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Abstract: A new organically templated uranyl molybdate [C3H9NH+]4[(UO2)3(MoO4)5] was prepared
by a hydrothermal method at 220 ◦C. The compound is monoclinic, Cс, a = 16.768(6), b = 20.553(8),
c = 11.897(4) Å, β = 108.195(7), V = 3895(2) Å3, R1 = 0.05. The crystal structure is based upon
[(UO2)3(MoO4)5]4− uranyl molybdate layers. The isopropylammonium cations are located in the
interlayer. The layers in the structure of [C3H9NH+]4[(UO2)3(MoO4)5] are considered as modular
architectures. Topological analysis of layers with UO2:TO4 ratio of 3:5 (TVI = S, Cr, Se, Mo) was
performed. Modular description is employed to elucidate the relationships between different structural
topologies of [(UO2)3(TO4)5]4− layers and inorganic uranyl-based nanotubules. The possible existence
of uranyl molybdate nanotubules is discussed.

Keywords: uranyl molybdates; uranyl sulfates; uranyl selenates; crystal structure; layered structures;
minerals; nanotubules

1. Introduction

Investigations of natural and synthetic compounds of hexavalent uranium are important both for
materials science and mineralogy. Uranium minerals are important constituents of oxidation zones of
uranium deposits [1,2]. The development of the nuclear industry also requires further investigations
in the area of safe nuclear waste management [3]. The latter requires proper understanding of phase
formation processes, relationships between chemical compositions, crystal structures, and properties
of the compounds formed. Of particular interest are both the chemical nature of the possible secondary
phases and their interactions with the geological environment [4].

In the last two decades, particular attention has been paid to the hexavalent uranium (uranyl)
compounds containing organic moieties, which are important for lanthanide/actinide separation.
Common among these are the hybrid materials wherein the organic molecules are directly coordinated
to the uranyl cation as ligands [5,6]. The templated structures based on weakly bonded organic
and inorganic parts are less numerous [7] but exhibit essentially larger structural diversity of
inorganic motifs.

The uranium compounds are formed during various steps of the nuclear cycle and present in
the nuclear waste [3]. They accumulate various nuclides, thus preventing their migration into the
environment [4]. The composition of nuclear waste is extremely complex and can contain both newly
formed phases, as well as products of interaction between the fuel and container material, as well
as with geological environment. The molybdenum isotopes (95Mo, 97Mo, 98Mo and 100Mo), formed
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during the fission process, are relatively stable and accumulate in the waste fuel. Topologically similar
and even isostructural compounds are also known in the chemistry of pentavalent neptunium [7].

Though the natural and synthetic uranyl compounds are generally formed under essentially
different conditions, their crystal structures demonstrate topological relationships [8]. Of more
than 300 primary and secondary uranium minerals known to date (http://rruff.info/ima), the latter
demonstrate the expected richer structural chemistry wherein uranium most commonly forms a
linear uranyl cation coordinated by four, five, or six ligands in the equatorial plane. The coordination
polyhedra can share only edges, only corners, or both edges and corners between each other or also
with tetrahedral polyhedra of oxyanions. The group of compounds structurally based on exclusively
corner sharing between UOn polyhedra and TO4 (TVI = S, Cr, Se, Mo) tetrahedra is represented in
the secondary minerals. Their structures exhibit two types of 0D, four 1D, and four 2D complexes
(Figure 1).
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Figure 1. Heteropolyhedral complexes with corner sharing only between UOn bipyramids and TO4

tetrahedra in the mineral crystal structures: (a) belakovskiite, (b) bluelizardite, (c) bobcookite, (d) meisserite,
(e) shumwayite, (f) walpurgite, (g) autunite, (h) straßmannite, (i) wetherillite and (j) beshtauite.

The 0D complexes are observed in the sulfate minerals belakovskiite, Na7(UO2)(SO4)4(SO3OH)·3H2O [9]
and bluelizardite, Na7(UO2)(SO4)4Cl·2H2O [10], which are the secondary products of uraninite weathering;
both species have been found in the Blue Lizard mine, San Juan, UT, USA. Though a large number of
natural uranyl sulfates has been described [11], the complexes observed in belakovskiite (Figure 1a) and
bluelizardite (Figure 1b) are yet unique.

