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Abstract: The Vindhyan Basin in central India preserves a thick (~5 km) sequence of sedimentary
and lesser volcanic rocks that provide a valuable archive of a part of the Proterozoic (~1800-900 Ma)
in India. Here, we present an analysis of key sedimentary pyrite textures and their trace element and
sulfur isotope compositions in the Bijaigarh Shale (1210 + 52 Ma) in the Vindhyan Supergroup, using
reflected light microscopy, LA-ICP-MS and SHRIMP-SI, respectively. A variety of sedimentary pyrite
textures (fine-grained disseminated to aggregates, framboids, lags, and possibly microbial pyrite
textures) are observed reflecting quiet and strongly anoxic water column conditions punctuated
by occasional high-energy events (storm incursions). Key redox sensitive or sensitive to oxidative
weathering trace elements (Co, Ni, Zn, Mo, Se) and ratios of (Se/Co, Mo/Co, Zn/Co) measured in
sedimentary pyrites from the Bijaigarh Shale are used to infer atmospheric redox conditions during
its deposition. Most trace elements are depleted relative to Proterozoic mean values. Sulfur isotope
compositions of pyrite, measured using SHRIMP-SI, show an increase in 534S as we move up
stratigraphy with positive §3*S values ranging from 5.9%o (lower) to 26.08%o (upper). We propose
limited sulphate supply caused the pyrites to incorporate the heavier isotope. Overall, we interpret
these low trace element signatures and heavy sulfur isotope compositions to indicate relatively
suppressed oxidative weathering on land during the deposition of the Bijaigarh Shale.
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1. Introduction

Several Paleo-Mesoproterozoic and some Neoproterozoic intracratonic basins with thick platformal
siliciclastic—carbonate lithologies cover extensive parts of peninsular India. The largest amongst these is
the Vindhyan Basin in the Northern Cratonic Block of the peninsular shield (Figure 1 inset). This basin
in Central India, comprises a dominantly flat-lying, undeformed and unmetamorphosed sedimentary
package (including some volcanics) that wrap around the Archean (>2.5 Ga) Bundelkhand massif in
a semicircle to the north and abut against the Paleoproterozoic Aravalli orogenic belt to the northwest,
the Cretaceous Deccan Traps to the southwest and the Paleoproterozoic rocks of the Satpura mobile
belt in the southeast. Structurally, the basin is divided into a number of sub-basins, the biggest
amongst which are the Rajasthan sector in the west and Son Valley sector in Uttar Pradesh-Madhya
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Pradesh-Bihar in the east (Figure 1). In this large space-time framework, spanning from ~1800 to
~900 Ma [1-3], the basin witnessed supercontinental cycles (including apparent polar wandering),
volcanic activity, episodic igneous intrusions, formation of mineral deposits and evolution of complex
life forms, that has prompted multidisciplinary research in the basin [3-8].

The Vindhyan Basin provides an excellent opportunity to probe the concentration of redox sensitive
elements in carbonaceous horizons towards understanding oceanic-atmospheric oxygenation patterns
in the Middle Proterozoic, (or part of a period known as the “Boring Billion” [9]). Specifically, organic
matter-rich stratigraphic intervals, such as black shales/mudstones are most suitable for this purpose.
Previous studies have demonstrated how redox sensitive elements in black shales can be used as
paleoenvironmental indicators [10-15]. Black shales also allow application of certain geochronological
techniques, such as Re-Os, to acquire good age constraints. More recently, trace elements in sedimentary
pyrite associated with black shales have been used to understand the paleo atmosphere—ocean redox
conditions, as pyrite is an excellent host for most redox sensitive trace elements [16-21]. Apart from
trace element concentrations, sedimentary pyrite textures provide insights into depositional conditions
and paleo-biological conditions, i.e., when pyritized microbial textures are present.

The present study focusses on a particular part of the Upper Vindhyan stratigraphy i.e., organic
matter-rich pyritic black shales, known as the Bijaigarh Shale (Kaimur Group), as exposed near Amjhore
(Figure 1). The Bijaigarh Shale is an excellent repository of a variety of sedimentary pyrite textures,
some of which have been described in earlier literature [22,23] being recorded here for the first time.
Here we use these pyrite textures and their associated trace element and sulphur isotope concentrations
to reveal ocean and atmosphere redox conditions in the Vindhyan Basin during the deposition of the
Bijaigarh Shale. Recent Re-Os geochronology of the Bijaigarh Shale (1210 + 52 Ma) by [24] allows us to
further interpret our data in terms of Mesoproterozoic global paleoredox conditions.

Son Valley
sector

Chopan TZ4'N

Amijhore |

v i
v > B
“oadat y 9
) 2N
/ e ™ -
v {ap o
vv v/ Deccan Traps ) "z

e
[ Bhander Group (_<) e v

{ Gt ]

[5%%] Rewa Group \ ‘\\y /

B Kaimur Group '-f’(w’
I — | — \ {
200Kkm Semri Group \ ¢
[++++ Basement A Y
I6E ! !

