessment
associated with rock, soil, and water pollution in metal ore mining sites. A suitability of this test for the
assessment of As toxicity in environmental samples has already been confirmed; however, the reactions
of A. fischeri to different As species, that is, As (III) versus As(V), proved to be strongly dependent
on water pH [21,22,28,31]. Among the bacterial assays, a test MARA (the Microbial Assay for Risk
Assessment), designed particularly for the examination of pharmaceuthicals and biocides, has also
gained a common acceptance in environmental research [32,33]. The MARA is a multispecies assay
based on the measurement of dehydrogenase activity, visualized by a reduction of tetrazolium red.
The set of diverse microbial strains involves ten species of bacteria and additionally one species of
yeast [34]. Among the acute and subchronic toxicity tests, there are a few plant-based assays. The most
commonly used one is a Phytotox assay that measures a decrease in seed germination and the inhibition
of root elongation of plant seedlings supplied with contaminated water or exposed to contaminated
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soil compared with the control based on pure water [35–37]. The test was recommended as a good
tool for screening the environmental risk caused by metals and metalloids, including As, in mine
sites [31,35].

Toxicological bioassays provide much more reliable information on the effects exerted by
environmental pollution on biota than the data on soil chemistry alone, as they are based on reactions
of living organisms to the complex sets of factors that can act synergistically or antagonistically.
For instance, soil fertilization causes the better supply of all biota with nutrients, apart from a possible
release of As into soil pore water. The reactions of biota to those co-concurring factors are highly
site-specific, and thus have not been well recognized yet. It should be stressed that fertilization is
particularly needed in the case of poor soils, such as those that developed on tailings. This study was
aimed to determine the ecotoxicological effects caused by mineral and organic fertilization of two
kinds of soils strongly enriched in As. The analysis was based on the results of three commercially
available bioassays related to the data illustrating pore water chemical composition, in particular the
concentrations of As.

2. Materials and Methods

2.1. Experimental Design

A representative soil material was collected from two meadows: (1) a fresh hay meadow, frequently
flooded in the past with As-rich tailings, after which soils were mixed with tailings by plowing; and (2) a
dry one, situated on a 2–3 m elevated plateau, built of almost pure tailings (Figure 1).
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Figure 1. Location of the sites 1 and 2 under study. 1—Lowland hay meadow flooded by tailings.
2—Dry grassland on the plateau built of tailings. TI 1, TI 2, TI 3—tailings impoundments No 1, 2, 3,
respectively. Błotnica—the name of a nearby village.

The material was crushed and sieved to <5 mm on site, and then transported to the laboratory,
air-dried, and homogenized. A 270-day incubation experiment was carried out in 1 kg pots filled with
untreated soils (0) or soils fertilized with inorganic fertilizers (F) or with a granulated cattle manure
(M). Soil moisture was maintained at 70% of water holding capacity. Soil pore water was acquired after
2, 7, 21, 90, and 270 days of incubation, using MacroRhizon porous suction samplers, as described in
previous papers [31,37]. Collected pore water samples were filtered (0.45 µm), examined on chemical
properties (pH and As concentrations), and subjected to ecotoxicological assays. The experiment
was carried out in three replicates. The data presented in diagrams illustrate the mean values and
confidence intervals at p = 0.95.
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2.2. Soil Properties

Basic soil properties were determined using representative aliquots of soils. Their texture was
determined by a combined sieve and hydrometer method, and chemical analyses were performed with
commonly used methods [38] after soil grinding to a fine powder (Table 1). Soil pH was measured in
a suspension in 1 M KCl (1:2.5; v/v). Organic carbon (Corg) and carbonates were determined using
CS-MAT 5500 analyzer (Strohlein), and dissolved organic carbon (DOC), extracted in cold and hot
water [39], was measured on a TOC 5000 Shimadzu instrument. Total concentrations of metal(loid)s
were determined after soil digestion with aqua regia in a microwave system. The concentrations of As,
Cd, Cr, Cu, Mn, Ni, Pb and Zn in the digests were determined by ICP-AES (iCAP 7400, Thermo Fisher
Scientific, Waltham, MA, USA). All analyses were made in triplicates. The accuracy of the results
was checked with certified reference materials CRM 027 and CRM 059 supplied by Sigma-Aldrich.
The mean recovery of As in CRMs was 98.3%, and 97.8%, respectively.

