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Abstract: Phengite series is a dioctahedral solid solution between two end-members of muscovite
[K1[Al2]VI[Al1,Si3]IVO10(OH)2] and celadonite [K1[(Fe3+,Al)1,(Mg,Fe2+)1]VI[Si4]IVO10(OH)2],
which have a hetero-valent substitution of AlVIAlIV ↔ (Mg, Fe)VISiIV. In this study, we report
a hydrothermal-originated authigenic Mg-phengite-series mineral, which occurred as polycrystalline
aggregates (Type 1), pore-fillings (Type 2) and well-crystallized lath form (Type 3) from the
Haengmae Formation, a dolomite–pebble-bearing fine sand-sized dolostone, in South Korea. Based on
micro-textural observation, three types of Mg-phengite are associated with crystalline dolomite,
and are followed by calcite precipitation as pore-filling, indicating that these should be formed
by the influx of a Mg-rich hydrothermal fluid after the deposition of some clastic sediments and
before calcite-filling. The structural formula based on O10(OH)2 shows that the number of Mg atoms
per formula unit (apfu) of Mg-phengite ranges from 0.00 to 0.70 with no Fe, which is relatively
high, compared with the previously reported metamorphic phengites. In REEs mineral chemistry,
the Mg-phengites are characterized by the enrichment of REEs and by the particular enrichment of
LREEs in the polycrystalline aggregates of Mg-phengite. It strongly suggests that the Mg-phengite
should be formed by the infiltration of the highly evolved Mg- and REEs-enriched hydrothermal
fluid into the clastic sedimentary rock (Haengmae Formation) as a strata-bound form, syngenetically
or during early diagenesis.

Keywords: Mg-phengite; muscovite–celadonite solid solution; Haengmae Formation; infiltration

1. Introduction

Phengite, which is one of the potassic dioctahedral mica, occurs most commonly in
metamorphic environments. Compositionally, phengite is an intermediate member of the
muscovite [K1[Al2]VI[Al1,Si3]IVO10(OH)2]—celadonite [K1[(Fe3+,Al)1,(Mg,Fe2+)1]VI[Si4]IVO10(OH)2]
solid solution series [1–5]. The mineral chemistry of phengite depends on the composition of the
mineralizing fluids [6–9]. Most studies have been conducted to examine the geochemical properties
of phengites with the petrographic study. Many researchers have reported phengite series through
geochemical analysis by using quantitative compositional data [9–12] and suggested that phengite is
mainly formed as metamorphic minerals and a common product of hydrothermal alteration [3,9,13–21].
Tappert et al. [9] distinguished two chemically distinct phengite based on the degree of hydrothermal
alteration and explained the systematic change in the mineral chemistry of phengites as an effect of
hydrothermal fluid. El Korh et al. [10] linked the content of trace elements in phengite to determine
the role of mobile element in fluids from metamorphic conditions. Petrík et al. [11] defined Li-phengite
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as Li-bearing high silica variety of muscovite and suggested that Li-phengite and phengite are formed
as products of metamorphism during burial diagenesis.

Several studies have been focused on the relationship between phengites and metamorphic
environments affected by hydrothermal fluids forming phengites based on the geochemical properties
of phengites with the petrographic study. However, only a limited amount of research combined
with micro-texture was conducted. In this study, combined with analyses of micro-textural and
geochemical studies, we aim to characterize Mg-phengite, which has not been reported in previous
studies. Through micro-textural, mineralogical and geochemical analysis, we examine micro-textural
types of Mg-phengite and demonstrate how Mg-phengite has a genetic relationship with surrounding
mineral assemblages. Based on this work, we expand upon the occurrence of Mg-phengite formed
by the infiltration of hydrothermal fluid in the carbonate sedimentary rock and provide evidence to
elucidate the process of the sedimentary environment in this study area.

