Supplementary Materials: The State of Trace Elements (Cu, Ag, In) in Sphalerite Studied by X-ray Absorption Spectroscopy of Synthetic Minerals

Nikolay D. Trofimov, Alexander L. Trigub, Boris R. Tagirov, Olga N. Filimonova, Polina V. Evstigneeva, Dmitriy A. Chareev, Kristina O. Kvashnina and Max S. Nickolsky

Table S1. Position of edge jump (e.j.) and white line (WL) of In *K*-edge, Cu K-edge, and Ag *K*-edge XANES spectra.

Sample, standard	Feature	Position, eV						
In K-edge XANES								
2757	e.j.	27941.3						
5757	WL	27948.6						
4109	e.j.	27941.3						
4108	WL	27948.2						
4169	e.j.	27941.6						
	WL	27948.5						
4186	e.j.	27941.2						
	WL	27948.5						
4197	e.j.	27940.8						
	WL	27948.6						
Crelea	e.j.	27941.2						
Cuin52	WL	27948.7						
A -TraC	e.j.	27940.3						
AgInS ₂	WL	27948.6						
I C	e.j.	27941.5						
In253	WL	27946.8						
LO	e.j.	27942.4						
In_2O_3	WL	27949.0						
Cu K-e	dge XANI	ES						
4065	e.j.	8981.0						
4063	WL	8986.4						
1109	e.j.	8983.0						
4108	WL	8986.2						
1106	e.j.	8982.5						
4100	WL	8985.8						
Cu fail	e.j.	8979.0						
Cu Ioli	WL	8994.2						
Culme	e.j.	8983.0						
Culli52	WL	8985.8						
CuEoS	e.j.	8983.0						
CuFeS ₂	WL	9000.2						
<u></u>	e.j.	8980.6						
Cu2O	WL	8995.6						
CuO	e.j.	8983.8						
CuO	WL	8997.5						
C1128	e.j.	8980.7						
Cu25	WL	8998.4						
CuS	e.j.	8981.7						

	WL	8986.3				
Cure Se	e.j.	8981.0				
Cu2-x52	WL	8985.6				
Ag K-edge XANES						
4150	e.j.	25512.1				
4132	WL	25525.2				
4160	e.j.	25512.1				
4109	WL	25526.1				
4107	e.j.	25512.5				
4197	WL	25533.1				
	e.j.	25514.0				
Agion	WL	25525.0				
A ala C	e.j.	25511.6				
Agin52	WL	25535.6				
۸ ۵-۶	e.j.	25514.7				
Ag25	WL	25547.8				

Table S2. Results of Linear Combination Fit (LCF) analysis of Ag *K*-edge XANES and EXAFS spectra performed using ATHENA program.

	LCF analysis (%)										
	XANES							EXAFS			
Sample ID	Fitting in $\mu(E)^1$			Fitting	tin derivat $\mu(E)^1$	tive of	<u>Fitting in $\chi(k)^2$</u>				
	Ag_{Ag}^{3}	Ag_{Ag2S}^{3}	$\underline{Ag_{ss^3}}$	Ag_{Ag^3}	\underline{Ag}_{Ag2S^3}	Ag_{ss^3}	Ag_{Ag^3}	Ag_{Ag2S^3}	Ag_{ss^3}		
	(Redu	ced χ^2 , R-fa	(Redu	ced χ^2 , R-f	actor)	(Reduced χ^2 , R-factor)					
4152 4	82 ± 1	18 ± 1	0	81 ± 2	19 ± 2	0	88±3	12 ± 3	0		
0.9 wt.% Ag	(<0.1; 0.001)			(<0.1; 0.008)			(<0.1; 0.178)				
4169 4	68±3	0	32±3	65±2	0	35±2	69±2	0	31±2		
0.11wt.% Ag 0.09 wt.% In	(<0.1; 0.001)			(<0.1; 0.003)			(<0.1; 0.163)				
4197 4	0	2±2	98±2	0	4±2	96±2	0	0	100±1		
5.04 wt.% Ag 5.37 wt.% In	(<0.1; 0.001)			(<0.1; 0.005)			(<0.1; 0.246)				

Uncertainties are calculated by ATHENA program; XANES – X-ray absorption near edge structure; EXAFS – Extended X-ray absorption fine structure; ¹ Energy range 25,493-25,558 eV; ² *k*-range 3-12 Å⁻¹; ³ Ag_{Ag} = Ag⁰ inclusions, Ag_{Ag25} = Ag₂S inclusions, Ag_{ss} = Ag solid solution; ⁴ Concentrations of admixtures in starting materials

Figure S1. Results of Linear Combination Fit (LCF) analysis of Ag *K*-edge XANES and EXAFS spectra performed using ATHENA program.

