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Abstract: A multi-step procedure, based on the employment of K10-Montmorillonite, is proposed
for the selective removal of metal ions and dyes from a multicomponent solution. The objective
is twofold: decontaminate the effluents and separate and recover the valuable byproducts present
in wastewaters. Three common contaminants, i.e., crystal violet dye (CV), Ce(III) and Pb(II) were
chosen as “model” pollutants. The main factors affecting the pollutants’ sorption were investigated.
The experimental data were correlated with adsorption isotherms and kinetic models to obtain a
deeper insight into the adsorption processes. The affinity of the clay toward the pollutants is favored
by an increasing pH and follows the order CV > Pb(II) > Ce(III). Whereas Ce(III) metal ions do
not adsorb onto clay under strongly acidic conditions, both Pb(II) and CV can adsorb under all the
investigated pH conditions. The analysis of isotherms and kinetic profiles revealed that CV adsorbs
onto clay through a mechanism consisting of two parallel processes, namely cation exchange on the
external mineral surface and in the interlayer and surface complexation at the edge sites, while metal
ion uptake is due solely to cation exchange processes involving mineral surfaces. The time required
for the complete removal of pollutants follows the order CV > Ce(III) >> Pb(II). The possibility to
modulate the adsorption features by changing experimental conditions was successfully employed to
propose the best strategy for the progressive removal of different components from aqueous solutions.
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1. Introduction

Water effluents are very complex systems that usually contain different kinds of pollutants.
The modern approach to water remediation requires the development of “green” and economically
sustainable strategies which allow for the selective removal of the contaminants and provide the
possibility of recovering and reusing them [1–5].

Adsorption technology was revealed as a very effective strategy for the disposal of several kinds
of pollutants [6–15].

In this regard, researchers are increasingly interested in clay minerals which are biocompatible,
non-toxic, cost effective and efficient [16–20]. In the present paper, the employment of a
K10-montmorillonite clay mineral (K10-Mt) is proposed as versatile sorbent for three classes of
pollutant, namely dyes, rare earth and heavy metals. Among the most hazardous contaminants, dyes
and metals are widely released from industrial activities and represent two of the most widespread
causes of water pollution, due to their toxic potential and their recalcitrant capacity [21–33].

The choice of montmorillonite as sorbent was related to the extensive literature dealing with the
investigation and exploitation of this mineral clay for environmental applications [34–38]. The present
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paper represents the continuation of a previous work by Parisi et al. [39], where the performances of
montmorillonite clay in the removal and separation of contaminants from a binary mixture, containing
the crystal violet dye (CV) and the Ce(III) metal ion, were investigated. In light of the promising results,
the study was here extended to a ternary mixture containing, in addition to the aforementioned CV
and Ce(III), the Pb(II) metal ion as model for heavy metals.

All the investigated contaminants are in the cationic form in a wide range of pH values.
The estimated pKa values of crystal violet are indeed 5.31 and 8.64 [40], indicating that this compound
will exist almost entirely in the cation form in the environment.

Beside their role as representative exponents of the three classes of compounds, the contaminants
were selected since they are all largely employed in several applications and widely released from
industrial activities [41–47]. Therefore, the probability of finding the three classes of contaminants
in sewage effluents and rivers close to industrial areas is certainly high. In addition, their toxic
effect on human health is well documented, which makes their disposal an important environmental
issue [48–52]. Moreover, the high versatility of the K10-Mt clay provides the possibility of progressively
removing the pollutants in order to separate and reuse them, thus accomplishing the twofold objective
to decontaminate and fully exploit the effluents.

Although adsorption strategies were widely applied in the removal of metal cations and
dyes [53–58], a systematic study with the aim of developing an efficient procedure for the selective
removal and separation/recovery of the three classes of compounds in a multicomponent mixture is
still lacking.

In the first part of the present work, the adsorption of the three components separately was
investigated. Batch experiments were performed to evaluate the influence of various experimental
parameters like pH conditions, initial amounts of pollutants and clay. Adsorption isotherms and
kinetic profiles were then investigated in order to obtain a deeper insight into the adsorption processes
and to establish the most effective strategy to modulate the adsorption of the different pollutants.

Then, based on the obtained information, a multi-step procedure was tested to selectively remove
the three components from a ternary mixture mimicking a real effluent.

