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Abstract: The Chiron Basin extends along the southern periphery of the Siberian Craton and the
western margin of the Mongol–Okhotsk Belt. Here, we present whole-rock geochemical data (major
and trace elements and Sm–Nd isotopes) along with zircon U–Pb geochronology and Lu–Hf isotopic
data from Paleozoic sedimentary rocks within the Chiron Basin to investigate their provenance
and tectonic history. εNd(t) values of the siliciclastics rocks of the Khara–Shibir, Shazagaitui, and
Zhipkhoshi formations vary from −17.8 to −6.6, with corresponding two-stage Nd model ages
(tNd(C)) ranging from 2.56 to 1.65 Ga. Detrital zircon grains from these rocks are predominantly
Archean, Paleoproterozoic, and Carboniferous–Devonian in age. The data suggest that the southern
flank of the Siberian Craton is the only viable source area for Archean and Paleoproterozoic zircon
grains with Hf model ages (tHf(C)) of >2.20 Ga. The majority of zircon grains from sandstones
from the Khara–Shibir, Shazagaitui, and Zhipkhoshi formations are Devonian–Carboniferous in
age. With respect to their Hf model ages, the zircon grains can be subdivided into two groups.
The first group of Devonian–Carboniferous zircon grains is characterized by relatively old (mainly
Paleoproterozoic) tHf(C) model ages of 2.25–1.70 Ga and the source was the southern margin of the
Siberian Craton. The second group of Devonian–Carboniferous zircon grains is characterized by
significantly younger (mainly Neoproterozoic) tHf(C) model ages of 1.35–0.36 Ga, which are consistent
with a juvenile source, most likely eroded island arcs. Our data, show that sedimentary rocks of
the Chiron Basin likely formed in a back-arc basin on the southern periphery of the Siberian Craton
facing the Paleozoic Mongol–Okhotsk Ocean.

Keywords: detrital zircon; geochronology; provenane analysis, Chiron basin; Siberian Craton;
Mongol–Okhotsk Ocean

1. Introduction

The Mongol–Okhotsk Belt is one of the major structural elements of East Asia and probably
represents the youngest orogenic component within the collage of Central Asian orogenic belts ([1–3]
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and references therein). This NE–SW-oriented belt is located in northern Mongolia and Transbaikalia
(Russia) and extends for over 3000 km from central Mongolia to Uda Bay in the Okhotsk Sea (Figure 1).

Figure 1. Tectonic scheme showing terranes in the northern segment of the Central Asian Orogenic
Belt (compiled after [2,4–10]). Numbers in circles are structures (terranes, microcontinents, cratonic
blocks): (1) Anga–Talanchan; (2) Baidarik; (3) Baikal–Muya; (4) Barguzin; (5) Bayan–Khongor; (6)
Gargan; (7) Daribi; (8) Derbi; (9) Dzhida; (10) Dzabkhan; (11) Eravna; (12) Western Stanovoi; (13) Ikat;
(14) Kan; (15) Kitoikin; (16) Ozernyi; (17) Onon; (18) Tarbagatai; (19) Tuva–Mongol; (20) Tunka; (21)
Khamardaban–Olkhon; (22) Khamsarin; (23) Khangai; (24) Khentei; (25) Aga–Borshchovochnyi.

The Mongol–Okhotsk Belt is generally considered ([2,3,11–13] and references therein) to represent
a remnant of the Mongol–Okhotsk Ocean, which closed owing to collision between the Siberian Craton
and the Amuria Block (superterrane or microcontinent). However, many aspects of the evolution of
this structure from ocean to suture zone remain unresolved.
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Most controversial is the geodynamic framework of sedimentary formations and intrusive
complexes within the Mongol–Okhotsk Belt, as well as the timing and nature of the accretion and
collision. Constraints on the age and composition of sedimentary sequences within the Mongol–Okhotsk
Belt and neighboring basins are required to better understand the evolution of the region. In this respect,
U–Pb and Lu–Hf isotopic data from detrital zircon grains from a variety of different stratigraphic ages
sedimentary sequences coupled with whole-rock Nd isotopic data are of crucial importance.

Recent geochronological studies have provided tighter constraints on the ages of Paleozoic
sedimentary sequences in the western [14–17] and eastern [18–21] parts of the Mongol–Okhotsk Belt.
In those studies, subduction zones of different age and polarity have been invoked to explain the
evolution of the belt. Furthermore, detailed studies of Jurassic sedimentary rocks of the Mesozoic basins
north [22–24] and south [25,26] of the Mongol–Okhotsk Belt have suggested that the Mongol–Okhotsk
Ocean closed at the Early–Middle Jurassic boundary.