Table 1. Basic soil properties.

Site No 1 2

Site description, settings

Fresh meadow (4 ha) within the floodplain of the
Trująca river, frequently flooded in the past by

stormwater mixed with tailings
(the distance from tailings impoundments: 0.2–1.0 km)

Foreland of tailings
impoundment, an

elevated plateau (1.6 ha)
built of tailings

Skeleton (>2 mm) % 21 0
<0.002 mm % 6 3

Textural group * (USDA) - SL LS

Soil properties
(fine soil)

Corg g/kg 24.5 5.5
N total g/kg 3.09 0.38

C:N - 7.9 14.5
pH (1M KCl) - 6.32 7.60

CaCO3 % absent 2.1
As total mg/kg 5020 8000

1M NH4NO3
-extractable As mg/kg 7.3 12.9

0.43 M HNO3
-extractable As mg/kg 2720 5310

“Available”
P mg/kg 242 (very high) 194 (very high)
K mg/kg 72 (low) 131 (medium)

Mg mg/kg 245 (very high) 76 (high)

Note: *—Textural groups according to soil particle size classification developed by the U.S. Department of Agriculture
(USDA): SL—sandy loam, LS—loamy sand.

2.3. Fertilizers

Soil mineral fertilization (F) involved the application of soluble salts that contained macronutrients
N, P, K, and Mg, at the amounts that corresponded to fertilization rates of 60, 60, 100, and 18 kg/ha,
respectively (Table S1). In particular, the dose of P applied to soils in a soluble form was 50 mg/kg
P. Granulated cattle manure (M) was applied at the rate 10 g/kg, corresponding to ca. 45 Mg/ha,
expressed as a fresh matter. The manure had a neutral reaction (pH 7.3) and its dry matter contained
360 g/kg Corg, of which 38.2 and 75.3 g/kg was determined as cold-water- and hot-water-soluble
Corg, respectively. Total concentrations of N, P, K, and Mg in manure dry matter were ca. 2, 4, 2,
and 1%, respectively, and the related fertilization rates were 90, 180, 90, and 45 kg/ha, respectively.
These amounts of nutrients were stepwise released from manure, thus they cannot be compared
directly with the rates of mineral fertilization. Arsenic concentration in the manure was 10.7 mg/kg.

2.4. Chemistry of Soil Pore Water

Chemical analysis of soil pore water, acquired during the incubation experiment,
involved potentiometrical determination of pH as well as the analysis of potentially toxic elements,
including As and the following metals: Cd, Cu, Mn, Pb, and Zn (by ICP-AES, iCAP 7400,
Thermo Scientific).
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2.5. Bioassays

Three bioassays, Microtox, MARA, and Phytotox, were applied to determine the ecotoxicity of pore
water. All the measurements were performed based on a screening-mode of the tests, which means that
undiluted pore water samples were analyzed directly after their collection. In parallel, the bioassays
were performed with control solutions of As(III) and As(V) at various concentrations, prepared freshly
of NaAsO2 and Na2HAsO4·7H2O. More detailed description of bioassays was provided in a previous
paper [31].

Briefly, a light output of the luminescent bacteria Allivibrio fischeri placed in soil pore water
samples was compared with blank control samples. Luminescence inhibition was assessed after 5
and 15 min of exposure with a “81.9% basic test protocol” and the toxicity was expressed as percent
effect (%). The measurements were carried out using a Microtox® M500 analyzer, and lyophilized
bacteria, reagents, and consumables, produced by SDIX, were purchased from Tigret (Warszawa,
Poland). All the measurements were performed in three replicates.

The Microbial Assay for Risk Assessment (MARA) was performed according to the standard
protocol described by Wadhia [34]. The inhibition of the growth was determined in microplates
for 11 lyophilized strains of microorganisms, that is, 10 species of bacteria and 1 yeast species: (11)
Pichia anomala. The intensity of tetrazolium red, an indicator of microbial activity, was measured based
on scanned images of microplates.