2. Materials and Methods

2.1. Materials

K10-montmorillonite (K10-Mt), crystal violet (CV, C25H30ClN3, Mw = 407.99 g·mol−1), cerium
nitrate hexahydrate (Ce(III)), lead nitrate (Pb(II)), hydrochloric acid (HCl) and sodium hydroxide
(NaOH) standard solutions were from Sigma Aldrich and they were used as received. K10-Mt is an acid
treated montmorillonite with a partially destroyed structure [59]. The BET surface area is 220 m2

·g−1,
the CEC is 119 meq/100 g, the total pore volume is 0.3 cm3

·g−1 and the average pore size is 6.25 nm.
The structural formula is as follows:

(K0.25Na0.118Ca0.022)(Al1.06Fe0.206Mg0.166)(Si7.39Al0.61)O20(OH)4

2.2. Preparation of Pollutant/Clay Composites: Equilibrium and Kinetic Experiments

Pollutant stock solutions and K10-Mt suspensions were prepared by weighing the proper amounts
of the components and dissolving them in HCl or NaOH solutions at the required pH (2.0, 4.0, 6.0, 8.0).
The clay dispersions were stirred for about 2 h before use.

Hybrid materials at different pH values were prepared by adding appropriate aliquots of the
aqueous solution of pollutants to the aqueous K10-Mt dispersion. The obtained dispersion was
stirred for 2 h, then centrifuged 1 h at 10,000 rpm using a Centra MP4R IEC centrifuge (International
Equipment Company, Needham Heights, MA, USA). The obtained supernatants were separated from
the solid and spectrophotometrically analyzed by registering the UV-Vis spectra with a diode array
Analytic Jena S600 spectrophotometer (Analytik Jena, Jena, Germany) equipped with thermostated
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compartments for cuvettes with optical path lengths (l) of both 1 and 5 cm, and a magnetic stirring
apparatus. The UV-Vis absorbance values (A) were used to determine the residual concentration of
the contaminants (C) after the treatment with the clay, using the Lambert–Beer law (A = ε × l × C).
The molar adsorption coefficient values (ε) of CV, Pb(II) and Ce(III) at two different pH conditions
were determined by constructing the calibration curves (Table 1).

Table 1. Molar adsorption coefficient values (ε/M−1
·cm−1) of crystal violet dye (CV), Pb(II) and Ce(III)

at pH 2.0 and 6.0.

Molar Adsorption Coefficient
pH 2.0 pH 6.0

ε/M−1·cm−1 R2 ε/M−1·cm−1 R2

CV
(λmax = 591 nm) 89,000 ± 3000 0.99627 75,000 ± 2000 0.99587

Pb(II)
(λmax = 207 nm) 37,000 ± 4000 0.99464 27,200 ± 800 0.99954

Ce(III)
(λmax = 253 nm) 750 ± 30 0.99852 850 ± 40 0.99753

Aiming at evaluating the minimum amount of clay required for the complete removal of the
pollutants under the different conditions, experiments were performed by keeping the concentration
of contaminants constant (20 mg·dm−3 and 60 mg·dm−3) and changing the amount of mineral clay in
the range 0.05–1.6 g·dm−3. The effect of pH was investigated by carrying out experiments in the pH
range from 2.0 to 8.0. When necessary, the supernatants of Pb(II) and CV were opportunely diluted,
while, for Ce(III) solutions, due to the very low ε value, long path cuvettes (optical path lengths 5 cm)
were employed.

In order to construct the adsorption isotherms, the concentration of the pollutants was changed in
the range 2–300 mg·dm−3 at a constant amount of K10-Mt (0.4 g·dm−3).

Kinetic adsorption profiles were studied under constant stirred conditions at 25.0 ◦C by monitoring
the UV-Vis spectrum evolution of aqueous solutions of pollutants in the presence of K10-Mt by using an
Analytic Jena S600 diode array spectrophotometer. The initial concentration of the contaminants was
chosen in order to obtain reasonable absorbance values (10 mg·dm−3 for CV and Pb(II) and 50 mg·dm−3

for Ce(III)). In all cases, the amount of clay was chosen in order to ensure the total removal of them.
Since it is known from the literature [52] that the coalescence of the montmorillonite particles could
slightly influence the absorbance reduction, this process was also monitored spectrophotometrically
and automatically subtracted point by point from the kinetic adsorption profiles.