Figure 1. Geological sketch map of the Vindhyan Basin modified after [25] showing the two main
sectors: Rajasthan in the west and Son valley in the east. The inset shows the different Proterozoic
basins in India and the location of the Vindhyan basin in the northern cratonic block.

2. Geological Background

The Vindhyan Basin, like other “Purana” basins in India, is generally considered to have developed
as a failed rift basin in Archean to early Paleoproterozoic basement rocks [26]. Tholeiitic magmatism
around 1800 Ma in Bijawar, Sonrai and Gwalior areas, encircling the Vindhyan Basin, bear evidence of
the extensional growth of the initial rifts. Most workers now agree that the Vindhyan sediments were
deposited in a westward-opening epicontinental basin in an intracratonic setting [27,28].
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2.1. Stratigraphy and Age

Stratigraphically, the Vindhyan Basin is divided into the Paleoproterozoic Lower Vindhyan and
the mostly Mesoproterozoic Upper Vindhyan (Figure 2), separated from each other by a basin-wide
unconformity [25]. The Lower Vindhyan is represented by the Semri Group of rocks which
unconformably overlie either the 1854 + 7 Ma Hindoli Group of rocks [29] of the Aravalli belt
or the 2492 + 10 Ma Bundelkhand granites [30]. The Semri Group comprises an alternating sequence of
shales, carbonates, and patchy sandstones along with two known periods of volcanic activity, with the
Porcellanite Formation being the most conspicuous. The Upper Vindhyan constitutes the Kaimur,
Rewa, and Bhander Groups with sandstones, shales, and marls, and volcanic activity recorded at the
base of the Rewa Group. Rocks of the Kaimur Group are also intruded by diamond-bearing kimberlites
and lamproites.
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Figure 2. A generalised stratigraphic column of the Vindhyan Supergroup showing the major
geochronologic data and the position of the Bijaigarh shale in the Upper Vindhyan sequence modified
after [7].

The depositional age of the Vindhyan sequence has received a lot of world attention in recent
years. The Lower Vindhyan sediments are now well constrained to the Paleoproterozoic between
~1800-1600 Ma through a number of radiometric studies (Figure 2) on the Kajrahat Limestone [31];
Porcellanite Fm. [2]; Rampur Shale [32]; and Rohtas Limestone [33,34], mostly based on the U-Pb
and Pb-Pb dating techniques. In contrast, sediments from the Upper Vindhyan (Kaimur, Rewa
and Bhander groups) still lack robust chronological control [35]. In the Son valley, a basin wide
unconformity exists between the Rohtas Limestone of the Lower Vindhyan and the overlying Upper
Vindhyan’s, Kaimur Group, which is represented by a lower shale unit and an upper quartz-rich
sandstone including a volcaniclastic deposit [36]. Amongst the three groups, the Kaimur Group is
best constrained mainly due to a recent bulk rock Re-Os isochron depositional age of 1210 + 52 Ma for
the Bijaigarh Shale [24] in the middle part of the group. The Majhgawan kimberlite pipe, which cuts
across the Semri and Kaimur groups and is exposed near Panna within upper Kaimur (Baghain)
sandstones, has an emplacement age of 1073 + 13.7 Ma [4]. This constrains the age of the uppermost
Kaimur Group to the Mesoproterozoic and suggests that the Rewa and Bhander groups may represent
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Neoproterozoic sequences. Detrital zircon analysis of the Upper Bhander Sandstone [3] on the other
hand identifies a youngest age population at ~1020 Ma. Depositional age for the uppermost Bhander
Group has recently been constrained by Pb—Pb dating of three carbonate horizons by [37] at ~900 Ma
(Figure 2). This short summary of geochronologic data of Vindhyan Supergroup rocks brackets its
age between Late Paleoproterozoic and Early Neoproterozoic, with a substantial part of the Upper
Vindhyan sequence deposited in the Mesoproterozoic.

2.2. Bijaigarh Shale

The Bijaigarh Shale is a laterally persistent unit of organic matter-rich black shale in the Kaimur
Group, up to 70 m in thickness, sandwiched between the lower Kaimur Sandstone below and the upper
Kaimur Sandstone above (Figure 2). The thickness of the unit decreases towards the west and the unit
pinches out west of Chopan [38]. A pyritiferous horizon divides this shale unit into a lower shale
(average thickness 32 m) and a top shale (average thickness 15 m) [39], best developed at Amjhore,
about 20 km south of Dehri-on-Son, in the Vindhyan hills of Rohtas district, Bihar (Figure 1). Here,
the pyritic shale occurs as a 0.78 m-thick stratiform horizon within the carbonaceous shales extending
over an area of 2.1 km?. The uniform thickness as well as the conformable nature of the pyrite bed with
the overlying and underlying carbonaceous shale is a conspicuous feature throughout. The bottom
shale has fine intercalations of sandstones and siltstones, is less carbonaceous (TOC: 1.53-1.89%, [39])
and shows gradational contact with the lower Kaimur Sandstone. The upper shale, on the other hand,
contains only a few siltstone beds, but is more carbonaceous (TOC: 3.83-4.15%, [39]). A transitional
zone of siltstone and argillaceous sandstone is reported [40] to host some galena mineralization near
the upper contact of the Bijaigarh Shale with Kaimur Sandstone.