We performed whole-rock geochemical analyses together with U–Pb and Lu–Hf isotopic analyses
of detrital zircon grains from late Paleozoic sedimentary rocks within the Chiron Basin to provide
much-needed information regarding the evolution of the Mongol–Okhotsk Belt. The Chiron Basin
is bordered by the southern edge of the Siberian Craton and the Transbaikal segment of the
Mongol–Okhotsk Belt. Sedimentary formations within this basin carry important information
regarding the geological events that occurred at the periphery of the Siberian Craton during the
late Paleozoic associated with the evolution of the Mongol–Okhotsk Ocean.

Geological studies of Eastern Transbaikalia region have led to differing interpretations of the
geodynamic nature of the Chiron Basin. Initially, Nagibina [27] identified this basin as a narrow
synorogenic basin located at the north of the Mongol–Okhotsk Belt that was confined to the marginal
fault zone. This interpretation was supported by Amantov [28], who termed the structures related to
the Chiron Basin as “residual orogenic depressions” or “superimposed marginal basins”.

Consistent with the current conceptualization of the Mongol–Okhotsk Fold Belt,
Parfenov et al. [2,29] interpreted the Chiron Group to represent accumulation of sediments in a
forearc basin. However, they did not indicate a magmatic arc adjacent to this forearc basin. Ruzhentsev
and Nekrasov [7] ascribed the formation of the Chiron Basin to instability caused by convergence
of the Siberian Craton and Argun Continental Massif. A similar interpretation was proposed by
Shivokhin et al. [9].

2. Geological Background

The Chiron Basin (Figure 1) is located in the northeastern Aga Zone [7,30] and occupies an area of
>500 km2 on the left bank of the lower reaches of the Aga River and within the Chiron River basin.
The late Paleozoic Chiron Basin is filled with about 3500–4000 m of unmetamorphosed shallow-marine
siliciclastic rocks of the Chiron Group (Figures 2 and 3). Extensive tectonic slices of the Chiron Group
also occur to the west and north of the Chiron Basin, as well as in the southern spurs of the Mogoitui
Range. Until the mid−1960s, the entire Chiron Group was assigned to the Permian [31]. Later, its age
was reassigned to the late Visean to early Permian based on fossil content [32]. The Chiron Group lies
unconformably upon metamorphic schists [33] known formerly as the Onon Formation, which was
originally assigned a Silurian age by Tolukhonov [31]. However, Amantov [28] and Anashkina et al. [30]
suggested a Proterozoic age for these rocks. Recently, metamorphic rocks of the Onon Formation have
been regarded as late Paleozoic (middle Paleozoic, according to the Russian stratigraphic nomenclature)
and are now termed the Aga–Borshchovochnyi metamorphic complex [9,34] (Figure 3).

The Chiron Group is a polycyclic stratigraphic sequence showing a gradual upward transition
from coarse- to fine-grained siliciclastic rocks. Tutkhaltui, Khara–Shibir, Shazagaitui, and Zhipkhoshi
formations [33] are assigned to late Visean through to the early Permian [32].

The Tutkhaltui Formation is separated by a sharp angular unconformity from the
Aga–Borshchovochnyi metamorphic complex. From bottom to top, this formation consists of the
following members [33]:
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1. Conglomerates and sedimentary breccias interbedded with coarse-grained sandstones. Clastic
material consists of angular fragments of the metamorphic schists and quartz. Pebbles of felsic
volcanic rocks and of granite are rare. The clasts of the sandstones are angular. This member
varies from a few meters to 40 m in thickness.

2. Massive medium- to fine-grained sandstones interbedded with calcareous sandstones and sandy
siltstones 1–2 m thick, and lenses of bioclastic limestone. This member is 45 m thick.

3. Sandy siltstones gradually passing upwards into massive siltstone. This member is 43 m thick.
4. Massive medium- to coarse-grained sandstones interbedded with gray siltstones and sedimentary

breccias similar in composition to Member (1). This member varies in thickness from 2 to 20 m.
5. Predominantly siltstones with rare thin interlayers of massive medium-grained sandstones. This

member is 102 m thick.

Figure 2. Geological map of the western part of Chiron Basin (after [9,34] and our data).
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Figure 3. Simplified stratigraphic column for the sedimentary rocks of the Chiron Basin as well as
underlying and overlapping formations (modified after [34]).