3. Results and Discussion

3.1. Effect of Experimental Parameters: pH Value, Initial Concentration of Adsorbate, Amount of Sorbent

Batch experiments were performed to evaluate the influence of various experimental parameters
onto sorption processes.

Figures 1 and 2 report the adsorption capacity values of the pollutants as a function of the amount
of clay in terms of both the amount of adsorbed pollutant per gram of clay (Qe) and the percentage of
sorption. Two different values of pH (namely pH 2.0 and pH 6.0) and two different values of sorbate
initial concentration were analyzed.

These preliminary experiments allow for the determination of the amount of clay required for the
complete removal of the different pollutants (100% sorption) under different experimental conditions.

As clearly evidenced in the figures, the equilibrium sorption capacity, Qe, which actually represents
the pollutant/clay ratio, ensuring the complete adsorption of the species, follows the order CV > Pb(II)
> Ce(III). As for the Ce(III), as already observed in [39], under strongly acidic conditions no adsorption
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onto K10-Mt is detected. Moreover, an increase in the sorption capacity with the increasing pH is
detected, as is better evidenced in Figure 3.Minerals 2020, 10, x FOR PEER REVIEW 4 of 17 
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The increase in the adsorption capacity of cationic species with the increasing pH is in line with
the literature [36,39] and is attributable to the deprotonation of hydroxyls, which produces a larger
negative charge to compensate. The lack of adsorption of Ce(III) at an acidic pH seems to indicate the
strong influence of electrostatic repulsions between H+ ions and the metal cations.

3.2. Adsorption Isotherms

A deeper understanding of the adsorption processes can be achieved through an investigation of
the adsorption isotherms, as reported in Figure 4.

The sorption parameters obtained from the application of the classical Langmuir and Freundlich
models are collected in Table 2.

The Akaike information criteria (AIC), the coefficient of multiple determination (R2) and the
analysis of the residuals (Supplementary Materials, Figure S1) were used as statistical criteria to
determine the most reliable model [53].

The most reliable model was chosen on the basis of the lower AIC value, the R2 value closest to
unity and the higher randomness of the results in the residual plot.

According to Parisi et al. [39], the Freundlich model, which implies the heterogeneity of the
adsorption sites, proved to be the most reliable for the uptake of CV. The Langmuir model better
reproduces the adsorption isotherm of both Pb(II) and Ce(III), indicating the presence of a single
adsorption site for the metal ion uptake. It can be argued therefore that both cation exchange processes
and electrostatic interaction with the clay surface occur in the case of CV adsorption, while the second
process is solely responsible for the metal ion uptake.
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Although the adsorption parameters obtained for dye and metals do not allow for a direct
comparison, Figure 4 and data reported in Table 2 confirm the already-reported trend for the adsorption
capacity (CV > Pb(II) > Ce(III)).Minerals 2020, 10, x FOR PEER REVIEW 6 of 17 
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Figure 4. Adsorption isotherm of CV, Pb(II) and Ce(III) onto K10-montmorillonite clay mineral (K10-Mt)
performed at pH = 6.0 (�) and pH = 2.0 (�). Lines correspond to the fit by Freundlich model for CV
and Langmuir model for metals ions, respectively.

Table 2. Sorption parameters for the adsorption isotherms of the contaminants onto K10-Mt.

Contaminants

Langmuir
Qe= qm

·KL·C
1+KL·C

Freundlich
Qe=KF·C1/n

Sorption Parameters pH 2.0 pH 6.0 Sorption Parameters pH 2.0 pH 6.0

CV

KL
dm3
·mg−1 0.105 ± 0.01 0.18 ± 0.02

KF
(mg g−1)

(dm3 mg−1)1/n
33.3 ± 0.8 50 ± 1

qm
mg·g−1 290 ± 20 300 ± 18 n 1.51 ± 0.03 1.51 ± 0.01

Pb(II)

KL
dm3
·mg−1 0.8 ± 0.1 0.8 ± 0,1

KF
(mg·g−1)