Sedimentary pyrite exhibits syn-depositional features within the carbonaceous Bijaigarh
Shale [22,41,42], and attains substantial local concentration in the form of lenses and beds at Amjhore,
where a pyrite mine (24°43’36.9”” N; 83°59'40.3” E) was operated by Pyrites, Phosphate and Chemicals
Ltd. (PPCL), a Government of India undertaking, until 2003. The top shale above the pyrite bed
also has abundant pyrite disseminations and minute pyrite-rich laminae whereas the bottom shale
below the orebody contains fewer disseminated pyrite. All features cumulatively suggest a deeper
environment of deposition for the upper shale unit. The sediments of the Kaimur Group of rocks
were deposited in a terrestrial setting, and their environment of deposition changed from alluvial
fan, braided plain, fan delta to lacustrine facies [43]. The Bijaigarh Shale within the Kaimur Group
is the only stratigraphic horizon to manifest a strongly anoxic environment with profuse biogenic
activity, as evidenced by the prevalence of pyritiferous carbonaceous sediments. It has been considered
to represent a lagoonal deposit with an open ocean connection in some studies [24,44] and inner to
outer shelf by others [45]. Based on several sedimentological features, a study [46] proposed that
the Bijaigarh Shale is a shelf deposit below fair-weather wave base, formed as a result of maximum
flooding following a transgressive systems tract (TST), when the Vindhyan Basin was an epicratonic
sea with an open ocean connection to the northwest. Presence of features like profuse gutter casts
suggest intermittent storm incursions during the deposition of the Bijaigarh Shale within the overall
transgressive framework [47].

3. Methods

The pyrite bed and the immediate bottom and top carbonaceous shales were sampled in two
adjacent adits which are accessible in the erstwhile Amjhore mine. A total of nine samples were
collected in vertical profiles, out of which seven samples with high to low pyrite content were studied
in detail (Figure 3). The two samples rejected did not have any discernible pyrite.
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Figure 3. (A) Stratigraphic column of the Bijaigarh Shale unit at Amjhore modified after [39]; (B) Location
of samples collected for this study.

3.1. LA-ICP-MS Pyrite Analyses

Polished 1-inch laser mounts (pieces of rock mounted in epoxy) were used for reflected light
microscopy prior to trace element analyses (66 pyrite analyses) using the LA-ICP-MS facility at CODES,
University of Tasmania. Analyses were performed in a time-resolved mode using ASI RESOlution
Laser Ablation System comprising of CompexPro 110 ArF Excimer laser (193 nm wavelength, 20 ns
pulse width) equipped with 5155 Laurin Technic cell (Canberra, Australia) and coupled to an Agilent
7700 ICP-MS (Agilent Technologies, Santa Clara, CA, USA). Each analysis consisted of 30 s background
and 60 s of ablation signal acquisition in counts per second (cps). Ablation was performed at
energy density of 2.7 J/om? and 5 Hz laser repetition rate, dwell times varying between 5 and 50 ms,
depending on the count rates and total sweep time (time required to measure all isotopes once) of 0.76 s.
Ablation was carried out in pure He atmosphere, introduced at a rate of 0.35 l/min in the ablation
cell after which Ar was mixed with a rate of 1.05 I/min for improved efficiency of aerosol transport.
Primary reference materials (STDGL2b2 glass, GSD-1G glass and pyrite crystal) were analysed every
1.5 h (after analyses of two samples) in order to quantify and correct for the drift in the sensitivity
of the instrument. STDGL2b2 is an in-house standard used for primary calibration for quantifying
siderophile and chalcophile elements [48]; GSD-1G (USGS reference material; [49] was used to quantify
lithophile elements; sulfur was quantified using massive pyrite with stoichiometric Fe and S (46.5 wt.%
Fe, 53.5 wt.% S). Approximately, 10 pyrite spot analyses and 5 black shale matrix spot analyses were
conducted on each laser mount with 29 p spot size. Due to the fine-grained nature of the sedimentary
pyrites, matrix material of the black shales was analysed for trace elements, in order to negate effects of
matrix contamination during laser ablation of fine-grained pyrite. Sedimentary pyrites and matrix
were analyzed for 13C, 3Na, 24Mg, 27 A1, Si, 345, 39K, BCa, ¥Ti, 51V, 53Cr, 5Mn, ’Fe, %Co, N,
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65Cu, 6Zn, 75As, 7’Se, 85Rb, 88St, ©Zr, %Mo, 17 Ag, 111Cd, 1183n, 121Sb, 125Te, 137Ba, 157Gd, 178Hf
1817, 182\, 195pt, 197 Ay, 202Hg, 205T], 206p, 207Pp, 208pp, 209Bj, 232Th, and 238U. We report only limited
range of trace elements such as Co, Ni, Se, Mo, Zn, Pb, Tl and Cu, which are presented in Table S1.
Raw LA-ICP-MS generated-data, in counts per seconds were converted into parts per million (ppm)
using CODES in-house data reduction software according to [50].