The Tutkhaltui Formation contains numerous fossilized remains of bryozoans, brachiopods,
bivalves, and crinoids [32,33]. Most brachiopod species occur widely in the Kuzbass, Mongolia,
Verkhoyansk (Siberia), and Kolyma–Omolon regions of NE Russia [35]. In Mongolia [36] and
the Verkhoyansk region [37], ammonoids of the genera Epicanites and Pachylyroceras also occur.
These ammonoids are common in late Visean to Serpukhovian sedimentary rocks in Western Europe,
the Urals, and North America [38]. On this basis, the Tutkhaltui Formation has been assigned a late
Visean to Serpukhovian age.

The Khara–Shibir Formation conformably overlies the Tutkhaltui Formation and comprises two
first-order cycles that have the same lithological composition and faunal assemblages. The first-order
cycles are considered as Lower and Upper subformations. From bottom to top, the Lower Subformation
consists of the following members [33]:

1. A conglomerate member, including two second-order cycles, consisting of medium and fine
pebble conglomerates grading upwards into coarse-grained sandstones. Well-rounded pebbles
are felsic volcanic rocks (90%), granites (6%), quartzites (2%), sandstones or siltstones (2%).
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Sandstones contain angular and poorly sorted clasts. Individual cycles vary in thickness from 20
to 40 m.

2. Alternating massive siltstones and sandy siltstones with flow structures, with gradual transitions
between units. This member is 120 m thick.

3. Alternating fine- to medium-grained massive and bedded sandstones and massive siltstones.
Individual layers are 5–20 m thick, the overall thickness of this member is up to 250 m thick.

The Upper Subformation comprises the following members [33]:

1. Predominantly coarse-grained rocks including second-order cycles consisting (from bottom to
top) of medium and fine pebble conglomerates, coarse- to medium-grained sandstones, and sandy
siltstones grading into massive siltstones. Individual cycles vary in thickness from 20 to 30 m.
Pebbles are dominated by felsic volcanic rocks, together with granites, quartz, quartzites, and
gray siltstones. This member is 90 m thick.

2. Alternating beds of massive medium- to fine-grained sandstones, massive siltstones, and sandy
siltstones with gradual transitions between units. Siltstone and sandy siltstone layers are 6–27 m
thick and sandstones 1–12 m thick. Single pebbles of felsic volcanic rocks are present at the base
of sandy siltstone layers. This member is about 200 m thick.

3. Mainly siltstones with intercalations of sandstones as thick as 0.2–3 m irregularly distributed
within vertical thickness. The member is up to 280 m thick.

4. Alternating beds of massive coarse-grained sandstones, medium-grained sandstones, and sandy
siltstones with flow texture. Layers vary in thickness from 14 to 40 m. Coarse-grained sandstones
contain flattened fragments of siltstone 2–3 cm in size. The member is 190 m thick.

The Khara–Shibir Formation is characterized by an extensive assemblage of bryozoans,
brachiopods, bivalves, and crinoids [32,33]. Brachiopods in the Khara–Shibir Formation and the
underlying Tutkhaltui Formation share a large number of common species. The Khara–Shibir
brachiopods are most similar to brachiopods from the Waagenoconcha gigantea Zone (upper part of
the Magarsky super-stratohorizon) in the Kolyma–Omolon region [39] and the Sajakella formosa Zone
(upper part of the Khatynakh stratohorizon) in the South Verkhoyansk region [35]. Considering the
stratigraphic position of the aforementioned analogs of the Khara–Shibir Formation, which overlie
layers containing late Visean–Serpukhovian ammonoids and lie below sediments containing late
Bashkirian ammonoids, an early Bashkirian age for the Khara–Shibir Formation is implied.

1. The Shazagaitui Formation conformably overlies the Khara–Shibir Formation. From bottom to
top, the succession consists of the following members [33]:

2. A conglomerate member comprising second-order cycles consisting of coarse-, medium-, and
fine-grained pebble conglomerates grading upward into sandstones and siltstones. Individual
cycles vary in thickness from 10 to 70 m. Pebbles comprise felsic volcanic rocks (55%), granites
(23%), quartzites (10%), granite porphyries (9%), sandstones and siltstones (2%), and quartz (1%).

3. Alternating beds of massive siltstones and sandy siltstones with flow structures, with gradual
transitions between units. Interbeds of fine- to medium-grained sandstones 0.5−2 m in thickness
with distinct planar boundaries show no regular pattern. This member is >500 m thick.