Subchronic phytoxicity of soil pore was determined using a Phytotoxkit assay, with Sinapis alba (L)
as a test species. The inhibition of root elongation was measured after a 3-day incubation at 25 ◦C,
in darkness, in comparison with the control based on pure water. Pictures of the test plates were taken
by a digital camera, and the length of plant roots was measured manually.

2.6. Statistics

The significance of differences between the treatments (0, F, M) and incubation periods (2, 7, 21, 90,
and 270 days) was assessed with Fisher’s least significant differences test (p < 0.05). Pearson correlation
coefficients were calculated to examine the relationships between the pore water concentrations of
elements and the results of bioassays. Where necessary, the data were normalized prior to analysis.
Principal component analysis (PCA) was performed in order to examine the distribution pattern of
results at a reduced number of variables. Only those principal components were considered that
contributed to a total variance more than 10%. Statistical analyses were performed using a software
Statistica, version 12.0 (Dell Inc., Round Rock, TX, USA).

3. Results

3.1. Soil Properties

Soils 1 and 2 used in the experiment contained As in very high concentrations of 5020 and
8000 mg/kg, respectively. They had a neutral (soil 1) and alkaline (soil 2) pH, and differed considerably
in other properties (Table 1). Soil 1 had a texture of sandy loam and contained a higher amount of
clay fraction (6%) compared with soil 2 (loamy sand, 3% clay). It was also much richer in organic
carbon (2.45% vs. 0.55%). Both soils were very rich in extractable, considered plant-available, P and
Mg, but unlike the soil 2, which was collected from the floodplain (soil 1), were relatively poor in
available K.

3.2. Pore Water Concentrations of As and Other Potentially Toxic Elements

The concentrations of As in pore water collected from various treatments during the experiment
were in the range of 4.5–81.8 mg/L (Figure 2), and were the highest within the first week of incubation.
Generally, the maximum As concentrations in pore water of soil 2 were found after 2 days, while in
the soil 1, they initially increased during the first week and reached the maximum after 7 days. Then,
As concentrations in pore water started to consistently decrease; however, after 270 days, they still
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remained two or three orders higher than 0.02 mg/L, a threshold value set by the Polish law for good
quality underground water.
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M—manure, F—mineral fertilization. The data are mean values of three replicates. Error bars stand for
confidence intervals, p = 0.95.

The concentrations of As in pore water of untreated soil 1 (1/0) were, particularly at the beginning
of incubation, much higher than those in pore water of untreated soil 2 (2/0), despite its lower total and
1M NH4NO3-extractable As, as well as lower pH value. The difference between the As level in two
untreated soils tended to decrease with time. We can hypothesize that the factor responsible for much
more intensive release of As from the solid phase of soil 1, the one that originated from the habitat of
a fresh lowland meadow, was its higher biological activity and more intensive processes of organic
matter transformation that started once soil became moistened. Discharge of mineral compounds,
including phosphates, as well as low molecular organic compounds, might have stimulated a release
of As from the solid phase. Soil treatment with manure (M) caused, in both soils, an intensive release
of As in the first week, and its concentrations in pore water remained significantly higher compared
with non-amended soils (0) until the end of the experiment. An extremely high As concentration in
pore water, 81.8 mg/L, was reported from M-treated soil 1 after the 7-day incubation. This value was
much higher than the concentrations of As in pore water of mine dumps [31]. The effects caused by
mineral fertilization (F) were ambiguous. Rather unexpectedly, As concentrations in pore water of
fertilized soil 1 at the beginning of incubation were significantly lower compared with 0 treatment,
whereas an opposite effect was observed in soil 2, in which the application of fertilizers caused a
considerable release of As into pore water, and its concentrations throughout the whole experiment
were significantly higher in F treatment than those in untreated soil.

