

Figure S1. Error Bars of the η and ξ values of different areas in Opal-02 and 04.

According to the formula for error propagation [45], the formula for estimating the standard error of η (Equation S1) is as follows:

$$SE_{\eta} = \frac{\left[(I(R2) + I(R3))^2 \cdot \left(SE_{I(R1)}^2 + SE_{I(R4)}^2\right) + \left(I(R1) + I(R4)\right)^2 \cdot \left(SE_{I(R2)}^2 + SE_{I(R3)}^2\right)\right]^{\frac{1}{2}}}{(I(R1) + I(R2) + I(R3) + I(R4))^2},$$
(S1)

where $SE_{I(R1)}$, $SE_{I(R2)}$, $SE_{I(R3)}$ and $SE_{I(R4)}$ are the standard errors of I(R1), I(R2), I(R3) and I(R4) respectively, which were obtained by the fitting program of origin 9 software.

The formula for estimating the standard error of ξ (Equation S2) is as follows:

$$SE_{\xi} = \xi \cdot \left(\frac{SE_{\Gamma(R3)}^2}{\Gamma(R3)^2} + \frac{SE_{\Gamma(R4)}^2}{\Gamma(R4)^2}\right)^{\frac{1}{2}},\tag{S2}$$

where SE_{$\Gamma(R3)$} and SE_{$\Gamma(R4)$} are the standard errors $\Gamma(R3)$ and $\Gamma(R4)$ respectively, which were obtained by the fitting program of origin 9 software.