4. Massive coarse-grained sandstones passing upward into medium- and fine-grained rocks with
rare interbeds of dark-gray massive siltstones 1–2 m thick. The thickness of this member exceeds
125 m.

5. Alternating beds of sandy siltstones with massive and flow structures and fine- to medium-grained
sandstones, the latter in some places preserving cross-bedding. Intercalations of massive
calcareous sandstones and sandy limestones also occur. The thickness of this member varies
between 170 and 250 m.

The Shazagaitui Formation contains numerous remains of bryozoans, brachiopods, and
crinoids [33]. Most brachiopod species are distributed throughout the Verkhoyansk region,
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(Siberia), and are associated with late Bashkirian ammonoids of the Braneroceras–Gastrioceras and
Diabaloceras–Axinolobus zones [38,40]. On this basis, the Shazagaitui Formation has been assigned
a late Bashkirian age [32]. Overall, the composition, texture, and structure of sedimentary rocks
and benthic fauna suggest that the Shazagaitui Formation, as well as the underlying Tutkhaltui and
Khara–Shibir formations, formed in a shallow- to moderately deep-marine environment close to the
sedimentary source.

The Zhipkhoshi Formation in the central part of the Chiron Basin lies with a stratigraphic hiatus and
visible conformity on the Shazagaitui Formation, and angular unconformity the Aga–Borshchovochnyi
metamorphic complex in the marginal parts of the basin [33]. The Zhipkhoshi Formation is limited in
extent, being restricted to the central part of the Chiron Basin, where the lower portions of the section
are exposed. Stratigraphically higher horizons are truncated by a fault that bounds the Chiron Group
to the northwest.

From the base upward, the Zhipkhoshi Formation consists of the following members: [33]:

1. Coarse-grained sandstones with intercalations of conglomerate. Pebble-to-boulder conglomerates
comprising clasts composed mainly of rhyolite and quartzite and less commonly granitoid. This
member varies irregularly in thickness between 90 to 170 m.

2. Siltstones containing plant detritus, fossil wood fragments, megaspores, and nodules formed
around the remains of conularia and pelecipods. The thickness is about 300 m.

3. Medium- to fine-grained massive and bedded sandstones with scarce thin siltstone intercalations.
The thickness of this member is 400 m.

4. Intercalated fine-grained massive and bedded sandstones and sandy siltstones. Sandstone
horizons show cross-bedding and ripple marks. This member is 70 m thick.

On the basis of the assemblage of brachiopods and bryozoans, the Zhipkhoshi Formation is
assigned a Sakmarian to early Artinskian age by analogy with the Verkhoyansk units, (Siberia), which,
in addition to the brachiopods similar to the Zhipkhoshi brachiopods, contain ammonoids of the
Uraloceras and Paragastrioceras genera [32,35]. The bivalve assemblage suggests a late Asselian to
early Artinskian age for the Zhipkhoshi Formation [41]. Thus, the stratigraphic gap between the
Shazagaitui and Zhipkhoshi formations spans the Moskovian, Kasimovian, and Gzhelian stages, and
probably part of the Asselian stage, a total time span of about 18 Myr. Considering the stratigraphic
unconformity between these formations, the inclusion of the Zhipkhoshi Formation within the Chiron
Group is controversial [42,43].

The texture of sediments, in combination with the presence of plant detritus, megaspores,
fossil wood, and benthic fauna, suggest that rocks of the Zhipkhoshi Formation accumulated in
shallow-marine environments, whereas the angular clastic materials provide evidence for a close
sedimentary source.

We investigated siliciclastic rocks of the Khara–Shibir, Shazagaitui, and Zhipkhoshi formations, as
well as schists of the Aga–Borshchovochnyi metamorphic complex, representing the basement rocks of
the Chiron Basin. Sample locations are listed in Table 1 and are shown in Figure 2.
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Table 1. Location and short description of samples.

Time Sample No. GPS [x◦x′x”] Formation Petrographic Descriptions

Chiron Basin

Early
Permian Y−94 E, 115◦19′15.3”

N, 51◦31′32.3” Zhipkhoshi Formation
Gray sandstone with feldspar (25%), quartz (20%), lithic

fragments (8%), biotite, muscovite and chlorite (up to
1%) and with 0.10–0.18 mm grain size.

Late
Carboniferous Y−97 E, 115◦19′43.5”

N, 51◦29′31.5” Shazagaitui Formation
Yellowish-gray sandstone with quartz (40%), feldspar

(30%), lithic fragments (15%), muscovite (10%) and with
0.10–0.30 mm grain size.