2. General Geology of Mg-Phengite Occurrence Area

The Mg-phengite-series minerals occur in a dolomite–pebble-bearing fine sand-sized dolostone,
so-called the Haengmae Formation (Figure 1, [22]). The Haengmae Formation belongs to the
Pyeongchang Group, which is the “undifferentiated” Cambrian–Ordovician carbonate sequences in
Pyeongchang and Jeongseon area [22,23]. The Haengmae Formation is underlain by the Jeongseon
Formation and overlain by the Silurian Heodongri Formation [23–25]. The Haengmae Formation
was first, identified in the Jeongseon area [24,26] and was reported later in the western part of the
Pyeongchang area [27–29]. It was originally described as a yellowish-brown pebble-bearing limestone,
thin layers of limestone and silicic clastic rocks that are severely weathered and poorly lithified [23].
However, a recent study has revealed that the Haengmae Formation is a dolomite–pebble-bearing fine
sand-sized dolostone with calcite-fillings [30]. Previous studies for conodont microfossils suggested
that the Haengmae Formation indicates the Ordovician age [24,31]. Jang [23] obtained the U–Pb detrital
zircon age of ca. 450 Ma from the Haengmae Formation, which suggests that the maximum age of the
Haengmae Formation is the Late Ordovician Period.
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Figure 1. Regional geological map showing the northwestern Taebaeksan Zone of South Korea
(modified after [22]). Stars indicate the sampling site in Haengmae Formation.

3. Analytical Methods

Samples were collected from several outcrops showing a typical lithology of the Haengmae
Formation. Polished slabs and thin sections were prepared for micro-textural characterization using
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polarized light (PL) microscopy, SEM-BSE (scanning electron microscopy with backscattered electron)
observation, EPMA-WDS (Electron probe micro analyzer with wavelength dispersive spectroscopy)
and LA (Laser Ablation)-ICPMS analyses and powders for X-ray diffraction analysis.

Polarized light microscopic observation was performed for thin sections after alizarin red S
staining, which is useful to distinguish calcite from dolomite. SEM-BSE observation experiments were
performed for the polished samples after carbon-coated on the surface using a high-vacuum (HV) SEM
(JSM-5610LV; JEOL, Ltd.; Tokyo, Japan) and an EDS system (Oxford Instruments, Abingdon, UK) at
Yonsei University, Seoul, South Korea. BSE-compo and elemental mapping images were acquired
using an EDS system (Oxford Instruments, Abingdon, UK) with a 20 kV of accelerating voltage. X-ray
diffraction (XRD) analysis was examined for the bulk and some selected pebbles using a Rigaku
Miniflex II XRD system (CuKα radiation) in the step-scan mode (0.02◦ step, 1 s/step scanning time and
2◦–60◦ 2θ ranges).

Quantitative analysis of major and minor elements was performed using an EPMA-WDS system
(JXA-8100; JEOL, Ltd.; Tokyo, Japan) with a 20 keV accelerating voltage, 20 µA beam current and
5-µm-diameter probes with a 4-channel spectrometer at Yonsei University, Seoul, South Korea.
The natural mineral standards were used for quantification, and the raw data were corrected using the
standard Zinc Application Framework (ZAF) correction. The EPMA was used on nine target elements
(Si, Ti, Al, Fe, Mn, Mg, Ca, Na and K). EPMA was also used to observe the micro-textures of the
polished samples as well.

Trace elements for the selected area in microscale of phengite were analyzed by a
213-nm-wavelength New Wave UP213 UV laser ablation system and a Thermo Scientific Company X7
ICPMS at the KBSI (Korea Basic Science Institute), Ochang, South Korea. Data were obtained with 30 s
dwell time, and the operating conditions were a 10-Hz repetition rate, 25-µm spot-size and 1.313-mJ
beam energy. All measurements were conducted using NIST612 glass [32] as external standards and
SiO2 content, determined from EPMA as internal standard. The AMS software from Virginia Tech was
selected to calculate the trace element composition.