The same locality also bears bobcookite, NaAl(UO2)2(SO4)4·18H2O [12], fermiite, Na4(UO2)(SO4)3·3H2O,
and oppenheimerite, Na2(UO2)(SO4)2·3H2O [13], whose structures are comprised of [(UO2)(SO4)2(H2O)]2−

chains (Figure 1с). This topology is common for synthetic uranyl sulfates, selenates,
and chromates [14]. They are also present in the structures of rietveldite, Fe(UO2)(SO4)2·5H2O [15]
and svornostite, K2Mg[(UO2)(SO4)2]2·8H2O [16]. The chains observed in the structure of meisserite,
Na5(UO2)(SO4)3(SO3OH)·H2O [17] can be derived from [(UO2)(SO4)2(H2O)]2− chains [18] via the addition
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of a protonated sulfate tetrahedron (Figure 1d). The structure of shumwayite, ((UO2)(SO4)(H2O)2)2·H2O [19]
is formed by association of [(UO2)(SO4)(H2O)2] chains (Figure 1e) and water via hydrogen bonding.
In the structures of deloryite, Cu4(UO2)(MoO4)2(OH)6 [20], walpurgite, (BiO)4(UO2)(AsO4)2·2H2O [21],
and orthowalpurgite, (BiO)4(UO2)(AsO4)2·2H2O [22], the [(UO2)(TO4)2]2− chains are comprised of UO6

tetragonal bipyramids and TO4 tetrahedra sharing vertices (Figure 1f). Their association leads to the formation
of autunite-type layers (Figure 1g) [23].

A large number of uranium minerals with a common formula An+[(UO2)(TO4)](H2O)mXk adopt the
structures based on autunite-related [(UO2)(TVO4)]− layers. Therein, A may stand for a single, double,
or even triple-charged cation while T is P or As, and X is generally F or OH. The layers observed in the
structures of magnesioleydetite, Mg(UO2)(SO4)2·11H2O, straßmannite, Al(UO2)(SO4)2F·16H2O [24],
geschieberite, K2(UO2)(SO4)2·2H2O [25], and leydetite, Fe(UO2)(SO4)2·11H2O [26] are topologically
identical (Figure 1h). Therein, four out of five equatorial vertices of uranium polyhedra are
occupied by oxygen atoms of sulfate tetrahedra while the fifth is occupied by a water molecule;
all such vertices are similarly oriented in the layer plane. The layers in the structure of wetherillite,
Na2Mg(UO2)2(SO4)4·18H2O [12], differ in that the vertices occupied by water molecules exhibit two
positions (Figure 1i). Yet another layered arrangement is formed by vertex-sharing UO6(H2O) and SO4

moieties (Figure 1j) in the structure of beshtauite, (NH4)2(UO2)(SO4)2·2H2O [27]. The topology of this
layer is similar to that of goldichite, KFe(SO4)2·4H2O [28].

The structural diversity of natural and synthetic compounds is mostly governed by their formation
conditions, including the acidity/basicity and the mechanism of crystallization. The majority of the
minerals discussed above have been found on the walls of abandoned mines [10]. They crystallize upon
evaporation under almost invariable temperature but decreasing pH. These conditions are expected to
affect the structural outcome. The oxidation zones are formed under conditions changing from basic
to weakly acidic [1]. Interestingly, in most structures of these minerals, UOn bipyramids and TO4

tetrahedra preferably involve corner sharing only.
Essentially richer structural chemistry with similar architecture is observed for synthetic

uranyl compounds, particularly for those that are organically templated and formed in acidic
environments. Hydrogen-bonded motifs are particularly common in organically templated synthetic
uranyl compounds. Most synthetic protocols, using evaporation techniques, for uranyl compounds
with tetrahedral anions employ essentially acidic media (pH = 2–4 and below) [29–32].

Hence, the minerals formed upon solution evaporation on the mine walls, as well as synthetic
compounds, also formed by evaporation of acidic solutions, demonstrate topologically similar crystal
structures. This indicated that studies of synthetic compounds, their topological variability and
structural peculiarities are of essential importance.