Late
Carboniferous Y−98 E, 115◦20′31.3”

N, 51◦27′56.6”
Khara-Shibir

Formation

Brownish-yellow sandstone with feldspar (45%), quartz
(20%), lithic fragments (20%), biotite (10%), small

amount muscovite and chlorite (up to 1%) and with
0.10–0.50 mm grain size.

Late
Paleozoic(?) Y−99 E, 115◦00′21.9”

N, 51◦33′33.2”
Aga–Borshchovochnyi
metamorphic complex

Gray greenschist with quartz (40%), feldspar (15%),
lithic fragments (10%), biotite and muscovite (35%),

small amount chlorite.

3. Analytical Methods

3.1. Major and Trace Element Analyses

Chemical compositions of siliciclastic rocks were studied using X-ray fluorescence analysis (XRF)
(major elements, Zr) at the Institute of Geology and Nature Management, Far East Branch of the Russian
Academy of Sciences, Blagoveshchensk, Russia, and inductively coupled plasma mass spectrometry
(ICP-MS) (Cs, Ga, Rb, Sr, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, Nb, Hf, Ta,
Th, U, Pb) at the Institute of Tectonics and Geophysics, Far East Branch of the Russian Academy of
Sciences, Khabarovsk, Russia.

The powdered samples of sedimentary rocks were homogenized for XRF analysis by fusing with
a mixture of Li metaborate and tetraborate in a muffle furnace at a temperature of 1050–1100 ◦C.
Measurements were carried out on a 4S Pioneer X-ray spectrometer. Intensities of analytical lines were
corrected for the background and for the effects of absorption and secondary fluorescence. For ICP-MS
analyses, samples were decomposed with acid mixtures of HCl, HNO3, HF, and HClO4. Measurements
were performed in a standard regime by Perkin Elmer/Sciex Elan 6100 DRC ICP-MS whose sensitivity
over the whole mass scale was calibrated using standard reference solutions that contained all elements
to be analyzed in the samples. The relative measurement error for major and minor elements was
3%–10%.

3.2. Sm–Nd Isotopic Analyses

Sm–Nd isotopic analyses were performed at the Collective Enjoyment Center of Isotope
Geochemical Investigations, Vinogradov Institute of Geochemistry, Siberian Branch of Russian
Academy of Sciences, Irkutsk, Russia. About 100 mg of the whole rock powder was dissolved
in a mixture of HF, HNO3, and HClO4. A 149Sm–150Nd spike solution was added to all samples
before dissolution. REE were separated on BioRad AGW50-X8 200–400 mesh resin using conventional
cation exchange techniques. Sm and Nd were separated by extraction chromatography with LN-Spec
(100–150 mesh) resin [44]. Total blanks during the measurement were 0.1–0.2 ng for Sm and 0.2–0.5 ng
for Nd. Isotopic compositions of Sm and Nd were determined on a NEPTUNE Plus Multi-Collector
ICP-MS in static mode. The precision (2σ) of Sm and Nd contents and 147Sm/144Nd ratios was ±0.4%
and ±0.003% for 143Nd/144Nd ratios. 143Nd/144Nd ratios were normalized against 146Nd/144Nd = 0.7219.
The results of the international standards were: 1) JNdi−1 (n = 40), 143Nd/144Nd = 0.512107 ± 4
(recommended value, 143Nd/144Nd = 0.512115 ± 7 [45]; 2) BCR−2 (n = 28), 143Nd/144Nd = 0.512630 ± 14;
Nd = 28.77 ± 0.13 ppm; Sm = 6.52 ± 0.03 ppm; 3) AGV−2 (n = 8) – 143Nd/144Nd = 0.512769 ± 16;
Nd = 30.3 ± 0.02 ppm; Sm = 5.42 ±0.03 ppm.

The εNd(t) values were calculated using the present-day values for a chondritic uniform reservoir
(CHUR) 143Nd/144Nd = 0.512638 and 147Sm/144Nd = 0.1967 [46]. Whole-rock tNd(DM) mean crustal
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residence ages were calculated using the model of Goldstein and Jacobsen [47] according to which
the Nd isotopic composition of the depleted mantle evolved linearly since 4.56 Ga ago and has a
present-day εNd(0) value of +10 (143Nd/144Nd = 0.513151 and 147Sm/144Nd = 0.21365). To account for
changes in the 147Sm/144Nd ratios due to fractionation of accessory minerals during granitoid melt
crystallization, two-stage Nd model ages tNd(DM2-st) [48] were calculated from the mean crustal ratio
147Sm/144Nd = 0.12 [49].

