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Abstract: Ore hardness plays a critical role in comminution circuits. Ore hardness is
usually characterized at sample support in order to populate geometallurgical block models.
However, the required attributes are not always available and suffer for lack of temporal resolution.
We propose an operational relative-hardness definition and the use of real-time operational data
to train a Long Short-Term Memory, a deep neural network architecture, to forecast the upcoming
operational relative-hardness. We applied the proposed methodology on two SAG mill datasets, of one
year period each. Results show accuracies above 80% on both SAG mills at a short upcoming period
of times and around 1% of misclassifications between soft and hard characterization. The proposed
application can be extended to any crushing and grinding equipment to forecast categorical attributes
that are relevant to downstream processes.

Keywords: semi-autogenous grinding mill; operational hardness; energy consumption; mining; deep
learning; long short-term memory

1. Introduction

In mining operations, the primary energy consumer is the comminution system, responsible
for more than half of the entire mine consumption [1]. From all pieces of equipment that integrate
the comminution circuit, the semi-autogenous grinding mill (SAG) is perhaps the most important
in the system. With an aspect ratio of 2:1 (diameter to length), these mills combine impact, attrition
and abrasion to reduce the ore size. SAG mills are located at the beginning of the comminution
circuits, after a primary crushing stage. Although there are small SAG mills, their size usually ranges
from 9.8 × 4.3 to 12.8 × 7.6 m, with a nominal energy demand of 8.2 and 26 MW, respectively [2],
which make SAG mills the most relevant energy consumer within the concentrator. Modelling their
consumption behaviour supports the operational control and energy demand-side management [3].

Most theoretical and empirical models [4–6] demand input feed characteristics, such as
hardness, size distribution and inflow rate, SAG characteristics, such as sizing and product size
distribution, and operational variables such as bearing pressure, water addition and grinding charge
level. Although they are suitable to provide adequate design guidelines, they lack accurate in-situ
inference since most assume steady-state and isolation from up and downstream processes. In response,
model predictive control, SAG MPC [7], combines those methods with real-time operational
information. However, expert knowledge is required to model the SAG mill dynamics properly.

From a geometallurgical perspective, the integration of new predictive methods that account
for space and time relationships over real-time attributes has been defined as a fundamental
challenge [8,9] in mining operations, particularly in an integrated system such as comminution.
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In response, data-driven approaches have been proposed ranging from support vector machines [10]
and gene expression programming [11] to hybrid models that combine genetic algorithms and neural
networks [12] and recurrent neural networks [13]. As data-driven methods are sensitive to the context
(available information) and representation (information workflow), the authors have studied the use
of several machine learning and deep learning methods in modelling the SAG energy consumption
behaviour based only on operational variables [14].

The energy consumed by a SAG mill is related to several factors such as expert operator
decisions, charge volume, charge specific gravity and the hardness of the feed material. Knowing the
output hardness material becomes relevant for the downstream stage in the primary grinding circuit.
Ore hardness can be characterized at sample support by combining the logged geological properties
and the result of standardized comminution tests. They can be used to predict the hardness of
each block sent to the process. However, these attributes are not always available. In response,
a qualitative characterization of the ore hardness processed at time t, relative to the operational
hardness of the ore processed at time t + 1 can be done using only operational variables rather than a
set of mineralogical characterizations. This qualitative characterization is referred and here used as
operational relative-hardness (ORH).

We take advantage of previous works [14] by knowing that the Long Short-Term Memory
(LSTM) [15] outperforms other machine learning and deep learning techniques on inferring the
SAG mill energy consumption. Therefore, Section 2 presents the ORH and LSTM models, Section 3
establishes the SAG mill experimental framework, the results of which are presented in Section 4,
and conclusions are drawn in Section 5.

2. Model

2.1. Operational Relative-Hardness Criteria

From the several operational parameters that can be captured and associated to SAG mill
operations, we consider the energy consumption (EC) and feed tonnage (FT) to build our operational
relative-hardness criteria.