(dm3
·mg−1)1/n

26 ± 2 67 ± 6

qm
mg·g−1 59 ± 3 141 ± 6 n 2.88 ± 0.05 3.8 ± 0.6

Ce(III)

KL
dm3
·mg−1 0.06 ± 0. 02

KF
(mg·g−1)

(dm3
·mg−1)1/n

23± 6

qm
mg·g−1 110 ± 8 n 3.4 ± 0.6
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Additional information about the adsorption mechanism was obtained through the application of
the Dubinin–Radushkevich (DR) equation (Figure 5):

ln Qe = ln Xm − kε2

where ε = RT ln(1 + 1/Ce), R (KJ·mol−1 K−1) the gas constant, T(K) the absolute temperature, Xm
(mol·g−1) the clay adsorption capacity and k (mol2·KJ−2) the DR isotherm constant related to the
adsorption energy through the equation:

E = 1/(2k)1/2
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The sorption DR parameters are reported in Table 3.
Perusal of the data reported in Table 3 indicates that the obtained energy values are in the

range 8–16 kJ·mol−1, which, according to the literature [60], is characteristic of adsorption processes
dominated by the cation exchange mechanism. The capability of metal ions and cationic dyes to
compete with the montmorillonite counterions is well documented in the literature [61,62].
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Table 3. Sorption DR parameters for the adsorption isotherms of the contaminants onto K10-Mt.

Xm/mol·g−1 k/mol2
·kJ−2 E/kJ·mol−1 R2

Pb
pH = 2.0 (1.88 ± 0.04)·10−3 (3.29 ± 0.2)·10−3 12.3 ± 0.7 0.971
pH = 6.0 (2.00 ± 0.04)·10−3 (2.5 ± 0.2)·10−3 14 ± 1 0.968

CV
pH = 2.0 (1.08 ± 0.02)·10−2 (4.6 ± 0.1)·10−3 10.4 ± 0.1 0.996
pH = 6.0 (1.31 ± 0.03)·10−2 (4.6 ± 0.1)·10−3 10.4 ± 0.2 0.994

Ce(III) pH = 6.0 (2.82 ± 0.09)·10−3 (5.5 ± 0.4)·10−3 9.5 ± 0.7 0.953

3.3. Kinetic Measurements

Kinetic adsorption profiles are reported in Figure 6 for all the investigated contaminants at two
different pH values. First of all, it can be observed that the chosen values of pollutant/clay ratios ensure
the achievement of the complete adsorption of the species (100% sorption).
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First-order and double exponential kinetic models (DEM) were applied to fit the experimental
data (the reader can refer to [52] and references therein for a detailed explanation of the models).

The rate equation for the first order and DEM model are described by the following equations:
First order model Qt = Qe − Aexp(−kt);
DEM model Qt = Qe − A1exp(−k1t) − A2exp(−k2t).
Analogously to the procedure applied for the analysis of the equilibrium data, the discrimination

among the different models was performed using the statistical criteria and the analysis of the residuals
reported in the Supplementary Materials, Figure S2.

The DEM model, which describes a mechanism consisting of two parallel reactions [6,35,54–56],
revealed the most reliable results for the CV adsorption process, while Pb(II) and Ce(III) adsorb onto
K10-Mt clay through a simple first order model. These results can be taken as further proof of the
results of the adsorption isotherms, showing the presence of different adsorption sites available for
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CV uptake and a single adsorption site for metal ion uptake. Table 4 reports the kinetic rate constant
values obtained by applying the correct models to the experimental data.

Table 4. Rate constant values for pseudo-first order and double exponential models applied to the
kinetic profiles of adsorption of the pollutants onto K10-Mt.

pH 2.0 pH 6.0

CV
k1/min−1 0.74 ± 0.03 0.62 ± 0.03
k2/min−1 0.095 ± 0.005 0.063 ± 0.004

Pb(II) k/min−1 0.00632 ± 0.00003 0.00469 ± 0.00002
Ce(III) k/min−1 0.0376 ± 0.0003

Data reported in Table 4 indicate that the values of the kinetic rate constants slightly diminish with
a pH increase, which is easily attributable to the higher amount of adsorbed pollutants, which means
that more time is required to reach the saturation conditions.