3.3. Zircon U–Pb Dating

Zircons were isolated using conventional heavy liquid and magnetic techniques before handpicking
under a binocular microscope at the Institute of Geology and Nature Management, Far East Branch
of the Russian Academy of Sciences, Blagoveshchensk, Russia. Zircon grains were handpicked from
concentrates and mounted in a 1” epoxy mount along with multiple fragments of zircon standards
(FC, SL2, and R33). The mounts were imaged by BSE using a Hitachi S−3400N scanning electron
microscope (SEM) equipped with a Gatan Chroma CL2 detector.

For geochronology, U–Th–Pb analyses of individual zircon grains were performed by laser
ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS) at the Arizona LaserChron
Center, Department of Geosciences, University of Arizona, Tucson, AZ, USA. For details of the
analytical procedures, see [50]. The isotopic analyses involved the ablation of zircon using a Photon
Machines Analyte G2 excimer laser coupled to a Thermo Element 2 single-collector–ICP–MS, using a
drill rate of ~1 µm/s, resulting in a final ablation pit depth of ~15 µm. Grain selection and analysis sites
were selected based on CL and BSE images with care taken to avoid inclusions and cracks. Calibration
was performed using the FC zircon standard, with a well-established age of 1099.3 ± 0.3 Ma [51].
The Sri Lanka (SL2) and R33 [52] reference zircons were used as secondary standards for data quality
control. Our 206Pb/238U and 207Pb/206Pb ages for SL2 zircon were 563.2 ± 4.8 Ma and 568 ± 16 Ma (2σ),
respectively, which were in good agreement with the ID–TIMS ages reported by Gehrels et al. [53]. Our
results yielded weighted mean 206Pb/238U and 207Pb/206Pb ages for the R33 zircon of 417 ± 7 Ma and
415 ± 8 Ma, respectively, which were consistent with the ages of Black et al. [52] and Mattinson [54].

Systematic errors were 0.9% for 206Pb/238U ratios and 0.8% for 206Pb/207Pb ratios (2σ). U
concentrations and U/Th ratios were calibrated relative to the SL2 zircon standard and were accurate
to ~20%. The concordia U–Pb ages were calculated using Isoplot v. 4.15 [55]. The following data were
excluded from the final age calculations: data for which it was not possible to calculate a concordia
age and 206Pb/238U and 207Pb/235U ratios with errors of >3%, as these exceeded the precision of the
LA–ICP–MS method. The peak age was derived from the AgePick program developed by George
Gehrels [56].

3.4. Hf-in-Zircon Isotopes

Hf isotope analyses were performed using a Nu Instruments high-resolution (HR)-ICP–MS and
attached Photon Machines Analyte G2 Excimer laser at the Arizona LaserChron Center. Instrument
settings were established first by analysis of 10 ppb solutions of JMC475 and a Spex Hf solution followed
by analysis of 10 ppb solutions containing Spex Hf, Yb, and Lu. When all solutions yielded 176Hf/177Hf
ratios of ~0.28216, instrument settings were considered optimized for laser ablation analyses and seven
standard zircons (Mud Tank (MT), 91500, Temora (TEM), R33, FC52 (FC), Plesovice (PLES), and SL or
(SL-F)) were analyzed. When precision and accuracy were considered acceptable, the unknowns were
analyzed using the same acquisition parameters as for the standards.