4. Results

4.1. Characteristics of Haengmae Formation Containing Mg-Phengite

The typical Haengmae Formation containing Mg-phengite is composed of yellowish-brown
carbonate rocks with poor lithification and is characterized by containing various types of pebbles
(Figure 2A). These pebbles are observed to be scattered in the matrix of the carbonate rock as angular to
sub-rounded shapes with several mm to in size and are composed of a large aggregate with microsized
dolomite, calcite-dominant rock, phyllitic rock and a white-colored aggregate of phengite with several
to tens mm in size (Figure 2D–G).

Based on petrographic microscope observation and X-ray diffraction analysis, the matrix of the
carbonate rock was mainly composed of dolomite, quartz, calcite and phengite-series mica. Dolomite
is observed in the form of euhedral-shaped growth grains, ranging in size from tens to hundreds of
micrometers (Figure 2B,C,G). Quartz shows a well-rounded and well-sorted form with a size of tens
of micrometers, which is a typical detrital character (Figure 2B,C). Calcite is a major mineral, but it
exists only as fillings between dolomite and quartz grains (Figure 2B,C). Phengite occurs as not only a
white-colored aggregate, but also a pore-filling in the matrix (Figure 2G), which will be mentioned in
the following part of this study.
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Figure 2. (A) Representative lithological facies of carbonate rock in the Haengmae Formation. Polished
slab of the typical Haengmae Formation is characterized by the yellowish-brown in color and the
various types of pebble, containing a large aggregate with microsized dolomite, calcite-dominant
rock, phyllitic rock and a white-colored aggregate of phengite; (B) polarized microscopic images of
the matrix under plane polarized light (PPL) mode after alizarin red S staining, showing a typical
texture composed of single crystalline dolomite, well-rounded and well-sorted quartz grains with
calcite fillings, and (C) its enlarged image under crossed polarized light (XPL) modes. X-ray diffraction
results of (D) the pebbles of calcite-dominant rock, (E) a large aggregate with microsized dolomite,
(F) a white-colored aggregate of phengite, and (G) the typical matrix. Abbreviations: Q—quartz;
K—K-feldspar; Kln—kaolinite; C—calcite; D—dolomite; Ph—phengite.

4.2. Micro-textural Analysis of Mg-Phengite

The most distinct characteristic of phengite is its occurrence as a white-colored aggregate with
several to tens mm in size (Figures 2A and 3A). On the results of BSE image, the phengite aggregate is
mainly composed of polycrystalline phengite with several hundred micrometers in size (Figure 3A).
The polycrystalline phengite exists as fibrous cryptocrystalline with a preferred alignment (Type 1).
Element-mapping results of the selected area indicate that the Type 1 phengites can be divided
into relatively high-Mg/low-Al Mg-phengite and low-Mg/high-Al one by the relative Mg and Al
contents. Micro-textural evidence shows that the low-Mg/high-Al Mg-phengite should be formed later
(Figure 3C–F). Fe content was not detected in both phengites (element-mapping result of Fe was not
shown in Figure 3). A small amount of K-feldspar and quartz are scattered as anhedral grains in the
phengite aggregates (Figure 3C,D,F).
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Figure 3. (A) Typical phengite aggregates scattered on the polished slab of the typical Haengmae
Formation and the separate ones; (B) BSE image of the representative phengite aggregate, which is
mainly composed of polycrystalline phengite (Type 1) with several hundred micrometers in size with
a small amount of quartz and K-feldspar. Element-mapping results of the selected area for (C) K,
(D) Si, (E) Mg, and (F) Al; (G) exaggerated BSE image of the selected part from (B). Abbreviations:
qtz—quartz; kfs—K-feldspar; Mg-phen and Al-phen—relatively high-Mg/low-Al and low-Mg/high-Al
Mg-phengite, respectively.