3.2. SHRIMP Sulfur Isotopes

Sulfur isotope compositions (§34S and A®3S) were measured in-situ in pyrite with the SHRIMP-SI
ion microprobe at the Research School of Earth Sciences, the Australian National University (ANU).
The mounts were cleaned using ethanol, a dilute alkaline cleaning solution, and de-ionised water
and dried in a vacuum oven at 60 °C for 24 h, prior to analyses. Mounts were coated with ca. of
10 nm of Au before being placed into a steel holder for insertion into the SHRIMP sample lock. A Cs*
primary beam of ~2 nA was focused to sputter an area of ~25 pm in diameter on the Au-coated
target surface. Faraday cups were used for simultaneous detection of 32S~, 335~ and 3*S~. Signals of
325~ were collected on a 10'! Q resistor (50 V range), S~ and 3*S~ on 10!! Q) resistors (5 V range).
Under the operation conditions described, typical count rates on 32S~ were ~0.2-1.2 x 107 cps, on 335~
about 1.2-9.2 X 10° cps, and on 3*S~ about 0.7-5.2 x 107 cps. Additional specifications on analytical
conditions of the analyses are described in [51,52]. Data were collected in 1 or 2 sets (6—10 subsets),
20 s each, with each subset comprising ten 2 s integrations.

Unknown pyrite analyses were bracketed by measurements of pyrite reference material Balmat
(534S = +15.1 + 0.2%e0, [53,54]. The measured 335/32S and 34S/%2S ratios, were corrected for instrumental
mass fractionation, and expressed here in standard delta notation in permil (%o) relative to V-CDT
(VCDT—Vienna-Canyon Diablo Troilite), with:

corrected -1 (0/00)
reference

8%3Sy_cpr = 1000 x

[ (335/325
(335 /328

corrected 1 (%0)
reference

634SV—CDT = 1000 %

)
)
)
)

Capital delta values (A33S) were calculated following [53], where:

A33S =635 -1000x |1+ 05\ 1
- 1000

Internal precision of single spot analyses of §°*S and AS were generally better than 0.1%o and
0.3%o (2 SE; SE = standard error), respectively. Repeatability of 534S and A3S values ranged between
0.2 and 0.3%o. These values were calculated as the 1 sigma standard deviation (SD) of all analyses on
the Balmat reference material over the course of an analytical session.

4. Results

4.1. Pyrite Textures Using Reflected Light Microscopy

A textural study of the pyrite grains using reflected light microscopy was undertaken for two
reasons. First, sedimentary pyrite textures can provide clues to the depositional conditions including
redox, water column stratification, energy conditions, and microbial activity, as highlighted in several
previous studies [6,55-63]. Second, pyrite textures were carefully recorded prior to LA-ICP-MS analyses
in order to ensure only sedimentary to early-diagenetic pyrites were analysed for the study.

The pyrite bed in Amjhore is characterised by two different varieties of pyrite: a cryptocrystalline
massive type and a disseminated type. The bulk of the pyrite belongs to the former type and comprises
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pyrite spheroids and idiomorphic pyrite crystals within a groundmass of cryptocrystalline pyrite.
The disseminated type is made up of dense agglomerations of framboidal pyrite and disseminated
subhedral to euhedral grains of pyrite in the carbonaceous shale, with the pyrite spherules ranging
in diameter from 100 to 1200 um [22,41,64]. It also comprises pyritic clasts, either dispersed or
concentrated in patches and bands.

This study focused on the disseminated pyrite types and identified various sedimentary pyrite
textures in the Bijaigarh Shale. Most common are the fine-grained disseminations of sedimentary pyrite
grains in carbonaceous shale, including aggregates of fine-grained pyrite coalesced in sub-rounded to
elongated patches parallel to the bedding plane (Figure 4a).Within such bedding foliation, sometimes
wavy, framboids of pyrite are also noted (Figure 4b), which have also been described in previous
studies of Amjhore pyrite [22,23,65]. In some samples, partial (Figure 4c) to complete (Figure 4d)
replacement of preexisting spherical structures in the black shale matrix by pyrite is observed.

C) & r )

Figure 4. Photomicrographs under reflected light; (a,b): fine grained pyrite disseminated in black shale
matrix; (¢,d): pyrite spheres within a pyritic black shale matrix.

Rounded-sub-rounded clasts of pyrite dispersed in a pyritic black shale matrix are interpreted
as pyrite lag deposits (Figure 5a,b), formed by physical reworking of the pyrite bed in a high-energy
environment. Both zoned and unzoned pyrite overgrowths are also present in such deposits
(Figure 5¢,d).