The release of potentially toxic metals (Cd, Cu, Pb, Zn, Mn, Fe) into pore water was negligible,
and their concentrations remained below the threshold values of good quality underground water,
except for a temporally enhanced Mn level in soil pore water of manure-treated soil 1, which might
have been associated with a local drop in redox potential [31]. Pore water concentrations of both
Cd and Pb remained below detection limits of ICP-AES (0.005 and 0.008 mg/L, respectively) during
the whole incubation. Soil treatment with manure caused a detectable release of Cu into pore water,
likely owing to the formation of soluble organic complexes [37]. In all cases when the concentrations
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of Cu in pore water were measureable, they in fact remained very low, below 0.2 mg/L (Table S2).
An apparent decrease in concentrations of potentially toxic elements during a prolonged incubation
can be explained by an effect of their aging [37,40].

The mechanisms of As aging in soils were extensively reported in the literature, mainly based on
the experiments with spiked soil material. Wang et al. [41,42] proved that the content of amorphous
and free Fe oxides and soil pH were the main factors controlling the speed of As aging. The main
mechanisms of aging processes involve the formation of inner-sphere complexes with amorphous
and free Fe oxy-hydroxides through the ligand exchange to surface hydroxyl groups, diffusion within
micropores, or surface precipitates [41–43]. These processes depend on soil pH and redox conditions,
and run particularly quickly in oxidized acidic soils. Neutral pH of soils in this experiment should be
considered as a factor responsible for the long-lasting presence of relatively high As concentrations in
soil pore water.

3.3. Bioassays

The assessment of pore water ecotoxicity, determined with Microtox and Phytotox assays, proved
very strong adverse effects to both bacteria and germinating plants. These two assays indicated a
very high toxicity of all the samples of pore water examined in the experiment. At the beginning of
incubation, the toxicity of pore water in untreated soil 1 was much higher compared with that in soil
2, according to higher As concentrations. The results obtained with Microtox procedure after two
standardized times, 5′ and 15′, were highly correlated, with R = 0.988 (Table 2), which indicates that
the main factor of toxicity had an inorganic nature [24].

Table 2. Pearson correlation coefficients illustrating the relationships between As concentrations in soil
pore water and the results of ecotoxicity assays. MARA, the Microbial Assay for Risk Assessment.

Parameter Microtox 5′ Microtox 15′ Phytotox MARA, Toxicity MARA, Growth of Strain 11

As in soil pore water (mg/L) 0.593 0.632 0.716 0.719 −0.447
Microtox 5′ x 0.988 0.586 0.563 −0.484

Microtox 15′ x x 0.648 0.599 −0.522
Phytotox x x x 0.541 −0.552

MARA, toxicity x x x x −0.591

Soil toxicity assessed in the light of the Phytotox assay (considering both seed germination and root
elongation indices) reached 100% in all the samples with As concentrations above 20 mg/L (Figure 2).
This effect stays in agreement with our previous observations that As concentrations of 20 mg/L posed
a strong phytotoxic effect on the early growth of Sinapis alba [31]. It is also consistent with the results of
several other studies that found this level of As in aqueous solutions is strongly toxic to the majority of
aquatic and soil biota [4,28,44]. The relationships between As concentrations in pore water and its
toxicity determined by Microtox and Phytotox corresponded well with the curves obtained for pure
As(V) solutions (Figure 3). As stressed in the previous paper [31], the toxicity of pure As(V) solution
turned out to be higher than that of As(III), which may seem inconsistent with general knowledge on
As toxicity. In fact, similar observations were also described by Mamindy-Pajany [45], Rubinos [28],
and Fulladosa [21], who compared toxic effects of As(V) and As(III), and found their dependence on
pH and the ranges of concentrations.
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The indices of pore water toxicity, determined with the bioassay MARA, were in general much
lower than those measured with two other bioassays. In no cases were the indices of toxicity produced
by MARA higher than 50%, and they usually remained below 20% (Figure 2). Although being in
line with the results of Microtox and Phytotox, the toxicity indices produced by MARA were the
highest within the first week of incubation and tended to considerably decrease along with increasing
incubation time. Moreover, contrary to our previous study, a statistical analysis of all the results
indicated that the results of MARA correlated better with As concentrations in pore water than the
results of Microtox bioassay (Table 2). Basically, graphically illustrated relationships between all
the toxicity indices and As concentrations in pore water followed the standard curves obtained for
As(V), as shown in Figure 3. In the case of MARA, however, particularly within a range of higher
As concentrations, our experimental results were considerably lower compared with the standard
curve. Apparently, some protective effects caused by the components of pore water were involved that
reduced As toxicity to the strains of microbes used in the assay. At the scarcity of related bibliographic
data on this issue, a systematic series of experiments with standard As solutions amended with various
additives would be necessary to more closely determine those effects. Unlike in the study on mine
waste dump material [31], in the present research, the growth of a yeast strain Pichia anomala (No 11 in
the MARA assay) rather poorly corresponded with the curve obtained for the pure standard As (V)
(Figure 3), and a visible effect of Pichia anomala growth stimulation by pore water components occurred,
particularly at lower As concentrations. A closer analysis of this effect might be interesting, and should
be the matter of a separate study.