Wavelet transform (WT) analysis of the experimental EXAFS spectra.

Wavelet transform of a given signal $\chi(k)$ is defined as:

$$W_f^{\psi}(a,k') = \frac{1}{\sqrt{a}} \int_{-\infty}^{+\infty} \chi(k) \psi\left(\frac{k-k'}{a}\right) dk \tag{1}$$

where the scalar product of the EXAFS signal, and the complex conjugate of the wavelet (ψ) is calculated as a function of *a* and *k*'; *a* is the parameter connected with *R* as $a = \frac{\eta}{2R}$ and *k*' conform to localization of wavelet function in *k* space. In this work we use the WT based on the Morlet wavelet functions:

$$\psi(k) = \frac{1}{\sqrt{2\pi\sigma}} e^{i\eta k} e^{-k^2/2\sigma^2} \tag{2}$$

where parameters σ and η correspond to width and frequency of the wavelet function, respectively. These parameters should be adjusted to get appropriate resolution in *k*- an *R*-space. For providing better quality of WT images we used modified WT functions (Timoshenko at al., 2009).

References

1. Timoshenko, J.; Kuzmin, A. Wavelet data analysis of EXAFS spectra (2009) *Comput. Phys. Commun* **180**, 920–925.

Table S3. Interatomic distances in sphalerite with and without dopants determined by DFT calculations. Literature data on interatomic distances for unrelaxed pure sphalerite structure are given at the bottom of the table. Data for the systems ZnS+Cu and Zn+Ag are obtained in the present study, all other data are adopted from Filimonova et al. (2019). The method of the calculations is given in Filimonova et al. (2019).

Bond		Coordination shels								
		Me-S		Me-Zn		Me1-Me2		Me-S		
		Ν	R,Å	Ν	R,Å	Ν	R,Å	Ν	R,Å	
ZnS+In Me=In		4	2.50	12	3.93	-	-	12	4.53	
ZnS+Cu Me=Cu		4	2.33	12	3.81	-	-	12	4.51	
ZnS+Ag Me=Ag		4	2.50	12	3.86	-	-	12	4.51	
ZnS+Cu+In (In and Au atoms are located in neighboring cites)	Me1=In	4	2.46, 2.50, 2.50, 2.51	12	3.85-3.97	1 3	3.87	12	4.50-4.54	
	Me2=Cu	4	2.31, 2.32, 2.32, 2.34	12	3.82-3.92			12	4.45-4.55	
ZnS+Cu+In (In and Au atoms are located far from each other)	Me1=In	4	2.49	12	3.93	1 12	10 70	12	4.53	
	Me2=Cu	4	2.33	12	3.81		12.76	12	4.51	
ZnS		4	2.36	12	3.86	-	-	12	2 4.51	
ZnS, literature XRD data, Jamieson and Demarest (1980)		4	2.34	12	3.83	-	-	12	4.49	

References

- Filimonova, O.N.; Trigub, A.L.; Tonkacheev, D.E.; Nickolsky, M.S.; Kvashnina, K.O.; Chareev, D.A.; Chaplygin, I. V.; Kovalchuk, E. V.; Lafuerza, S.; Tagirov, B.R. (2019) Substitution mechanisms in In-, Au-, and Cu-bearing sphalerites studied by X-ray absorption spectroscopy of synthetic compounds and natural minerals. *Mineral. Mag.* 83, 435–451. 10.1180/mgm.2019.10.
- 2. Jamieson, J.C. and Demarest, H.H., Jr. (1980) A note on the compression of cubic ZnS. *Journal of Physics and Chemistry of Solids* **41**, 963–964.