Let us assume that data {EC,FT}t is collected over a period of time T using a ∆t discretization.
By considering the one-step forward time difference of energy consumption

(
∆ECt = ECt+1−ECt

)
and feed tonnage

(
∆ FTt = FTt+1− FTt

)
, a qualitative assessment of the operational relative-hardness

can be done. For instance, if the energy consumption is increasing and the feed tonnage is constant,
it can be interpreted as an increase in ore hardness relative to the previous period. Similarly, if the
feed tonnage is constant and the energy decreases, a decrease in ore hardness relative to the previous
period can be assumed. Particularly, when both ∆ECt and ∆FTt show the same behaviour, the SAG
can be either processing ore with medium operational relative-hardness or being filled up or emptied.
To avoid misclassification in this last case, the operational relative-hardness is labelled as undefined.
Table 1 summarizes the nine combinations of states and the associated operational relative-hardness.

The qualitative labelling of ∆ECt and ∆FTt as increasing, constant or decreasing can be established
based on their global distribution over the period T as:

∆ECt =


Increasing if ∆ECt > λ · σ∆EC

Constant if |∆ECt| ≤ λ · σ∆EC

Decreasing if ∆ECt < −λ · σ∆EC

∆FTt =


Increasing if ∆FTt > λ · σ∆FT

Constant if |∆FTt| ≤ λ · σ∆FT

Decreasing if ∆FTt < −λ · σ∆FT

(1)

where σ∆EC and σ∆FT represent the standard deviations over the period T of EC and FT, respectively,
and λ is a scalar value that modulates the labelling distribution. Note that (i) a λ value above 1.5
would make the entire definition meaningless since most values would remain as constant, and (ii)
the λ value definition is an external model parameter and can be guided either subjectively or via
statistical meaning.
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Table 1. Operational relative-hardness criteria based on one time-step difference of energy consumption
and feed tonnage.

Energy Consumption Feed Tonnage Operational Relative-Hardness

Constant Decreasing Hard
Increasing Constant Hard
Increasing Decreasing Hard

Decreasing Decreasing Undefined
Increasing Increasing Undefined
Constant Constant Undefined

Constant Increasing Soft
Decreasing Constant Soft
Decreasing Increasing Soft

2.2. Long Short-Term Memory

The Long Short-Term Memory (LSTM) [15] neural network architecture belongs to the family
of recurrent neural networks in Deep Learning [16]. They are suitable to capture short and long
term relationships in temporal datasets. Internally, LSTM applies several combinations of affine
transformations, element-wise multiplications and non-linear transfer functions, for which the building
blocks are:

• xt: input vector at time t. Dimension (m, 1).
• W f , Wi, Wc, Wo: weight matrices for xt. Dimensions (nH , m).
• ht: hidden state at time t. Dimension (m, 1).
• U f , Ui, Uc, Uo: weight matrices for ht−1. Dimensions (nH , m).
• b f , bi, bc, bo: bias vectors. Dimensions (nH , 1).
• V: weight matrix for ht as output. Dimension (K, m).
• c: bias vector for output. Dimension (K, 1).

where m is the number of variables as input, K is the number of output variables, and nH is the
number of hidden units. Let τ ∈ N be a temporal window. At each time t ∈ {1, ..., τ}, the LSTM
receives the input xt, the previous hidden state ht−1 and previous memory cell ct−1. The forget gate
ft = σ

(
W f xt + U f ht−1 + b f

)
is the permissive barrier of the information carried by xt. The input gate

it = σ
(
Wixt + Uiht−1 + bi

)
decides the relevance of the information carried by xt. Note that both

ft and it use sigmoid σ(x) = (1 + e−x)−1 as the activation function over a linear combination of xt

and ht−1.
By passing the combination of xt and ht−1 through a Tanh function, a candidate memory cell

c̃t = Tanh
(
Wcxt +Ucht−1 +bc

)
is computed. The final memory cell ct = ft� ct−1 + it� c̃t is computed

as a sum of (i) what to forget from the past memory cell as an element-wise multiplication (�) between
ft and ct−1, and (ii) what to learn from the candidate memory cell as an element-wise multiplication
(�) between it and c̃t.