Among both natural and synthetic uranium compounds, the largest topological diversity
is exhibited by the structures of compounds containing tetrahedral TO4

2− anions (TVI = S, Cr,
Se, Mo) [14]. Despite chemical differences, they commonly demonstrate topologically identical
structural motifs. Note that crystal chemistry of MoVI compounds is more complex due to its flexible
coordination environments.

In this paper, we report the synthesis and structure of new uranyl molybdate
[C3H9NH+]4[(UO2)3(MoO4)5] (1). Its structure is based upon [(UO2)3(MoO4)5]4− uranyl molybdate
layers, which may be considered as a precursor for nanotubule formation.

2. Materials and Methods

Synthesis. Crystals of [C3H9NH+]4[(UO2)3(MoO4)5] (1) were synthesized from a solution
of 0.1 g of (UO2)(NO3)2·6H2O (Vekton, 99.7%), 0.0576 g of MoO3 (Vekton, 99.7%), 0.01 mL of
isopropylamine (Aldrich, 99.5%) and 0.053 g of HCl in 5 mL of H2O (with an approximate U:Mo:
isopropylamine:HCl:H2O molar gel ratio of 3:5:8:15:1550). The solution was placed in a Teflon-lined
Parr reaction vessel and heated to 220 ◦C for 36 h (6 ◦C/h), followed by slow cooling to ambient
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temperature. The cooling rate was 2 ◦C/h. The crystals occur as aggregates of greenish-yellow
transparent plates up to 0.2 mm in maximum dimension.

Single-crystal studies. A single crystal was attached to glass fiber using an epoxy resin and mounted
on a Bruker SMART APEX II DUO diffractometer (Bruker, Karlsruhe, Germany) equipped with a
micro-focus X-ray tube utilizing MoKα radiation. The experimental data set was collected at 100 K.
Unit cell parameters were calculated using least-squares fits. Structure factors were derived using
APEX 2 after introducing the required corrections. The structure was solved using direct methods.
Further details are collected in Table 1. The final model includes site coordinates and anisotropic
thermal parameters for all atoms except hydrogens, which were localized using AFIX command in
calculated positions (d(C-H, N-H) = 1.00 Å). The data are deposited in CCDC under Entry No. 2014144.
Selected interatomic distances are given in Table 2.

Table 1. Crystallographic data and refinement parameters for [C3H9NH+]4[(UO2)3(MoO4)5]. Experiments
were carried out at 100 K with Mo Kα radiation on a Bruker Smart DUO, CCD.

Space Group Cc

a(Å) 16.768 (6)
b(Å) 20.553 (8)
c(Å) 11.897 (4)
β, ◦ 108.195 (7)

V(Å3) 3895 (2)
Dx 3.155

θ max (◦). 1.62–28.00

No. of measured, independent reflections 9176/7160

Rint 0.0694
Rsigma 0.1213
wR1 0.1182
R1 0.0520
S 0.944

CCDC 2014144

Table 2. Selected bond lengths Å in the structure of 1.

U1-O3 1.765 (13) U2-O1 1.724 (15) U3-O4 1.729 (14)
U1-O5 1.796 (12) U2-O2 1.767 (15) U3-O8 1.791 (13)

<Ur1-O> 1.780 <Ur2-O> 1.745 <Ur3-O> 1.760

U1-O12 2.299 (12) U2-O13 2.304 (11) U3-O26 2.287 (14)
U1-O18 2.36 7(11) U2-O9 2.320 (10) U3-O24 2.332 (12)
U1-O22 2.371 (11) U2-O23 2.372 (11) U3-O20 2.369 (10)
U1-O16 2.408 (10) U2-O17 2.375 (11) U3-O11 2.391 (11)
U1-O7 2.437 (11) U2-O6 2.583 (12) U3-O19 2.497 (12)

<U1-Oeq> 2.376 <U2-Oeq> 2.391 <U3-Oeq> 2.375

Mo1-O21 1.688 (12) Mo2-O10 1.691 (15) Mo3-O15 1.698 (13)
Mo1-O22 1.735 (11) Mo2-O6 1.742 (13) Mo3-O17 1.774 (10)
Mo1-O9 1.770 (11) Mo2-O16 1.766 (10) Mo3-O18 1.779 (11)

Mo1-O12 1.776 (12) Mo2-O11 1.798 (11) Mo3-O7 1.789 (11)