Moreover, it is worth noting that, although lead(II) and crystal violet are both able to adsorb
onto K10-Mt at an acidic pH, the processes occur at very different timescales, which seems to indicate
the higher affinity of the dye toward the clay in comparison with the metal ion. With the aim of
finding the optimal conditions for the separation of the investigated contaminants, the kinetic profile
of the adsorption onto K10-Mt at pH 2.0 of the two species simultaneously present in the solution was
investigated. Figure 7 reports the spectra of a solution containing Pb(II) and CV (~10 mg·dm−3) treated
with 0.2 g·dm−3 K10-Mt for different time values corresponding to the adsorption process.
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Figure 7. UV-Vis spectra of a mixture of Pb(II) and CV (10 mg dm−3) before (black line) and after the
treatment with K10-Mt at pH 2.0 for 20 min (red line), 60 min (blue line) and 12 h (green line). Dotted
line is the UV-Vis spectrum of a solution 10 mg·dm−3 of Pb(II).

During the first 60 min of the adsorption process, a decrease in both peaks at 591 nm and 207 nm
(corresponding to CV and Pb(II), respectively) can be detected. Since the adsorption peak of Pb(II) at
207 nm is actually hidden by the broad UV-adsorption of CV, the interpretation of the experiments
is not trivial. For the sake of clarity, the UV-Vis spectrum of a solution 10 mg·dm−3 (dotted curve) is
also reported in the figure. A comparison with the spectrum of Pb(II) indicates that only CV adsorbs
onto clay during the first 60 min of the reaction and the adsorption of the metal ion starts when CV
is completely removed from the solution. The whole elimination of lead from the solution is then
accomplished after 12 h.
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The wavelengths at λmax for Pb(I) and CV were selected and used to construct the kinetic profiles
of the pollutant’s adsorption onto clay from a mixture (Figure 8). In order to eliminate the contribution
of CV adsorption at 207 nm, the following procedure was applied: two experiments were performed
simultaneously, i.e., adsorption of CV and lead from a mixture (A) and adsorption of CV from a
solution containing just the dye (B). The kinetic profile corresponding to process B was subtracted from
A, point by point, in order to delete the contribution of CV in the UV region where lead (II) adsorbs.
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Figure 8. Kinetic profiles of Pb(II) (�) and CV (�) adsorption onto K10-Mt clay from a mixture.

The kinetic profile of lead(II) adsorption shows the presence of an “induction period” of about 60
min, corresponding to the time required for the complete removal of CV, thus indicating the higher
affinity of the dye toward the clay. In other words, when simultaneously present in a mixture, the
competition between the two contaminants hamper the adsorption of Pb(II).

3.4. XRD Characterization

The structural characterization of pristine and modified K10-Mt complexes was performed by
means of XRD measurements (Figure 9).

The XRD patterns of the clay samples showed the presence of a very weak and broad reflection
d(001) at 2θ ~5◦ (d = 17.6 Å), characteristic of montmorillonite clay minerals, and a sharp peak at 2θ
~8.9◦ (d = 9.9 Å), indicating the presence of a clay mineral of the mica group (muscovite). The presence
of quartz was also recognized. According to the literature [63] the weak intensity and broad peak
profile of the Mt d(001) reflection is due to internal disorder, and is not necessarily indicative of low
phase proportion.

A comparison between the diffraction patterns of the complexes and pristine K10-Mt indicates
that the clay structure is maintained during the adsorption processes.

No changes are detected in the peak positions due to the presence of metal ions, thus indicating
that Ce(III) and Pb(II) ions do not enter the clay interlayer. This is consistent with the behavior
already observed by different authors [64–67], which suggests that the uptake of metal cations onto
montmorillonite mainly involves the outer surface of the clay.

As for the CV pollutant, small shifts in the peak position can be observed in the diffraction pattern,
thus indicating the entrance of the dye onto the clay interlayer. In order to provide a better view of
these effects, in Figure 10, the superimposition of the smoothed XRD patterns in the very low angle
region is reported.
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line) K10-Mt/CV (red line), K10-Mt/Pb (II) (green line) and K10-Mt/Ce(III) (blue line).

According to Parisi et al. [39], a slight contraction in the mica basal interlayer (d ~9.9 Å) and a
small contraction in the Mt interlayer (d ~17.6 Å) are observed. The lower interplanar distance after
dye adsorption could be taken as an indication of the occurrence of cation exchange processes which
displace cations from the interlayer spaces.