Similar to it and ft the output gate ot = σ
(
Woxt +Uoht−1 +bo

)
passes through a sigmoid function

a linear combination between xt and ht−1. It controls the information passing from the current memory
cell ct to the final hidden state ht = Tanh

(
ct
)
� ot as an element-wise multiplication between ot and

Tanh
(
ct
)
. At the final step τ, the output is computed as yτ =

(
Vhτ + c

)
. When dealing with more than

one categorical prediction (K > 1), as in the present work for ORH forecasting, a softmax function is
applied over yτ to obtain the normalized probability distribution, and the category k has a probability

of p̂(k) =
exp(yτ,k)

∑K
c=1 exp(yτ,c)

.

An illustrative scheme of the internal connection at time step t inside an LSTM is shown in
Figure 1 (left). The ORH prediction has three categories (hard, soft and undefined) and the probability
is computed at the last unit, at time step τ, as shown in the unrolled LSTM in Figure 1 (right).
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Figure 1. Schemes. Information flow inside Long Short-Term Memory (LSTM) (left) and unrolled
LSTM where the output is computed at the last recurrence (right).

3. Experiment

3.1. Dataset

We used two datasets containing operational data for two independent SAG mills every half
hour over a total time of 340 and 331 days, respectively. Each one of the SAG mills receives fresh feed
and is connected in an open circuit configuration (SABC-B) where the pebble crusher product is sent
to ball mills. At each time t, the dataset contains Feed tonnage (FT) (ton/h), Energy consumption
(EC) (kWh), Bearing pressure (BPr) (psi) and Spindle speed (SSp) (rpm). They are split into two main
subsets (a validation dataset is not considered since the optimum LSTM architecture to train is drawn
from previous work [14]): training and testing (Table 2). This is an arbitrary division, and we seek to
have a proportion of ∼50/50, respectively.

Table 2. Summary statistics over training testing dataset on semi-autogenous grinding mill (SAG) mills.

SAG Mill 1 Training | Testing Dataset

Variable Min Mean Max St Dev Count

Feed Tonnage (ton/h) 0 0 911 884 2111 1953 497 480 8170 8170
Energy Consumption (kWh) 0 0 9927 8920 12,248 10,809 1245 959 8170 8170

Bearing Pressure (psi) 0 0 12.7 11.9 13.7 13.7 2.2 2.2 8170 8170
Spindle Speed (rpm) 0 0 9.2 9.1 10.3 10.7 0.7 0.7 8170 8170

SAG Mill 2 Training | Testing Dataset

Variable Min Mean Max St Dev Count

Feed Tonnage (ton/h) 0 0 2077 2073 3477 3452 1136 1134 7953 7952
Energy Consumption (kWh) 0 0 16,709 17,445 19,688 19,533 1504 1462 7953 7952

Bearing Pressure (psi) 0 0 13.8 14.8 18.3 18.3 3.5 3.8 7953 7952
Spindle Speed (rpm) 0 0 9.1 8.9 10.0 9.9 0.6 0.6 7953 7952

As it can be seen in Table 2, the predictive methods are trained with the first 50% and tested with
the upcoming 50%, without being fed with the previous 50% of historical data.

Note that the comminution properties of the ore, such as a× b or BWi, are not included in the
datasets; therefore, the relationship between forecasted ORH and comminution properties is not
explored in this work. The results herein presented, however, serve as a basis to examine such a
relationship if those properties were known.

3.2. Assumptions

SAG mills are fundamental pieces in comminution circuits. As no information regarding
downstream/upstream processes is available, recognizing bottlenecks in the dataset becomes
subjective. We assume that SAG mills will potentially show changes from steady-state to under capacity
and vice versa along with the dataset. Thus, stationarity of all operational variable distributions is
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assumed throughout this work, including the ore grindability. It means that the entire dataset belongs to
a known and planned combination of ore characteristics (geometallurgical units). By doing so, we limit
the applicability of the present models beyond the temporal dataset without a proper training process.