Some nodular/spheroidal and stromatolitic/microlaminar carbonaceous concentrations
(Figure 6a,b) in the pyritic shale groundmass possibly represent microbial structures. Pyrite infillings
in a possibly geopetal structure (Figure 6c) or pyrite replacing a lensoid shape (Figure 6d) are observed
in some samples. Additionally, commonly noted are pyrite clasts, possibly representing bioclasts,
which have been pyritised later, during, or after the deposition of the Bijaigarh Shale (Figure 7a-d).

Overall, a variety of sedimentary textures (possibly of both biotic and abiotic origins) characterize
pyritic textures in the sulfidic horizon and also in the lower and upper shales. Interpretation of
these textures and several possible formation mechanisms are discussed in a later section (refer
textural implications). The order in which these textures are observed and occur across the pyrite
bed i.e., from the top of the bottom carbonaceous shale to the pyrite bed to the upper carbonaceous
shale, is interesting to note (Figure 8). As mentioned above, fine-grained pyrite in layers, aggregates
(including framboidal), and fine disseminations of microcrystals of pyrite occur all through the section.
Black shales underlying the basal pyrite bed are relatively pyrite—-poor compared to all other samples
and pyrite mainly occurs as microcrystals disseminated in the shale. Further up stratigraphy into the
pyrite bed, we observe a very pyritic shale with pyrite spheres and lenses including lag deposits where
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some individual pyrite clasts are fairly well rounded (Figure 8). In these samples, we also observe
spherical concretions and stromatolite-like structures (Figure 8). Closer to the contact between the
pyrite bed and upper carbonaceous shale, we observe textures like pyrite infillings and lenses that are
possible geopetal structures. The upper shale exhibits streaks of fine-grained pyrite in repetitive layers.
Close to the clay band, we observe another pyrite lag deposit where pyritised clasts (possibly bioclasts)
are plentiful (Figure 8).

Figure 5. Photomicrographs under reflected light; (a) pyrite lag layer in a laser mount; (b—d) pyritic
clasts within the lag layer.

-

c)

Figure 6. Photomicrographs under reflected light; (a,b) microbial structures (lenticular, spherical,
and stromatolitic); (c) pyrite infilling structures; (d) lensoidal pyrite grain.
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4.2. Pyrite Trace Element Chemistry

Redox sensitive trace elements in black shales [11,13,65] and more recently, in sedimentary
pyrites [16,20], have been used to interpret paleoredox conditions in the ocean and atmosphere.
In this study, we measured key trace elements (Ni, Co, Cu, Se, Mo, Zn, Pb, Tl) in sedimentary pyrite
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using LA-ICP-MS to provide additional insights into the evolving depositional conditions during the
formation of the Bijaigarh Shale. Pyrite trace element analyses for fine grained disseminated pyrite
and the coarse pyrite lags are presented separately in Tables S1 and S2.

The fine-grained variety of pyrite in the Bijaigarh Shale unit exhibits slightly higher concentrations
of Ni, Cu, Mo, and high concentrations of Zn compared with their coarser counterparts (Table S2).
Mean Ni, Cu, and Mo in fine grained pyrite are 288 ppm, 155 ppm, and 57 ppm, respectively, compared
to mean values of 134 ppm, 82 ppm, and 30 ppm, respectively, in coarser varieties. Mean Zn is
~100 ppm in finer grained pyrites compared to 35 ppm in coarser varieties. Selenium, Co and Tl remain
roughly the same in both varieties (Table S2); mean Se, Co and Tl in fine grained pyrite are 15 ppm,
340 ppm and 16 respectively, and in coarser grains are 11 ppm, 289 ppm and 10 ppm respectively.
Very high Pb concentrations are noted in the coarse pyrite lags (~1300 ppm) compared to the finer
grained variety (~200 ppm) (Table S2). Ratios of Se/Co, Ni/Co, Mo/Co, Zn/Co are also ~2-3 times higher
in finer grained pyrites compared to coarser varieties (Table S2).

Mean of trace element concentrations of both pyrite types and their ratios in this study have
been compared with the mean of ~4700 sedimentary pyrite analyses categorized into different time
spans i.e., Phanerozoic, Proterozoic, and Archean [16,18,19] (Table S3). This was mainly done to
compare the pyrites from the Bijaigarh Shale with sedimentary pyrites of varying ages (Table S3).
Mean concentrations of trace elements and their ratios in the Bijaigarh Shale unit are significantly
lower than the Phanerozoic sedimentary pyrites [16,18] except Co and Tl which are only slightly
lower. Concentration of Pb however, is higher in the Bijaigarh pyrites relative to the Phanerozoic.
When compared to the Proterozoic average, trace element concentrations and their ratios are also
lower in the Bijaigarh pyrites. Cobalt, Ni, Cu concentrations, Ni/Co, Zn/Co in the Bijaigarh Shale
unit are also significantly lower compared to the Archean, with Zn, Se, Se/Co being only slightly
lower. Molybdenum, T1, Pb, and Mo/Co are slightly higher in the Bijaigarh Shale unit compared to
the Archean.