On the other hand, phengite also occurs as pore-filling aggregates in the matrix (Figure 2G)
(Type 2). It shows a typical micro-texture that phengite was precipitated as a filling mineral in the pores
between the grains, such as crystalline dolomite, dolomite pebbles, quartz and polycrystalline phengite
aggregates, which is followed by calcite filling (Figure 4A–F). Element-mapping results show that the
Type 2 phengite is also typical Mg-phengite with no Fe content (Figure 4G–K) (element-mapping result
of Fe was not shown in Figure 4). In some samples, the pore-filling phengites (Type 2) are elongated by
shearing along with the adjacent dolomite pebble (Figure 5). It is also followed by the calcite-fillings
(Figure 5A,B). Element-mapping results show the fine aggregates of the elongated Type 2 Mg-phengite
fibers with no Fe content, which is distinctly cross-cut by thin veins of calcite (Figure 5C–H).
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Figure 4. (A–C) SEM-BSE image of pore-filling phengites (Type 2) among the crystalline dolomite
grains and polycrystalline phengite (Type 1) in carbonate rock, which is followed by calcite filling;
(D,E) XPL images of typical pore-filling phengites (Type 2); (F) SEM-BSE image of Type 2 phengite
for element-mapping and the element-mapping results of the BSE imaging part for (G) K, (H) Si,
(I) Ca, (J) Mg, and (K) Al. Abbreviations: qtz—quartz; cal—calcite; dol—dolomite; phen—phengite;
pyr—pyrite; kln—kaolinite.

In some samples, the well-crystallized euhedral to subhedral flaky phengite (Type 3) with 100 to
300 µm in size is also observed between dolomite and quartz grains and around the dolomite pebbles
with a grain size greater than 1 mm (Figure 6). It appears as a clustered form in the pore spaces,
and these grains have clearly distinguishable boundaries, which cut off the growth of adjacent minerals
(Figure 6A–C). Micro-textural evidence shows that the well-crystallized phengite should be formed
after pore-filling phengites. Element-mapping results show the typical euhedral to subhedral form of
Mg-phengite crystals with no Fe content (not shown in Figure 6), and calcite also fills the pores after
the phengite precipitation (Figure 6E–I).
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Figure 5. (A) SEM-BSE image of pore-filling phengites (Type 2) elongated by shearing along with
the adjacent dolomite pebble and followed by the calcite-fillings and its (B) exaggerated image.
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Figure 6. (A,C) XPL images of typical well-crystallized euhedral to subhedral flaky phengite (Type 3)
with 100 to 300 µm in size; (B) SEM-BSE image of well-crystallized phengites (Type 3) precipitated
around the dolomite pebble, crystalline dolomite and quartz and followed calcite filling; (D) SEM-BSE
image of Type 3 phengite for element-mapping and the element-mapping results of the BSE imaging
part for (E) K, (F) Si, (G) Ca, (H) Mg and (I) Al. Abbreviations: qtz—quartz; cal—calcite; dol—dolomite;
phen—phengite; kfs—K-feldspar.
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4.3. Mineral Chemistry of Phengite

The EPMA results of the typical phengite types are summarized in Table 1 and all data are listed
in Table S1. The major elements show the typical phengite-series compositions ranging as follows:
44.50–55.86 wt % for SiO2, 21.05–36.87 wt % for Al2O3, 10.60–11.67 wt % for K2O, 0.00–7.01 wt % for
MgO and almost 0.00 wt % for FeO (Table 1 and Table S1). The structural formulae are calculated using
11 oxygens (Table 1).

Table 1. Representative electron probe micro analyzer (EPMA) data of the phengites from the Haengmae
Formation and structural formulae calculated using 11 oxygens.

Polycrystalline Aggregate Type Pore-Filling Type Well-Crystallized Type

Type 1a * (n = 30) Type 1b * (n = 50) Type 2 (n = 50) Type 3 (n = 30)

Min. Max. Average Min. Max. Average Min. Max. Average Min. Max. Average

SiO2 44.50 47.99 45.75 51.06 55.86 52.91 52.10 55.56 53.70 48.66 51.35 49.91
TiO2 0.00 0.03 0.01 0.00 0.42 0.03 0.00 0.27 0.03 0.13 0.50 0.34