<Mo1-O> 1.742 <Mo2-O> 1.749 <Mo3-O> 1.760

Mo4-O14 1.703 (13) Mo5-O25 1.666 (16)
Mo4-O19 1.761 (12) Mo5-O26 1.702 (14)
Mo4-O23 1.761 (11) Mo5-O24 1.765 (13)
Mo4-O20 1.795 (11) Mo5-O13 1.767 (12)

<Mo4-O> 1.755 <Mo5-O> 1.725
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3. Results

The structure of 1 (Figure 2a) contains three symmetrically independent uranium atoms each
forming the uranyl cation (<U-O> = 1.780, 1.745, 1.760 Å, for U1, U2, U3, respectively). (UO2)2+

cations (Ur) are each coordinated by five oxygen atoms in the equatorial plane (<Ur-Oeq> = 2.376, 2.391,
2.375 Å, respectively). Five symmetrically unique molybdenum atoms form (MoO4)2− tetrahedra
(<Mo-O> = 1.742, 1.749, 1.760, 1.755, 1.725 Å, respectively).
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Figure 2. (a) General projection of the crystal structure of 1 along the c axis and (b) hydrogen bonding
with isopropylamine molecules in the interlayer (UO7 bipyramids = orange, MoO4 = blue, H = black,
C = grey).

The bond valence sums for U and Mo were calculated using parameters given in [33]: 5.98,
6.17 and 6.14 for U1, U2 and U3, and 6.12, 6.02, 5.86, 5.93 and 6.39 for Mo1, Mo2, Mo3, Mo4 and
Mo5, respectively. These values are in agreement with the reference data except for the somewhat
overbonded Mo5 centering a strongly distorted tetrahedron (Mo-O distances to O24, O13, O26 and
O25 are 1.765(13) Å, 1.767(12) Å, 1.702(14) Å, and 1.666(16) Å). This distortion is likely due to a strong
N-H···O hydrogen bond (d (N1–O25) = 2.150 Å) (Figure 2b).

The UO7 and MoO4 polyhedra share corners to form the [(UO2)3(MoO4)5]4− layers (Figure 3a).
Protonated molecules of isopropylamine are located in the interlayer and connected to the layers via
hydrogen bonding (Figure 2b). The [(UO2)3(MoO4)5]4− layer topology has been described earlier in
the structures of uranyl molybdates [34], selenates [35] and chromates [36]. The orientation matrix for
the terminal oxygen atoms of the molybdate tetrahedra in 1 is given in Figure 3b. A compound with
the same chemical composition, same graph of the layers (Figure 3c), but with the different orientation
matrix for the terminal oxygen atoms of the molybdenum tetrahedra was found in the structure of
[C3N2H12](H3O)2[(UO2)3(MoO4)5] [34]. According to the definition given in [37], such layers are
orientation geometric isomers. Thus, the orientation matrix for the [(UO2)3(MoO4)5]4− layer in 1 has
not been observed before.Minerals 2020, 10, 659 6 of 12 
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There are three common approaches to the description of the structural topology of uranium
minerals and synthetic compounds: anionic topologies, graphs, and modular description. In [38],
the latter approach was applied to demonstrate that structures of some uranyl selenates may
be obtained via assembly of [(UO2)2(SeO4)4(H2O)4]4− modules. The layers in the structure of
[Co(H2O)6]3(UO2)5(SO4)8(H2O)·H2O can also be viewed as a modular arrangement formed by the
assembly of chains [39]. A modular approach was also applied to the description of some uranyl
chromates, sulfates and selenates [40,41]. It was shown [41] that layers with the ratio UO2:TO4 = 2:3
can be obtained by the association of two types of fundamental chains.

The [(UO2)3(MoO4)5]4− layer in 1 (Figure 4) can be also described as consisting of several modules,
i.e., fundamental chains C1, C2, C‘1. The C1 and C‘1 chains are related by a mirror plane. In C1
chains, (U1O2)O5 and (U2O2)O5 bipyramids share vertices with Mo1O4 and Mo2O4 tetrahedra, to form
the [(UO2)2(MoO4)4]4− complexes linked via additional Mo3O4 species. C2 chains are formed from
two (U3O2)O5 bipyramids and Mo4O5 and Mo5O5 species. The chains are stacked in the following
sequence ...C1C2C‘1C1C2C‘1 . . .
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Figure 5. (a) Structure of the [(UO2)3(TO4)5]4− layers in Zn2((UO2)3(SeO4)5)·17(H2O) and (c)
Rb2((UO2)2(SeO4)3(H2O)2)·4(H2O) and (b, d) their split into fundamental chains.