4.3. Sulfur Isotopes (SHRIMP_SI)

Three samples from different stratigraphic levels of the Bijaigarh Shale Unit (AJ15/3iii: lower;
AJ/4i: middle; AJ15/1: upper) were selected for sulfur isotope measurements. Pyrite sulfur isotope
compositions compliment trace element chemistry as they provide additional evidence for depositional
redox conditions. A total of 45 analyses were undertaken in the three samples (Table 54).

The 5%*Sycpr values in three samples were as follows:

- AJ15/3iii (lower) ranged between +5.9 and +9.7%. (n = 18)
- AJ15/4i (middle) ranged between +6.23 and 11.05%o (1 = 8)
- AJ15/1 (upper) ranged between +6.5 and 26.08%o (1 = 19)

The §34Sycpr values (mean) increases from 7.8 + 1.06%o 1SD (lower) to 9.25 + 1.65%o 1 SD (middle)
to 12.02 + 3.84%o 1 SD (upper) as we move up stratigraphy in the Bijaigarh Shale unit. The A%*S values
of pyrites in the three samples are generally low, i.e., 0.14 + 0.21%o (1 SD), 0.17 + 0.13%. (1 SD) and
0.03 + 0.10%o0 (1 SD), for AJ15/3iii, AJ15/4i and AJ15/1, respectively.

5. Discussion

5.1. Textural Implications

The Bijaigarh Shale, particularly the pyrite bed and the upper carbonaceous shale, exhibits a variety
of textures possibly recording the various depositional conditions operative during its formation.
Sedimentation commenced in an oxygen-poor environment, created as a result of decomposition of high
levels of organic matter. Assuming an authigenic supply of Fe (from the sediments or water column),
bacterial sulphate reduction in the sediment/water column led to the formation of microcrystals of
pyrite as evidenced by the pyrite disseminations in the lower carbonaceous shale. With subsequent
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deposition of abundant organic matter, oxygen was entirely consumed; further bacterial sulphate
reduction combined with a steady supply of Fe, the shale became more pyritic. This is indicated by the
formation of pyrite in layers and aggregates grading into massive pyrite layers, i.e., the pyrite bed.

Occasional reworking of the sediments possibly caused the formation of the pyrite lags. This could
be attributed to high-energy storm incursions during sedimentation. Other sedimentological studies in
the formation (tidal bundles, gutter casts, etc.) also confirm such disruptive events [7,36,47]. When such
high-energy events were absent, pyrite formed in layers and aggregates as commonly observed in
all the samples. One could argue that the pyrite clasts in the lag deposit were derived from a distant
source and not the Bijaigarh Shale. However, if that was the case, then we would expect significant
differences in pyrite trace element concentrations in samples (e.g., AJ/15/1) where both fine-grained
and pyrite lag were analysed (Tables S1 and S2). The data does not support this situation and we
interpret the lags to be derived as a result of reworking of the underlying pyrite laminations.

Textural evidence suggests that some clasts within the pyrite lags may be biogenic (Figure 7).
It is possible that pyrite precipitation occurred on surfaces of microbial remnants (hard or soft parts?),
manifested in the form of pyritised bioclasts and pyrite infillings. A biogenic origin of these clasts is
highly likely, supported by two features: high TOC% (3—4%) observed in the Bijaigarh Shale unit [39] and
the characteristic shapes of these clasts. It is also possible that the spherical clasts are abiogenic and have
formed due to extensive reworking. It is interesting to note that these spherical/rounded clasts co-occur
with non-spherical clasts. Therefore, extensive reworking could not have caused sphericity/roundness
in selective clasts only. Also, phosphatic concretions and microbial mat formation has been described
from the Bijaigarh shale in previous studies [23,66]. Concretions and stromatolite-like structures have
been noted in Figure 6a,b as well, which points towards a biogenic origin for these clasts.

The textural study investigated if pyrite texture types may explain their trace element content.
Trace elements may be adsorbed into the structure of pyrite (chemiabsorbed onto the defect sites of
Fe and S on the pyrite surface) or may be incorporated as inclusions within pyrite [64]. A number
of chemical factors may control trace element uptake by pyrite along with both thermodynamic as
well as kinetic influences [67]. These chemical factors include electronic configuration of an element,
oxidation state, ligand field stabilization energies, water exchange rates and reactivity to chemical
species (hydroxide/chloride/sulphide) relative to Fe [67]. For instance, elements like Zn, Cd, Pb
have higher water exchange rates relative to Fe, due to weak to no ligand field stabilization energy
(owing to electronic configuration). Higher water exchanges rates of Zn, Cd and Pb facilitates their
sulphide formation. These elements occur as sulphide inclusions within pyrite [67]. On the other
hand, elements like Ni and Co have slow water exchange rates compared to Fe, which precludes
their sulphide formation and are adsorbed into the structure of the pyrite [67]. It should be noted
that regardless of the mechanism of incorporation, trace element availability in the water column
is an important prerequisite. Syngenetic pyrite trace element content may be a good measure of
the trace element availability. However, subsequent transformation of syngenetic pyrite may alter
the original trace element content. We speculated if pyrite morphologies may explain differences in
trace element concentrations and their ratios observed in fine-grained pyrite vs pyrite lag textures.
Most trace elements except Pb are enriched in the finer grained variety of pyrite relative to the coarser
variety. Minor recrystallization of the coarse pyrite during diagenesis and lag formation may be the
cause, as noted in other black shale formations [16]. However, in one sample (AJ15/1) where both
types of pyrites were analysed, little differences were observed. This is why we conclude here that the
variation is possibly due to changes in depositional conditions upstratigraphy. A note of caution on
this conclusion as it is based on just one sample and may be speculated in future studies.