Al2O3 30.46 36.87 34.70 21.05 25.95 23.85 21.00 24.53 22.82 26.01 29.12 27.83
FeO 0.00 0.37 0.12 0.20 0.35 0.28 0.19 0.38 0.23 0.08 0.24 0.12

MnO 0.00 0.04 0.01 0.00 0.03 0.00 0.00 0.03 0.01 0.00 0.02 0.00
MgO 0.00 1.98 0.56 4.19 6.46 5.37 4.58 7.01 5.90 3.18 5.05 3.86
CaO 0.00 0.09 0.01 0.00 0.20 0.03 0.00 0.11 0.05 0.07 0.63 0.13

Na2O 0.02 0.11 0.07 0.00 0.10 0.05 0.02 0.17 0.06 0.11 0.34 0.17
K2O 10.86 11.58 11.22 11.13 11.67 11.33 10.60 11.63 11.28 10.83 11.32 11.08
sum 87.98 94.55 92.44 93.01 95.25 93.86 92.59 95.45 94.07 92.45 94.82 93.44

Si (IV) 3.05 3.25 3.13 3.47 3.71 3.56 3.54 3.68 3.60 3.31 3.44 3.37
Al (IV) 0.75 0.95 0.87 0.29 0.53 0.44 0.32 0.46 0.40 0.56 0.69 0.63

Sum (IV) 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00

Al (VI) 1.78 1.98 1.92 1.35 1.55 1.45 1.32 1.50 1.40 1.50 1.63 1.59
Ti (VI) 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.01 0.00 0.01 0.03 0.02
Fe (VI) 0.00 0.02 0.01 0.01 0.02 0.02 0.01 0.02 0.01 0.00 0.01 0.01

Mn (VI) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Mg (VI) 0.00 0.21 0.06 0.42 0.65 0.54 0.46 0.70 0.59 0.32 0.50 0.39

Sum (VI) 1.98 2.00 1.98 1.98 2.02 2.00 1.98 2.03 2.01 1.98 2.04 2.00

Ca 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.05 0.01
Na 0.00 0.02 0.01 0.00 0.01 0.01 0.00 0.02 0.01 0.01 0.04 0.02
K 0.96 1.00 0.98 0.96 0.99 0.97 0.90 1.00 0.96 0.93 0.98 0.96

Sum 0.98 1.01 0.99 0.98 1.01 0.98 0.91 1.01 0.98 0.97 1.02 0.99

* Type 1a and Type 1b indicate relatively low-Mg/high-Al Mg-phengite and relatively high-Mg/low-Al
Mg-phengite, respectively.

Phengite series is a dioctahedral solid solution between two end-members of
muscovite [K1[Al2]VI[Al1,Si3]IVO10(OH)2] and celadonite [K1[(Fe3+,Al)1,(Mg,Fe2+)1]VI[Si4]IVO10(OH)2].
The relation between Al total atoms per formula unit (apfu) versus sum of Si, Mg and Fe (apfu) can define
the hetero-valent substitution of AlVIAlIV↔ (Mg,Fe)VISiIV for charge-balancing in the phengite-series
solid solution. All data are plotted on the muscovite to aluminoceladonite substitution line with a
distinctly different range for each phengite type (Figure 7). The plots of polycrystalline aggregate
phengite (Type 1) are clearly divided into two types (Type 1a and 1b), which are due to the distinct
difference in Mg and Al contents (Figure 7, Table 1). The plots of pore-filling type phengite (Type 2)
are similar to those of Type 1b phengites, whereas those of well-crystallized phengite (Type 3) are
plotted in the relatively high-Al region. The number of Mg atoms per formula unit (apfu) of these
Mg-phengites ranges from 0.00 to 0.70 with no Fe (Table 1 and Figure 7). Plots on the diagram of Al(VI)
versus Si(IV) (Figure 8A) and Mg(VI) versus Si(IV) (Figure 8B) based on atoms per formula unit (apfu)
for the Type 1, 2, and 3 phengites strongly indicate the trends of theoretical hetero-valence substitution
of AlVIAlIV↔ (Mg, Fe)VISiIV for charge-balancing in the phengite-series solid solution (Figure 8).
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the theoretical hetero-valence substitution of AlVIAlIV ↔ (Mg,Fe)VISiIV for charge-balancing in the
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Figure 8. Plots on the diagram of Al(VI) versus Si(IV) (A) and Mg(VI) versus Si(IV) (B) for the Type
1, 2 and 3 phengites from the Haengmae Formation. The trends show the theoretical hetero-valence
substitution of AlVIAlIV ↔ (Mg,Fe)VISiIV for charge-balancing in the phengite-series solid solution.