3.4. General Considerations

Pearson correlation coefficients R were calculated to illustrate the relationships between the
(normalized) results of all three toxicity tests—Microtox, Phytotox, and MARA—and As concentrations
in soil pore water. The relationships were significant at p < 0.001, and the R ranged from 0.541 to
0.719 (Table 2), which means that the results of ecotoxicity assays, with a probability of 29–52% (R2),
were determined by As pore water concentrations. In the case of Pichia anomalia, an absolute value
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of corresponding R was relatively low: 0.407. A principal component analysis (PCA) confirmed
close relationships between the indices of toxicity obtained in various assays and As concentrations.
A related graph (Figure 4) illustrates a particular interdependence between the result of MARA,
Phytotox, and As in pore water, which were similarly determined by two main principal components
1 (67.8%) and 2 (11.9%). The latter, in fact of relatively small importance, was apparently the factor
responsible for different responses of Microtox (both after 5 and 15 min) and two other assays to
the same level of As in pore water. It was probably a set of pore water components, including the
concentrations of phosphates and low weight organic compounds, which were not directly determined
in this study, that modified the toxicity of As. Rubinos et al. (2014) proved, for instance, that P presence
in water could protect aquatic microorganisms against As(V) toxicity. Similar conclusions were drawn
from the studies related to higher plants [3,6,9].
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In general, however, our experiment proved a very high ecotoxicity of soils developed of pure
tailings (soil 2), as well as those flooded by tailings and plowed thereafter (soil 1). A high concentration
of As in soil pore water was confirmed to be the main factor of toxicity to both bacteria and germinating
plants. The toxicity was particularly strong in the first week after soil treatment with manure or—in
the case of soil 2—also with inorganic fertilizers. This fact should be considered when planning
remediation measures for the areas affected by the tailings produced in the past by arsenic ore mining
in Złoty Stok.

4. Conclusions

Pore water of dry meadow soil, developed of almost pure tailings, contains high concentrations
of As that never drop below 4.5 mg/L. Fertilization of that soil, particularly with manure, as well as
mineral fertilization, causes an additional increase in As level in soil pore water.

Pore water in soil of lowland meadow, formerly flooded with tailings, contains even higher
concentrations of As and can be even more toxic compared with soil developed of tailings. Its toxicity
to bacteria and plant seedlings, particularly after soil treatment with manure, can increase to 100%.
The hypothesis that this effect may be caused by a higher biological activity of soil needs closer
examination when considering phytostabilization as a way of land remediation.

Very high phytotoxicity, above 80%, assessed by the Phytotox assay, occurs when pore water
concentrations of As exceed 20 mg/L. This level of As in soil pore water can also strongly inhibit the
activity of various bacteria strains.

In the absence of high concentrations of other toxic components in soil solutions, the results of all
bioassays, particularly those of Phytotox and MARA, correlate very well with the concentrations of As.
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The differences in toxicity between As(III) and As(V), which, in this study, were only partly in line
with common toxicological knowledge, indicate the importance of As speciation when determining
the risk associated with the presence of As in the environment.

An effect of As “aging” develops after long lasting soil incubation at moderate moisture (70%).
It should be stressed, however, that As concentrations in pore water of both soils examined remained
very high, at the level of several mg/L, which is much higher than that considered environmentally safe.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-163X/10/9/751/s1,
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