The [(UO2)3(TO4)5]4− layers in the structure of Zn2((UO2)3(SeO4)5)·17(H2O) (Figure 5a) are
constructed in a way similar to the layers in 1. They are formed by combination of C2 and
C‘1 chains (Figure 5b) in a . . . C2C‘1C‘1C2C‘1C‘1 . . . sequence. The layers in the structure of
Rb2((UO2)2(SeO4)3(H2O)2)·4(H2O) (Figure 5с) exhibit a different topology and are formed from three
types of chains: C1, C3, and C‘1 (Figure 5d). The C3 chain can be obtained from C2 by the removal of
one link between the nodes in every second four-membered cycle.
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4. Discussion

4.1. Structural Topology of Nanotubules Is Uranyl Oxysalts

Four uranyl compounds with nanotubular (NT) motifs formed by corner sharing between
UO7 bipyramids and TO4 tetrahedra have been described to date: three uranyl-selenates [42,43]
and one uranyl-sulfate [44]. Nanotubules differ both in the diameter and structural topology of
their walls. The compounds K5(UO2)3(SeO4)5(NO3)·3.5(H2O) and (H3O)2K[(H3O)@([18]crown-6)]
[(UO2)3(SeO4)5]·4H2O are based on identical nanotubules [(UO2)3(SeO4)5]4− (Figure 6a). Their outer
diameter is 17 Å and the inner one (defined as the distance between the opposite closest oxygen atoms) is
7.4 Å. In the structure of (C4H12N)14[(UO2)10(SeO4)17(H2O)] the [(UO2)10(SeO4)17(H2O)]14− nanotubules
are elliptical with dimension 25 × 23 Å (inner diameter is 15.3 Å) (Figure 6c). The size of [(UO2)6(SO4)10]8−

nanotubules (Figure 6b) in the structure of Na(C8H10NO2)7[(UO2)6(SO4)10]·3.5H2O [44] is intermediate
(14 × 22 Å, inner diameter is 13.5 Å).

Minerals 2020, 10, 659 8 of 12 

 

 
Figure 6. (a) Known uranyl-based nanotubules in K5(UO2)3(SeO4)5(NO3)∙3.5(H2O), (b) 
Na(C8H10NO2)7[(UO2)6(SO4)10]∙3.5H2O, (c) (C4H12N)14[(UO2)10(SeO4)17(H2O)]. (d–f) Nanotubules are cut 
into equal parts. The color indicates the chain type used in the construction of the NT. (g–i) Schematic 
representation of the tube. The inner diameters are defined as the distances between the opposite 
closest oxygen atoms. 

In the topology of [(UO2)10(SeO4)17(H2O)]14− nanotubules, the C`1C`1C2 combination is repeated 
twice. Overall, the NT is formed from ten chains. Of the remaining four, two chains correspond to 
the С3 described earlier, and two, to С4. The stacking sequence therefore is 
…С4С3С`1C`1C2C4C3C`1C`1C2… The С4 are produced from С1 if one link is broken between the 
tetrahedron and bipyramid in the (UO2)2(TO4)2 cycle. Note the essential disorder [43] of some oxygen 
positions in the structure of (C4H12N)14[(UO2)10(SeO4)17(H2O)]. One may assume that in the idealized 
ordered version of the [(UO2)10(SeO4)17(H2O)]14− NT, the topology of the С4 chains would correspond 
to С1. 