The results of LA–ICP–MS analyses for rare earth elements (REEs) of the phengites from the
Haengmae Formation are listed in Table S2, and the chondrite-normalized REE patterns are presented
in Figure 9. The characteristics of REEs in the phengites from the Haengmae Formation are summarized
as follows: (1) the REE concentrations of the phengites are much higher than those of metamorphic
phengites [10], (2) all types of the phengites show a similar pattern in MREE to HREE region, and (3) the
polycrystalline phengite (Type 1) as aggregates reveal a distinct LREE-enriched pattern, whereas the
pore-filling phengite (Type 2) and well-crystallized phengite (Type 3) reveals a relatively LREE-depleted
pattern (Figure 9).
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Figure 9. The chondrite-normalized rare earth elements (REEs) patterns of the phengites from the
Haengmae Formation. The shadow area indicates the range of REE patterns for the metamorphic
phengites [10].

5. Discussion

The three types of phengite series that occurred from the Haengmae Formation are defined
micro-texturally as polycrystalline aggregates (Type 1), pore-fillings (Type 2) and well-crystallized lath
form (Type 3) (Figures 3–6). These types of phengite series show a typical hetero-valence substitution
between AlVIAlIV and (Mg,Fe)VISiIV for charge-balancing (Figure 8) and contain high Mg (apfu
of Mg ranges from 0.00 to 0.70) (Table 1), which is relatively high, compared with the previously
reported metamorphic phengites [9–12,33–40]. In particular, there is no Fe in the structure, which is
an extraordinary case in common phengite series in the metamorphic environment. Micro-textural
evidence and chemical variations in Type 1 phengites (Figure 3C–F) strongly indicate that the Mg-rich
fluid would have changed in composition during infiltration through the clastic sediments after
input occurred or several different pulses of the hydrothermal fluid input with a difference in
Mg-concentration. The Mg-concentration of the fluid should have been low in the later stage and the
polycrystalline aggregates of Type 1b and 1a phengites would be formed sequentially through the
fluid influx for a relatively long-term. On the other hand, Type 2 and Type 3 phengites would have
been formed in an initial stage just after the influx of the fluid. Considering the micro-textural features
and Mg-content, Type 2 phengite should be formed earlier than Type 3 one.

The major element chemistry of the phengites in this study is compared with some phengites
reported in metamorphic and pegmatitic environments and shown in Figure 10. Muscovite formed
in granitic pegmatite zonation or muscovite formed by hydrothermal alteration during the early
stages of metamorphism, and unaltered hydrothermal muscovite in granite has a very low degree of
AlVIAlIV–MgVISiIV and AlVIAlIV–FeVISiIV substitutions, and the octahedral sites are almost filled with
Al [36–38] (Figure 10).

Muscovite in a pegmatitic environment, which is a product of extreme granitic fractionation,
is included in the muscovite region and is shown in a region with relatively high Fe substitution
(Figure 10). Li-phengite, which is mainly formed from granites, greisens and hydrothermal veins,
has a higher degree of substitution than muscovite [11]. In the case of other phengites, Mg and Fe
partially replace Al site of the octahedral sheet (Figure 10). Partial retrogression of phengite towards
muscovite during latter metamorphic events or phengite formation during metamorphic hydrothermal
alteration has been reported [9,10,12,39,40]. On the other hand, the Mg-phengite in this study with no
Fe is an unusual case. In addition, the phengites are commonly associated with crystalline dolomite,
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and are followed by calcite precipitation as pore-filling (Figures 4–6). Considering that the Haengmae
Formation is a clastic rock containing various pebbles and detrital quartz, the phengites should have
been formed by the influx of a Mg-rich hydrothermal fluid after the deposition of some clastic sediments
and before calcite-filling.
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muscovite, pegmatite type muscovite, Li-phengite and phengite are plotted.