As explained in the problem statement section, we make use of the temporal average over energy
consumption and feed tonnage as input for operational hardness prediction. Thus, we assume an
additivity property over those variables as their units are kWh and ton/h, respectively, over constant
temporal discretization so averaging adjacent data points is mathematically consistent.

In the operation from which the datasets were obtained, the SAG mill liners are replaced every
5–7 months. Since the datasets cover almost a year, we can ensure that the liners were replaced
in each SAG mill at least once during the tested period, which may alter the relationship between
energy consumption and other operational variables, inducing a discontinuity in the temporal plots.
However, since in this work the temporal window for ORH evaluation is eight hours, the local
discontinuity associated with liners replacement is not expected to affect the forecast at that time frame.
The ORH is related to what was happening in the corresponding mill within the last few hours, and
not to the mill behaviour prior to the last replacement of liners.

3.3. Problem Statement

The aim is to forecast the operational relative-hardness. To do so, we need to label the datasets
with the associated ORH category at data point. We know from Equation (1) that the ORH labelling
process requires as input (i) the one-step forward differences on energy consumption (∆ECt) and feed
tonnage (∆FTt), and (ii) a lambda (λ) value. In addition, we are interested in forecasting the ORH at
different time supports.

Since the information is collected every 30 min, the upcoming energy consumption ECt+1 and
feed tonnage FTt+1 at 0.5 h support are denoted simply as ECt+1 and FTt+1 in reference to EC(0.5 h)

t+1

and FT(0.5 h)
t+1 , respectively. An upcoming EC and FT at 1 h support, EC(1 h)

t+1 and FT(1 h)
t+1 , are computed

by averaging the next two energy consumption, ECt+1 and ECt+2, and the two feed tonnage, FTt+1

and FTt+2. Similarly, by averaging the upcoming ECs and FTs, different supports can be computed.
Let s be the time support in hours, which represents the average over a temporal interval of a given
duration, then EC(sh)

t+1 and FT(sh)
t+1 are calculated as:

EC(sh)
t+1 =

ECt+1 + ... + ECt+2s

2s
FT(sh)

t+1 =
FTt+1 + ... + FTt+2s

2s
(2)

In this experiment, three different supports (sh) are considered: 0.5, 2 and 8 h.
Figure 2 illustrates the ORH criteria using a half-hour time support on SAG mill 1 dataset.

From the daily graph of EC(0.5 h)
t and FT(0.5 h)

t at the top, the graph of ∆EC(0.5 h)
t and ∆FT(0.5 h)

t are
extracted and presented at the centre and bottom, respectively. Three different bands, corresponding to
λ: 0.5, 1.0 and 1.5, are shown. The values that are above the band are considered as increasing, the ones
below it are considered as decreasing and inside as undefined (relatively constant). The corresponding
categories for EC and FT are used to define the operational relative-hardness (as in Table 1). It can be
seen that, when λ increases, the proportions of hard and soft instances decrease. Since λ is an arbitrary
parameter, a sensitivity analysis is performed in the range [0.5, 1.5] to capture its influence on the
resulting LSTM accuracy to suitably learn to predict the ORH at the different time supports.

At each time t the input variables considered to predict ORH(sh)
t+1 are FTt, BPrt and SSpt. To account

for trends, and since FT and SSp are operational decisions, the differences FTt+1−FTt and SSpt+1−SSpt

are also considered as inputs. Therefore, the dataset of predictors and output {X, Y} ∈ R5 ×R, at
each time support sh, has samples {xt, yt} ∈ {X, Y} made by xt =

{
FTt, BPrt, SSpt, FTt+1−FTt,

SSpt+1−SSpt
}

and yt =
{

ORH(sh)
t+1
}

. We also tried several other combinations of input variables, but
all led to results with lower quality. A temporal window of the previous four hours (previous eight
consecutive data points) are used as input for training and testing the LSTM models.
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Figure 2. SAG mill 1. Graphic representation of the relative-hardness inference criteria at 0.5 h time
support. Daily graphs of energy consumption and feed tonnage (top), delta of energy consumption
(centre), and delta of feed tonnage (bottom).