3.5. Removal and Separation of Pollutants

The information about the equilibrium and kinetic behavior of the pollutants under the different
experimental conditions was exploited to develop a procedure for the removal and separation of the
different species from a solution containing the contaminants.

The proposed protocol can be resumed as follows:
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• First treatment of the mixture with K10-Mt at a strongly acidic pH over a short timescale (~60 min);
• Centrifugation and separation of the CV/clay composite;
• Second treatment of the supernatant with K10-Mt at a strongly acidic pH over a long timescale

(>12 h);
• Centrifugation and separation of the Pb(II)/clay composite;
• Treatment of the remaining solution (containing Cerium ions) with K10-Mt at higher pH values

(>6.0);
• Centrifugation and separation of the Ce(III)/clay composite.

The amount of pollutants was chosen by taking into account the extinction coefficient values of
the different species (10 mg·dm−3 for CV and Pb(II) and 150 mg·dm−3 for Ce(III)) and K10-Mt was
added in excess to obtain the complete removal.

Figure 11 reports the spectra of the solution containing the three contaminants before (A) and
after each treatment. For the sake of clarity, the spectra of the solutions of every single component are
also reported.Minerals 2020, 10, x FOR PEER REVIEW 13 of 17 
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Figure 11. UV-vis spectra of a mixture (black curves) containing CV, Pb(II) and Ce(III) before (A) and
after the treatment with K10-Mt (0.2 g·dm−3) at pH 2.0 for 60 min (B), the subsequent treatment with
K10-Mt (0.2 g·dm−3) at pH 2.0 for 12 h (C) and after the final treatment with K10-Mt (2 g·dm−3) at pH
6.0 (D). Red, green and blue curves are the spectra of CV, Pb(II) and Ce(III), respectively.

The spectrum of the supernatant reported in Figure 11B is indicative of the complete removal of
the CV dye, after the treatment with K10-Mt at an acidic pH for 60 min. The successful removal of
lead (II) after the subsequent treatment at an acidic pH for a longer time period (12 h) is proven by the
spectrum reported in Figure 11C. Finally, the addition of K10-Mt at a higher pH value leads to the
elimination of the Ce(III) metal ions.

The proposed multi-step strategy was therefore efficient for the separation and removal of
pollutants of a different nature from a multicomponent solution.
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4. Conclusions

In this study, the adsorption features of montmorillonite mineral clay were employed for the
selective removal of “model” contaminants from a ternary aqueous mixture. Three widespread toxic
pollutants, i.e., crystal violet, Ce(III) and Pb(II) metal ions, were chosen as representative exponents of
dyes, rare earth and heavy metals.

The effects of different variables, i.e., pollutant concentration, amount of clay, pH and contact time
were investigated. The adsorption processes of the single pollutants from simplified systems were
analyzed by constructing the adsorption isotherms and the kinetic profiles. Significant differences
in the adsorption behavior of the three species under the different experimental conditions were
recognized. First of all, both Pb(II) and CV are able to adsorb onto clay under all the investigated
pH conditions, while Ce(III) metal ions do not adsorb under strongly acidic conditions. The affinity
of the clay to the pollutants is always favored by increasing pH values and follows the order CV
> Pb(II) > Ce(III). The adsorption mechanism of the CV dye consists of different parallel processes,
i.e., cation exchange processes and surface complexation involving both the clay interlayer and the
montmorillonite surface and edges, while metal cations are held to the montmorillonite through cation
exchange processes involving just the clay surface. Finally, the time required for the complete removal
of pollutants follows the order CV > Ce(III) >> Pb(II).

The obtained results evidence the possibility of modulating the adsorption features by changing
the experimental conditions and were employed to propose a successful approach for the progressive
removal of the three different species from a multicomponent mixture. This can be viewed as a launching
pad for the development of a strategy for the simultaneous decontamination and valorization of real
samples of water effluents.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-163X/10/5/466/s1,
Figure S1: Residuals plot for the adsorption isotherms reported in Figure 4, fitted by using the Langmuir and the
Freundlich models; Figure S2: Residuals plot for the kinetic profiles reported in Figure 6 fitted by Pseudo-first
order and Double Exponential Models.
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