In REEs mineral chemistry, the Mg-phengites are characterized by the enrichment of REEs rather
than some metamorphic phengites [10]. In particular, LREEs are much more enriched in Type 1 phengite
than the other types (Figure 9). LREEs are relatively incompatible elements with micas and then they
are normally more enriched in the later stage of fluid/melt. Therefore, the enrichment of LREEs in
Type 1 phengite strongly indicates that this type of phengite should have precipitated in the relatively
late stage (for Type 1a, low-Mg/high-Al Mg-phengite), and/or be continuously re-equilibrated with
the fluid after being precipitated (for Type 1b, high-Mg/low-Al Mg-phengite). In addition, the REEs
results suggest that the Mg-phengite should be formed by the infiltration of the highly evolved Mg-
and REEs-enriched hydrothermal fluid and particularly LREE-enriched hydrothermal fluid in the later
stage into the clastic sedimentary rock (Haengmae Formation) as a strata-bound form, syngenetically
or during early diagenesis.

Based on the above, a genetic sequence model of Mg-phengite in the Haengmae Formation is
presented in Figure 11. In the initial stage, detrital clasts, including detrital quartz grains, dolomite
pebbles and rock fragments, etc.; were deposited on the basin being formed by syn-sedimentary
growth faults (Figure 11A). Crystalline dolomite and Mg-phengite were precipitated by the influx
and infiltration of the highly evolved Mg- and REEs-enriched hydrothermal fluid into the clastic
sediments or sedimentary rock (Haengmae Formation) as a strata-bound form, syngenetically or
during early diagenesis (Figure 11B). The sedimentary environment changed to shallow marine and
calcite precipitated, which filled the pore space of the Haengmae Formation as cement (Figure 11C) as
shown in Figures 4–6 and the continuous deposition of calcite formed the Hoedongri Formation in the
later stage (Figure 11D).
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Figure 11. A genetic model for Mg-phengite in the Haengmae Formation. (A) In the initial stage,
detrital clasts, including quartz, dolomite pebbles and rock fragments, etc.; were deposited on the basin
being formed by syn-sedimentary growth faults; (B) Dolomite and Mg-phengite were precipitated by
the influx and infiltration of the highly evolved Mg- and REEs-enriched hydrothermal fluid into the
clastic sedimentary rock (Haengmae Formation) as a strata-bound form, syngenetically or during early
diagenesis; (C) The sedimentary environment changed to shallow marine and calcite was precipitated,
which filled the pore spaces of the Haengmae Formation as cement, and (D) the continuous deposition
of calcite formed the Hoedongri Formation in the later stage.

6. Summary

A hydrothermal-originated authigenic Mg-phengite-series mineral occurred as polycrystalline
aggregates (Type 1), pore-fillings (Type 2) and well-crystallized lath form (Type 3) from the Haengmae
Formation, a dolomite–pebble-bearing fine sand-sized dolostone, South Korea. The Mg-phengites
are associated with crystalline dolomite and are followed by calcite precipitation as pore-filling.
The number of Mg atom per formula unit (apfu) ranges from 0.00 to 0.70 with no Fe. The Mg-phengites
are characterized by the enrichment of REEs and by the particular enrichment of LREEs in the
polycrystalline aggregates of Mg-phengite.

It strongly suggests that the Mg-phengite should be formed syngenetically by the infiltration
of the highly evolved Mg- and REEs-enriched hydrothermal fluid into the clastic sedimentary rock
(Haengmae Formation) as a strata-bound form.
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