5.2. Atmospheric Redox Implications (Pyrite-Trace Elements)

Trace element concentrations, such as Mo, Se, Co, Zn, Ni, Cu, Pb, Tl and certain trace element
ratios (Se/Co, Mo/Co, Zn/Co) are used here to interpret paleo-atmospheric redox condition during
the deposition of the Bijaigarh Shale. This is based on the fact that oxidative weathering on land
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releases these trace elements into the riverine flux, which is a dominant source of these trace elements
in the marine system [13,15,16,68-72]. However, Co relative to Se, Mo, Ni, Zn is retained by Fe-Mn
oxides and hydroxides on land, which decreases its supply in the riverine flux during oxygenation.
Whilst Mo, Se, Ni, and Zn should increase in concentrations in sedimentary pyrite due to progressive
oxygenation on land, Co generally shows an opposite trend [20]. Any increase in the former should be
accompanied by decrease in Co; therefore, ratios of Se/Co, Mo/Co, and Zn/Co are considered as robust
paleo-indicators of atmospheric oxygenation. Apart from oxidative weathering, provenance of the
sediments also bears a control on the type of trace element flux. Trace element patterns in this study
will be discussed in light of these two trace element source parameters.

Most trace element concentrations and their ratios are below or close to the mean values for the
Proterozoic, indicated in Figures 9-11 by the dashed line, which is not uncommon for Proterozoic
black shales. Several studies have indicated that low atmospheric oxygen during the Proterozoic
has resulted in suppressed trace element signatures in black shales [7,13,15,16]. Elements like Ni, Se,
Mo, Cu, Tl, and Zn show a trend where concentrations are mostly below or close to the Proterozoic
mean values (dashed line in Figures 9 and 10) with Co content mostly above the Proterozoic mean
value. Lead on the other hand shows a significant enrichment in the clay band present in the upper
carbonaceous shale. Reasons as to why the pyrites are enriched in Pb are speculative. There is however
a thin band of galena mineralization (0.4% Pb) in the siltstone between the upper carbonaceous shale
and the Upper Sandstone. Concentrations of Pb other than in the clay band are generally consistent
and low (below the Proterozoic mean values). Ratios of 2%”Pb and 2%°Pb of the fine-grained pyrites and
Pb-enriched pyrites were calculated and they were similar (=0.860). That rules out the possibility of
a later Pb enrichment in the sediments.
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Figure 9. Trace element concentrations (Co, Ni, Se, Mo) in the Bijaigarh Black Shale Member; dashed
line represents Proterozoic mean values [19]; red squares—pyrite lag; black circles—fine-grained pyrite.
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Figure 10. Trace element concentrations (Zn, Pb, Tl, Cu) in the Bijaigarh Black Shale Member; dashed
line represents Proterozoic mean values [19]; red squares—pyrite lag; black circles—fine-grained pyrite.
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Figure 11. Trace element ratios (Se/Co, Mo/Co, Ni/Co, Zn/Co) in the Bijaigarh Shale Member; dashed
line represents Proterozoic mean values [19]; red squares—pyrite lag; black circles—fine-grained pyrite.

Other oxygenation proxies such as Se/Co, Mo/Co, and Zn/Co are all below the Proterozoic mean
value (Figure 11) indicating an absence of any significant oxygenation. Ratios of Se/Co and Mo/Co of
the Bijaigarh Shale unit have also been compared to Archean and Phanerozoic (Figure 12). It is evident
that although values are significantly lower than the Phanerozoic, they are higher than the Archean.
This implies lower atmospheric oxygen levels at ~1.2 Ga relative to the Phanerozoic but higher than
the Archean (Figure 12). Ratios were also compared with pyrites from Neo-Meso-Paleoproterozoic to
demonstrate that the data fits in well with the average Proterozoic analyses (Figure 13).
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Figure 12. Comparison of Se/Co vs Mo/Co in the Bijaigarh Black Shale unit with Archean and
Phanerozoic sedimentary pyrites [16,18].
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Figure 13. Comparison of Se/Co vs Mo/Co in the Bijaigarh Black Shale unit with Proterozoic pyrites [19].
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5.3. Atmospheric Redox Implications (Pyrite-Sulfur Isotopes)