Laser ablation analyses were conducted using a laser beam diameter of 40 µm, with the ablation
pits located on the U–Pb analysis pits. Each acquisition consisted of one 40-s integration on backgrounds
(on peaks with no laser firing) followed by 60 one-second integrations with the laser firing. Analyses
were performed using a typical laser fluence of ~5 J/cm2, a pulse rate of 7 Hz, and an ablation rate of
~0.8 µm/s. Each standard was analyzed once for every ~20 unknowns. For details of the analytical
procedures, see [50].
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The 176Hf/177Hf ratio at the time of crystallization is calculated from measurement of present-day
176Hf/177Hf and 176Lu/177Hf ratios, using the decay constant of 176Lu (λ = 1.867 × 10−11) from
Scherer et al. [57] and Söderlund et al. [58]. Calculation of εHf(t) values is based on the chondritic ratios
of 176Hf/177Hf (0.282785) and 176Lu/177Hf (0.0336) given by Bouvier et al. [59]. The mantle model age
tHf(DM) was calculated using the measured 176Lu/177Hf ratio of the zircon, although this only provides
a minimum age for the source material of magma from which the zircon crystallized. Therefore,
we also calculated the crustal model age tHf(C), which assumes that the parental magma of the zircons
was produced from average continental crust. 176Lu/177Hf ratios for average continental crust vary
significantly from ~0.001 to 0.023 [60]. Vervoort and Patchett [60], Amelin and Davis [61] proposed a
176Lu/177Hf ratio of 0.0093 for the average continental crust, while Griffin et al. [62] recommended a
value of 0.015. However, we considered a value of 0.093 to more realistically reflect the 176Lu/177Hf
ratio of average continental crust, because in some cases the use of the higher ratio results in Hf crustal
model ages that are unrealistically higher than the corresponding whole-rock Nd model ages [63–65].
The tHf(C) values calculated for 176Lu/177Hf ratio of 0.015 are given in Supplementary Materials Table
S3 for comparison. The depleted mantle line was defined by present-day 176Hf/177Hf = 0.28325 and
176Lu/177Hf = 0.0384 [62].

4. Results

4.1. Major and Trace Element Geochemistry

Chemical composition of siliciclastic rocks of the Khara–Shibir, Shazagaitui, and Zhipkhoshi
formations are given in Supplementary Materials Table S1.

On a log(SiO2/Al2O3) versus log(Na2O/K2O) classification diagram, [66], the siliciclastic rocks
from all formations plot as greywacke (Figure 4a). On a log(SiO2/Al2O3) versus log(Fe2O3/K2O)
classification diagram, [67], the samples plot mostly as arkose and wacke, and rarely as litharenite
(Figure 4b). All samples had low values of the Chemical Index of Alteration (CIA = 53−40), Chemical
Index of Weathering (CIW = 60−42)), and high values for the Weathering Index of Parker (WIP = 97−60)
and Silica-Titania Index (STI = 90−84) (Supplementary Materials Table S1), indicating that rocks in
the source area recorded low degrees of weathering. A CIA versus WIP diagram [68] shows that the
siliciclastic rocks plot as fresh rocks (Figure 4c).

Sandstones and siltstones from the Khara–Shibir (Figure 5a, Table S1) and Shazagaitui (Figure 5b,
Table S1) formations have low to moderate REE contents (ΣREE = 42–229 ppm) and moderate to
weak negative Eu anomalies (Eu/Eu* = 0.59–0.94) compared with siliciclastic rocks of the Zhipkhoshi
Formation (ΣREE = 67–187 ppm, Eu/Eu* = 0.64–0.95) (Figure 5c, Table S1). Trace-element variation
diagrams for siliciclastic rocks from the Khara–Shibir (Figure 6a, Table S1) and Shazagaitui (Figure 6b,
Table S1) formations show depletions in U, Th, Pb, Nb, Ta, REE, Sc, Co, and V relative to upper
continental crust. Sandstones and siltstones of the Zhipkhoshi Formation have higher concentrations
of these elements (Figure 6c, Table S1).

4.2. Zircon U–Pb Dating

4.2.1. Sample Y−99: Greenschist of the Aga–Borshchovochnyi Metamorphic Complex

Out of 122 detrital zircon grains from sample Y−99, 112 grains yielded concordant ages ranging
mainly from c. 2900 to 492 Ma (Figure 7a, Table S2). The major age peaks on probability diagrams are
at c. 2512, 1888, 888, 807, 583, 514 Ma, and rare zircon grains have concordant Paleoproterozoic and
Archean ages. The youngest concordant zircon age is 492 ± 6 Ma (Late Cambrian).

4.2.2. Sample Y−98: Sandstone of the Khara–Shibir Formation

A total of 114 concordant ages were obtained from 130 detrital zircon grains in sample Y−98
(Figure 7b, Table S2). The estimated ages were mostly Carboniferous and Devonian (age peaks at c.
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353 and 382 Ma). A single grain had a concordant zircon age of c. 429 Ma (Silurian), and another had a
concordant age of c. 506 Ma (Cambrian). The youngest concordant zircon age was 330 ± 4 Ma (Early
Carboniferous).

4.2.3. Sample Y−97: Sandstone of the Shazagaitui Formation

Analyses of 116 detrital zircon grains from sample Y−97 yielded 82 concordant ages. Most are
Carboniferous (age peak at c. 334 Ma), Devonian (age peak at c. 379 Ma), and Paleoproterozoic to early
Neoarchean (age peaks at c. 1.88, 2.41, and 2.50 Ga) (Figure 7c, Table S2).