4.2. The Flexibility of U-O-T Bridges 

As follows from above, the inorganic uranyl NTs can be described as comprised of fundamental 
chains and, at a higher hierarchical level, derived from 3:5 layers or their fragments. The chain 
propagation axes are collinear to the axis of the NTs themselves. The NT in K5[(UO2)3(SeO4)5](NO3) 
3.5H2O is comprised of six fundamental chains oriented parallel to the NT axis (Figure 6g). The 
scrolling of the precursor layer into the NT is probably enhanced by the flexibility of the U-O-T 
bridges. This essentially resembles a needle bearing wherein the rollers are replaced by the 
fundamental chains. The other NTs can be constructed in a similar way: the 7.4 Å-NT requires six 
chains (Figure 6g), 13.5 Å-NT, nine chains (Figure 6h) while ten are necessary for the 15.3 Å-NT 
(Figure 6i). To date, all known NTs differ merely by the number of fundamental chains they are 
comprised of. 

It was noted earlier [14] that vertex-sharing between the UOn and TO4 polyhedra results in the 
formation of a flexible “hinge” as the corresponding U-O-T angles can vary in a relatively broad 
range, providing the flexibility of the overall polyhedral backbone sufficient to compensate, for 
instance, the overall thermal expansion [50,51]. Yet, this mechanism seems not to contribute 
essentially to the formation of the NTs. The distribution of the U-O-T angles in the UO2:TO4 = 3:5 
layers (Figure 7a) covers a broad range of 120°–165°; it has a nearly normal character with a maximum 
at 135°–140°. Almost the same is observed for the four NTs known to date (Figure 7b), the 

Figure 6. (a) Known uranyl-based nanotubules in K5(UO2)3(SeO4)5(NO3)·3.5(H2O),
(b) Na(C8H10NO2)7[(UO2)6(SO4)10]·3.5H2O, (c) (C4H12N)14[(UO2)10(SeO4)17(H2O)]. (d–f) Nanotubules
are cut into equal parts. The color indicates the chain type used in the construction of the NT.
(g–i) Schematic representation of the tube. The inner diameters are defined as the distances between
the opposite closest oxygen atoms.

The approach to the description of nanotubules as structural entities formed by layer scrolling
is classic, and was applied for carbon NTs [45], transition-metal chalcogenides (MoS2, MoSe2,
WS2, WSe2, NbS2 and NbSe2) [46], as well as oxides (TiO2, VOx, CuO, Al2O3, SiO2, etc.) [47].
The topology of the smallest nanotubules (Figure 6a) corresponds to that of [(UO2)3(CrO4)5]4−

layers found in the structures of Mg2[(UO2)3(CrO4)5]·17(H2O) and Ca2[(UO2)3(CrO4)5]·19(H2O) [48].
The [(UO2)6(SO4)10]8− nanotubules (Figure 6b) are produced from a similar layered archetype [44].
However, there are no layered “ancestors” for the [(UO2)10(SeO4)17(H2O)]14− nanotubules (Figure 6c),
yet their local topology is similar to those of 3:5 layers, which were found, e.g., in the structure of
Rb4[(UO2)3(SeO4)5(H2O)] [49].

If we dissect the [(UO2)3(SeO4)5]4− tube, as shown in Figure 6a, the planar projection of the layer
(Figure 6d) corresponds to the sequence of chains . . . C1C2C1C1C2C1 . . . Its repetition in a planar
fashion ultimately leads to a layer with UO2:TO4 = 3:5.
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The NT in Na(C8H10NO2)7[(UO2)6(SO4)10]·3.5H2O [44] can be split (Figure 6b) into fundamental
chains with the sequence of . . . C‘1C2C‘1C‘1C2C‘1C‘1C2C‘1 . . . (Figure 6e). It is interesting to note
that the sequence of chains is similar to those in K5(UO2)3(SeO4)5(NO3)·3.5(H2O), but nine chains are
required to build a tube.

The NTs in the structure of (C4H12N)14[(UO2)10(SeO4)17(H2O)] [42] can be dissected into ten
chains (Figure 6i). In this case, the mutual arrangement of the polyhedra differs somewhat from the
above discussed cases. Three chains (C‘1, C‘1, C2) form a ribbon cut from the UO2:TO4 = 3:5 layer.