In order to have further insights into the redox state of the depositional conditions of the Bijaigarh
shales, sulfur isotope compositions of three samples were studied. An increase in 634Spyrite values up
stratigraphy in the Bijaigarh Shale was observed, which could be interpreted in several ways (Figure 14).
First, it may represent a transition from a partially closed to a closed system depositional conditions,
with progressively heavier values as we move up stratigraphy. That is because progressive cessation
of open ocean connection would hinder fresh injections of sulphate for reduction. This will result
in the seawater being more enriched in 34S after 32S has been exhausted. Following that, the pyrites
will progressively incorporate the heavier isotope. Alternatively, an overall decrease in pO; of the
atmosphere—ocean system as discussed above, would also impede the supply of the sulphate in
the oceans and therefore causing the pyrites to incorporate the heavier isotope (**S) due Rayleigh
fractionation. Important to note here is the absence of negative 634Spyrite values, which may also imply
lower seawater sulphate that may have been bacterially reduced to pyrite with heavier values. Our data
is also consistent with observations made by [7,41], where a combination of closed system, anoxic
ocean conditions, and lower marine sulphate concentrations (owing to lower oxidative weathering)
were proposed for the Bijaigarh Shale.
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Figure 14. SHRIMP-SI Pyrite Sulfur isotope composition in the Bijaigarh Shale Unit.
5.4. Summary

Pyrite trace element concentrations and their ratios in the Bijaigarh Shale are well below the global
Proterozoic mean values (except Pb enrichment in the clay band). Sulphur isotope ratios of pyrite
(634Spyrite) exhibit an increase in upstratigraphy. The combination of the pyrite trace element and
sulphur isotope characteristics in the Bijaigarh Shale suggest a few possibilities. First, lack of sufficient
oxidative weathering on land led to a decreased supply of trace elements and sulphate in the marine
system via riverine flux rendering the trace element values in pyrite to be lower than or similar to
the Proterozoic mean values and heavier 634Spyrite values, respectively. Although, it should be noted
that a recent study by [19] indicated ~7-8% PAL (Present Atmospheric Level) of O, wt.% during the
Mesoproterozoic, i.e., 0.38 PAL, much higher than 0.002 PAL suggested by [72]. Therefore, the decrease
in oxygenation referred in this study is relative to the time prior to the deposition of Bijaigarh Shale.
It is possible that provenance played a role in controlling the trace element patterns in the Bijaigarh
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Shale. A dominantly felsic provenance (post-Archean Proterozoic in age), is proposed for the Upper
Kaimur Group on the basis of various geochemical discriminants, elemental ratios, like K,O/NayO,
Al,O3/TiO;,, Si0,/MgO, La/Sc, Th/Sc, Th/Cr, Gdn/Yby and pronounced negative Eu anomalies [73].
The felsic provenance for the Kaimur Group (including the Bijaigarh Shale) combined with relatively
low oxidative weathering may have caused the low trace element concentration in pyrites as observed
in this study. That is because most redox sensitive and nutrient trace elements (Ni, Co, Mn, Cu, Zn,
Se, V) are relatively enriched in mafic rocks compared to felsic rocks [74]. Elements like Mo and TI
however, are slightly more enriched in felsic compared to mafics [74].

6. Conclusions

This study involved understanding sedimentary pyrite textures, their trace element and sulphur
isotope ratios to reflect on paleo-redox conditions during the deposition of the Bijaigarh Shale unit in the
Mesoproterozoic. Sedimentary pyrite textures indicate variable depositional conditions for the Bijaigarh
Shale. Deposition began with fine-grained pyrite disseminations in layers and aggregates, suggesting
a quiet, low energy environment and mildly reducing water column conditions. With subsequent
enhancement of organic matter deposition and its decomposition, the water column gradually became
more strongly reducing and potentially, a closed system, resulting in the formation of the pyrite bed.
Occasional reworking of the pyrite bed during storm incursions caused the pyrite lags to form. Overall,
low concentrations of the trace elements particularly Se and Mo and their ratios (i.e., below the global
mean values for the Proterozoic) suggest relatively low oxygen conditions during the deposition of
the Bijaigarh Shale. Decreasing oxygenation and closure of open ocean connection during deposition
of the unit, potentially caused a lower input of sulfate in the ocean resulting in 3Srich-seawater and
subsequently an increase in 634Spyrite values upstratigraphy. Owing to partial ocean connectivity of
the Vindhyan Basin during the deposition of the lower part of the Bijaigarh Shale (1210 + 52 Ma),
there remains a possibility of extrapolating these paleoredox conditions for a more global context in
the Mesoproterozoic.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-163X/10/7/588/s1,
Table S1: Pyrite LA-ICP-MS analyses in Bijaigarh shales in ppm, Table S2: Mean trace element concentrations of
fine-grained pyrite vs pyrite lag, Table S3: Mean trace elements in this study compared to mean pyrite analyses
by [16-19]; concentrations are in ppm, Table S4: SHRIMP-SI pyrite analyses in AJ15/1, AJ/154i, AJ15/3iii in %o.
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