3.4. Preprocessing Dataset

A preprocessing step is performed over the raw datasets to make them suitable for deep neural
network training and inference processes. The aim is to make all input attributes fall into certain
regions of the non-linear transfer functions via normalization and to be properly coded in categories
via one-hot encoding. Thus, we normalize the entire raw dataset with the mean and standard deviation
of the training dataset.

Let x(var)
t ∈ xt be one of the five input variables (var) at time t, its normalized expression is

computed as x(var)
t =

vart −mvar

svar
, where mvar and svar represent the mean and standard deviation of

var in the training dataset. We normalize the first three attributes of xt, FTt, BPrt and SSpt while for last
two attributes, the differences between the original values FTt+1−FTt and SSpt+1−SSpt, are replaced
by the differences between the normalized values of FT and SSp.

The known operational relative-hardness at time t (yt) is one-hot encoding such that soft,
undefined and hard are encoded as [1, 0, 0], [0, 1, 0] and [0, 0, 1], respectively.

3.5. Optimal LSTM Architecture

From the training dataset, sequence {x1, .., xτ} of length τ are extracted to train the LSTM model
in order to forecast the operational relative-hardness at next time step τ + 1, at different time supports.
The chosen length is four hours (τ: 8).

The external hyper-parameter to be optimized on any LSTM architecture is the number of hidden
units, nH . Based on a previous work [14], the optimum number of hidden units was found and here
used. They are displayed in Table 3.

Adam Optimizer is used to train the LSTM with hyper-parameters ε = 1× e−8, β1 = 0.9 and
β2 = 0.999 as recommended by [17].
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Table 3. Optimal number of hidden units in the LSTM architecture at different time supports [14].

LSTM SAG Mill 1 SAG Mill 2

Time support ORH(0.5 h) ORH(2 h) ORH(8 h) ORH(0.5 h) ORH(2 h) ORH(8 h)

Model (nH) 280 240 516 596 576 488

4. Results

Directly from the datasets, the real operational relative-hardness ORHR is calculated from
Equation (1), varying λ in the set (0.5, 0.6, ..., 1.4, 1.5) at each time t and for each time support. On the
other hand, a probability vector with soft, undefined and hard ORH states is predicted. By taking the
highest probability, the predicted ORHP is obtained. Then, a confusion matrix, filled with the number
of instances of pairs (RHR, RHP), is built for each time support and each λ value. Table 4 summarizes
and presents the cases of λ: 0.5, 1.0 and 1.5, and supports 0.5, 2 and 8 h over the SAG mill 1, while the
Table 5 summarizes the same results over the SAG mill 2.

Table 4. SAG mill 1. Confusion matrices (number of instances) of operational relative-hardness (ORH)
predictions using λ: 0.5, 1.0 and 1.5 at 0.5, 2 and 8 h time supports.