In the topology of [(UO2)10(SeO4)17(H2O)]14− nanotubules, the C‘1C‘1C2 combination is repeated
twice. Overall, the NT is formed from ten chains. Of the remaining four, two chains correspond to the
C3 described earlier, and two, to C4. The stacking sequence therefore is . . . C4C3C‘1C‘1C2C4C3C‘1C‘1C2
. . . The C4 are produced from C1 if one link is broken between the tetrahedron and bipyramid in
the (UO2)2(TO4)2 cycle. Note the essential disorder [43] of some oxygen positions in the structure
of (C4H12N)14[(UO2)10(SeO4)17(H2O)]. One may assume that in the idealized ordered version of the
[(UO2)10(SeO4)17(H2O)]14− NT, the topology of the C4 chains would correspond to C1.

4.2. The Flexibility of U-O-T Bridges

As follows from above, the inorganic uranyl NTs can be described as comprised of fundamental
chains and, at a higher hierarchical level, derived from 3:5 layers or their fragments. The chain
propagation axes are collinear to the axis of the NTs themselves. The NT in K5[(UO2)3(SeO4)5](NO3)
3.5H2O is comprised of six fundamental chains oriented parallel to the NT axis (Figure 6g). The scrolling
of the precursor layer into the NT is probably enhanced by the flexibility of the U-O-T bridges.
This essentially resembles a needle bearing wherein the rollers are replaced by the fundamental chains.
The other NTs can be constructed in a similar way: the 7.4 Å-NT requires six chains (Figure 6g),
13.5 Å-NT, nine chains (Figure 6h) while ten are necessary for the 15.3 Å-NT (Figure 6i). To date,
all known NTs differ merely by the number of fundamental chains they are comprised of.

It was noted earlier [14] that vertex-sharing between the UOn and TO4 polyhedra results in the
formation of a flexible “hinge” as the corresponding U-O-T angles can vary in a relatively broad range,
providing the flexibility of the overall polyhedral backbone sufficient to compensate, for instance,
the overall thermal expansion [50,51]. Yet, this mechanism seems not to contribute essentially to the
formation of the NTs. The distribution of the U-O-T angles in the UO2:TO4 = 3:5 layers (Figure 7a)
covers a broad range of 120◦–165◦; it has a nearly normal character with a maximum at 135◦–140◦.
Almost the same is observed for the four NTs known to date (Figure 7b), the [(UO2)6(SO4)10]8− NTs
are the most flexible (U-O-S angles range from 125◦ to 165◦). The distribution is almost the same for
[(UO2)3(SeO4)5]4− and [(UO2)10(SeO4)17(H2O)]14− NTs, the smallest one being evidently the most rigid.
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5. Conclusions

We described the synthesis and structure of the new uranyl molybdate templated by protonated
isopropylamine molecules. The structure of modular [(UO2)3(MoO4)5]4− layers in 1 represents a new
isomer, not observed previously in uranyl molybdates.

Four different fundamental chains (C1, C‘1, C2, C3) are sufficient for constructing any known
layered topology with UO2:TO4 = 3:5, whereas five chains (C1, C‘1, C2, C3, C4) are required for the
known architectures of uranyl-based inorganic NTs (Figure 8).
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Figure 8. Fundamental chains with edge-sharing polyhedral in the structures of known layered
topologies with UO2:TO4 = 3:5 and known complex NT derivatives.

The layers in the structure of 1 are topologically similar to the layers forming NTs in uranyl
sulfates and selenates. In addition, the [(UO2)3(MoO4)5]4− layers in 1 are identical to those in uranyl
chromates. We can assume the formation of NTs with a similar topology in the structures of uranyl
molybdates and uranyl chromates. The rarity of uranyl-based inorganic NTs, known to date, stems
probably from the very narrow range of conditions which favor layer scrolling and which are only
poorly understood to date.

While the majority of uranyl compounds adopt layered structures where the 1:2 and 2:3 layers are
most common and exhibit rich topological diversity, these layers could not yet be scrolled. The formation
of these layers requires only two types of fundamental chains [41], which is probably insufficient to
form a NT. Out of ca. 1000 known uranyl compounds, only 10 contain the UO2:TO4 = 3:5 layers,
which can be scrolled, and just a handful of 4:7 and 5:8 representatives are known. Hence, formation
conditions are very specific already for the “parental” layers, to say nothing about those for the scrolling
and formation of nanotubules.

The results of the topological analysis of layered UO2:TO4 = 3:5 architectures and derived
nanotubules suggest that the latter may also form in uranyl molybdate systems.
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