0.5 h Prediction
λ = 0.5 Soft Und Hard Total

R
ea

l Soft
Und
Hard

 1515 591 16
295 3179 390
6 555 1606

 1816
4325
2012

Accurate → 6300
2.0 h Prediction

λ = 0.5 Soft Und Hard Total

R
ea

l Soft
Und
Hard

 1204 922 288
731 1659 904
230 914 1301

 2165
3495
2493

Accurate → 4164
8.0 h Prediction

λ = 0.5 Soft Und Hard Total

R
ea

l Soft
Und
Hard

 1277 805 370
626 1457 1083
202 814 1519

 2105
3076
2972

Accurate → 4253

0.5 h Prediction
λ = 1.0 Soft Und Hard Total

R
ea

l Soft
Und
Hard

 957 268 1
242 5255 137
0 362 931

 1199
5885
1069

Accurate → 7143
2.0 h Prediction

λ = 1.0 Soft Und Hard Total

R
ea

l Soft
Und
Hard

 406 1120 15
160 4793 102
16 1348 193

 582
7261
310

Accurate → 5392
8.0 h Prediction

λ = 1.0 Soft Und Hard Total

R
ea

l Soft
Und
Hard

 683 873 33
324 4135 504
23 1053 525

 1030
6061
1062

Accurate → 5343

0.5 h Prediction
λ = 1.5 Soft Und Hard Total

R
ea

l Soft
Und
Hard

 622 140 2
151 6298 130
4 139 667

 777
6577
799

Accurate → 7587
2.0 h Prediction

λ = 1.5 Soft Und Hard Total
R

ea
l Soft

Und
Hard

 290 609 2
170 6172 66

3 740 101

 463
7521
169

Accurate → 6563
8.0 h Prediction

λ = 1.5 Soft Und Hard Total

R
ea

l Soft
Und
Hard

 308 579 4
286 6038 119
4 656 159

 598
7273
282

Accurate → 6505

Table 5. SAG mill 2. Confusion matrices (number of instances) of ORH predictions using λ: 0.5, 1.0
and 1.5 at 0.5, 2 and 8 h time supports.

0.5 h Prediction
λ = 0.5 Soft Und Hard Total

R
ea

l Soft
Und
Hard

 1704 434 13
330 2718 416
5 448 1882

 2039
3600
2311

Accurate → 6304
2.0 h Prediction

λ = 0.5 Soft Und Hard Total

R
ea

l Soft
Und
Hard

 1026 1049 149
460 2224 720
128 1218 976

 1614
4491
1845

Accurate → 4226
8.0 h Prediction

λ = 0.5 Soft Und Hard Total

R
ea

l Soft
Und
Hard

 917 1151 196
361 2052 896
90 1082 1205

 1368
4285
2297

Accurate → 4174

0.5 h Prediction
λ = 1.0 Soft Und Hard Total

R
ea

l Soft
Und
Hard

 1085 334 2
180 4485 360
1 300 1203

 1266
5119
1565

Accurate → 6773
2.0 h Prediction

λ = 1.0 Soft Und Hard Total

R
ea

l Soft
Und
Hard

 676 768 47
418 4178 395
25 1066 395

 1119
6012
819

Accurate → 5231
8.0 h Prediction

λ = 1.0 Soft Und Hard Total

R
ea

l Soft
Und
Hard

 789 735 29
358 4118 353
22 1148 398

 1169
6001
780

Accurate → 5305

0.5 h Prediction
λ = 1.5 Soft Und Hard Total

R
ea

l Soft
Und
Hard

 640 274 8
111 5916 91

2 279 629

 753
6469
728

Accurate → 7185
2.0 h Prediction

λ = 1.5 Soft Und Hard Total

R
ea

l Soft
Und
Hard

 338 593 12
228 5721 133
1 787 137

 567
7101
282

Accurate → 6196
8.0 h Prediction

λ = 1.5 Soft Und Hard Total

R
ea

l Soft
Und
Hard

 325 641 10
273 5660 133
8 690 210

 606
6991
353

Accurate → 6195

The accuracy of the model prediction, ORHP, defined as the percentage of right predictions is
computed as:

ORHAccuracy =
#(softR, softP) + #(undR, undP) + #(hardR, hardP)

#Total
· 100 (3)

and it represents the percentage of elements in the confusion matrix diagonal. The relative percentage
of predictions of each class (rows) is shown in Table 6 for SAG mill 1 and in Table 7 for SAG mill 2.
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As shown in Tables 6 and 7 at 0.5 h time support, the LSTM is able to predict with enough
confidence the ORH regardless the value of λ. Nevertheless, as λ increases, the number of instances of
soft and hard ORH decreases improving the final accuracy since the higher the value of λ, the more
data points are classified as undefined. Particularly, for 0.5 h time support, increasing λ from 0.5 to 1.5
makes real undefined points increase from 4325 to 6577 (from 53.0% to 80.7%) in SAG mill 1 and from
3600 to 6469 (from 45.3% to 81.4%) in SAG mill 2. Therefore, increasing λ improves accuracy, but the
price is resolution. On the other hand, the number of extreme cases (softR, hardP) and (hardR, softP)
is close to zero. This is a great result, since predicting soft hardness when it is actually hard (or
vice versa) may induce bad short term decisions on how to operate the SAG mill, along with other
downstream decisions.

Table 6. SAG mill 1. Confusion matrices (percentage) of ORH prediction using λ: 0.5, 1.0 and 1.5 at 0.5,
2 and 8 h time supports.

0.5 h Prediction
λ = 0.5 Soft Und Hard Total

R
ea

l Soft
Und
Hard

 71.4 27.9 0.8
7.6 82.3 10.1
0.3 25.6 74.1

 22.3
53.0
24.7

Accurate → 77.3
2.0 h Prediction

λ = 0.5 Soft Und Hard Total

R
ea

l Soft
Und
Hard

 49.9 38.2 11.9
22.2 50.4 27.4
9.4 37.4 53.2

 26.6
42.9
30.6

Accurate → 51.1
8.0 h Prediction

λ = 0.5 Soft Und Hard Total

R
ea

l Soft
Und
Hard

 52.1 32.8 15.1
19.8 46.0 34.2
8.0 32.1 59.9

 25.8
37.7
36.5

Accurate → 52.2

0.5 h Prediction
λ = 1.0 Soft Und Hard Total

R
ea

l Soft
Und
Hard

 78.1 21.9 0.1
4.3 93.3 2.4
0.0 28.0 72.0

 14.7
72.2
13.1

Accurate → 87.6
2.0 h Prediction

λ = 1.0 Soft Und Hard Total

R
ea

l Soft
Und
Hard

 26.3 72.7 1.0
3.2 94.8 2.0
1.0 86.6 12.4

 7.1
89.1
3.8

Accurate → 66.1
8.0 h Prediction

λ = 1.0 Soft Und Hard Total

R
ea

l Soft
Und
Hard

 43.0 54.9 2.1
6.5 83.3 10.2
1.4 65.8 32.8

 12.6
74.3
13.0

Accurate → 65.5

0.5 h Prediction
λ = 1.5 Soft Und Hard Total

R
ea

l Soft
Und
Hard

 81.4 18.3 0.3
2.3 95.7 2.0
0.5 17.2 82.3

 9.5
80.7
9.8

Accurate → 93.1
2.0 h Prediction

λ = 1.5 Soft Und Hard Total

R
ea

l Soft
Und
Hard

 32.2 67.6 0.2
2.7 96.3 1.0
0.4 87.7 12.0

 5.7
92.2
2.1

Accurate → 80.5
8.0 h Prediction

λ = 1.5 Soft Und Hard Total
R

ea
l Soft

Und
Hard

 34.6 65.0 0.4
4.4 93.7 1.8
0.5 80.1 19.4

 7.3
89.2
3.5

Accurate → 79.8

Table 7. SAG mill 2. Confusion matrices (percentage) of ORH prediction using λ: 0.5, 1.0 and 1.5 at 0.5,
2 and 8 h time supports.

0.5 h Prediction
λ = 0.5 Soft Und Hard Total

R
ea

l Soft
Und
Hard

 79.2 20.2 0.6
9.5 78.5 12.0
0.2 19.2 80.6

 25.6
45.3
29.1

Accurate → 79.3
2.0 h Prediction

λ = 0.5 Soft Und Hard Total

R
ea

l Soft
Und
Hard

 46.1 47.2 6.7
13.5 65.3 21.2
5.5 52.5 42.0

 20.3
56.5
23.2

Accurate → 53.2
8.0 h Prediction

λ = 0.5 Soft Und Hard Total

R
ea

l Soft
Und
Hard

 40.5 50.8 8.7
10.9 62.0 27.1
3.8 45.5 50.7

 17.2
53.9
28.9

Accurate → 52.5

0.5 h Prediction
λ = 1.0 Soft Und Hard Total

R
ea

l Soft
Und
Hard

 76.4 23.5 0.1
3.6 89.3 7.2
0.1 19.9 80.0

 15.9
64.4
19.7

Accurate → 85.2
2.0 h Prediction

λ = 1.0 Soft Und Hard Total

R
ea

l Soft
Und
Hard

 45.3 51.5 3.2
8.4 83.7 7.9
1.7 72.6 25.7

 14.1
75.6
10.3

Accurate → 65.8
8.0 h Prediction

λ = 1.0 Soft Und Hard Total

R
ea

l Soft
Und
Hard

 50.8 47.3 1.9
7.4 85.3 7.3
1.4 73.2 25.4

 14.7
75.5
9.8

Accurate → 66.7

0.5 h Prediction
λ = 1.5 Soft Und Hard Total

R
ea

l Soft
Und
Hard

 69.4 29.7 0.9
1.8 96.7 1.5
0.2 30.7 69.1

 9.5
81.4
9.2

Accurate → 90.4
2.0 h Prediction

λ = 1.5 Soft Und Hard Total

R
ea

l Soft
Und
Hard

 35.8 62.9 1.3
3.7 94.1 2.2
0.1 85.1 14.8

 7.1
89.3
3.5

Accurate → 77.9
8.0 h Prediction

λ = 1.5 Soft Und Hard Total

R
ea

l Soft
Und
Hard

 33.3 65.7 1.0
4.5 93.3 2.2
0.9 76.0 23.1

 7.6
87.9
4.4

Accurate → 77.9

The percentage of extreme cases
(
(softR, hardP) and (hardR, softP)

)
using λ: 0.5 increases when

moving from 0.5 to 8 h time support, on both SAG mills. However, they decrease to a value close to
zero when increasing λ from 0.5 to 1.5, at all time supports. However, LSTM loses accuracy in terms of
predicting the relevant cases (softR, softP) and (hardR, hardP) as soon as the time support increases,
on both SAG mills.

The accuracy graph (Figure 3) shows the λ sensitivity at all time supports on both SAG mills.
The lower accuracy is 51% and is achieved at 2 h time supports with λ: 0.5 on SAG mill 1. Its accuracy
increases to 66% with λ: 1.0 and 81% with λ: 1.5. The best results are achieved at 0.5 h time support
(same support as the original data) where 77%, 88% and 93% of accuracy are obtained with λ: 0.5, 1.0



Minerals 2020, 10, 734 9 of 10

and 1.5, respectively on SAG mill 1, and 79%, 85% and 90% of accuracy with λ: 0.5, 1.0 and 1.5 on SAG
mill 2.
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Figure 3. Accuracy of operational relative-hardness prediction at different time support as function of
lambda (λ) on both SAG mills.

5. Conclusions

This work proposes the use of Long Short-Term Memory networks to forecast relative operational
hardness in two SAG mills using operational data. We have presented the internal architecture of
the deep networks, how to deal with raw operational datasets, and qualitative criteria to estimate
the operational hardness of processing material inside the SAG mill based on the consumed energy,
feed tonnage and a statistical distribution using a lambda value. Particularly, Long Short-Term Memory
models have been trained to predict the operational relative-hardness based only on low-cost and fast
acquiring operational information (feed tonnage, spindle speed and bearing pressure).

The LSTM network shows great results on predicting the relative operational hardness at 30 min
time support. On SAG mill 1, using a lambda value of 0.5, the obtained accuracy was 77.3% while
increasing the lambda to 1.5 led to an increase in accuracy of 93.1%. Similar results were found on the
second SAG mill. As the time support increases to two and eight hours, the accuracy drops to around
52% using a lambda value of 0.5 and 78% with a lambda value of 1.5, on both SAG mills.

The inaccuracy of LSTM, when predicting extreme cases such as soft hardness when it is hard
and vice-versa, is pretty low. Extreme misclassification is close to 1% at 0.5 h time support on both
SAGs regardless of the lambda value. Although it increases to around 20% when increasing the time
support using a lambda value of 0.5, it rapidly decreases to around 1% as lambda increases.

Lastly, the proposed application can be extended to any crushing and grinding equipment, under a
similar context of real-data acquisition in order to forecast categorical attributes that are relevant to
downstream processes.
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Abbreviations

The following abbreviations are used in this manuscript:

LSTM Long Short-Term Memory
ORH Operational relative-hardness
FT Feed tonnage
BPr Bearing pressure
SSp Spindle speed
SAG Semi-autogenous grinding
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