Individual zircon grains had concordant Archean (c. 2.64 and 2.90 Ga), Paleoproterozoic (c. 2.13
and 2.07 Ga), Neoproterozoic (c. 879, 876, and 782, Ma), and Ordovician (c. 472 Ma). The youngest
concordant zircon age was 324 ± 4 Ma (Early Carboniferous).

4.2.4. Sample Y−94: Sandstone of the Zhipkhoshi Formation

Concordant ages, which varied mostly from 313 Ma to ~2780 Ma, were obtained from 105 detrital
zircon grains out of 114 grains analyzed. Main age peaks were at c. 2025, 1928, 1862, 808, 500, 404, 379,
and 328 Ma (Figure 7d, Table S2). In addition, rare grains had Neoproterozoic (c. 903, 897, and 861 Ma)
and Archean (c. 2.78, 2.55, 2.52, 2.38, and 2.12 Ga) concordant ages. The youngest concordant zircon
grain had an age of 313 ± 3 Ma (Late Carboniferous).

Figure 4. Plots of log(SiO2/Al2O3) versus log(Na2O/K2O) after [66] (a), log(SiO2/Al2O3) versus
log(Fe2O3/K2O) after [67] (b), and CIA versus WIP after [68] (c) for siliciclastic rocks of the Chiron Basin.
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Figure 5. Chondrite-normalized REE patterns for siliciclastic rocks of the Chiron Basin.
Chondrite normalizing values are from [69]; (a) Khara-Shibir Formation, (b) Shazagaitui Formation,
(c) Zhipkhoshi Formation.
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Figure 6. Upper continental crust (UCC)-normalized trace element patterns for siliciclastic rocks of
the Chiron Basin. UCC normalizing values are from [49]; (a) Khara-Shibir Formation, (b) Shazagaitui
Formation, (c) Zhipkhoshi Formation.
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Figure 7. Probability diagrams showing age distributions of detrital zircons from Aga–Borshchovochnyi
metamorphic complex and ciliciclastic rocks of the Chiron Basin. Data from Supplementary Table
S2; (a) Aga-Borshchovochnyi metamorphic complex, (b) Khara-Shibir Formation, (c) Shazagaitui
Formation, (d) Zhipkhoshi Formation.

4.3. In Situ Zircon Lu–Hf Isotopic Analyses

The results of Lu–Hf isotope analysis are shown in Figure 8 and listed in Table S3. As follows
from Section 4.2 and Figures 7 and 8, major zircon age populations in the Khara–Shibir, Shazagaitui,
and Zhipkhoshi formations occurred in the Carboniferous–Devonian, Cambrian, Neoproterozoic,
Paleoproterozoic, and Archean, and displayed a wide range of Hf model ages. The Paleoproterozoic
and Archean zircons had Hf model ages (tHf(C)) ranging from 2.98 to 2.21 Ga. A group of Cambrian
and Neoproterozoic zircons had younger Hf model ages (tHf(C)) of 1.53–1.00 Ga. A more complicated
pattern was observed for the Hf isotopic composition of Carboniferous–Devonian zircon grains
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(Figure 8), which had tHf(C) values ranging from 1.88 to 0.46 Ga (Table S3). Similar Hf model ages
values characterized zircon grains from the Aga–Borshchovochnyi metamorphic complex (Figure 8).

Figure 8. Plots of crystallization age (Ma) versus εHf(t) for zircon grains from Aga–Borshchovochnyi
metamorphic complex and siliciclastic rocks of the Chiron Basin. Data from Table S3.

4.4. Whole-Rock Nd Isotopic Analyses

The results of Sm–Nd isotope analysis are presented in Figure 9 and Table 2. 147Sm/144Nd ratios
of siliciclastic rocks from all formations range from 0.0982 to 0.1198. All samples were characterized
by a wide spread in εNd(t) values from −17.8 to −6.6, with corresponding two-stage Nd model ages
(tNd(C)) of 2.56–1.65 Ga. Sandstones of the Shazagaitui and Zhipkhoshi formations had both the lowest
εNd(t) values (−17.8 to −7.3) and the oldest Nd model ages (tNd(C) = 2.56 to 1.70 Ga). Sandstones from
the Khara–Shibir Formation had relatively high εNd(t) values of −8.2 to −6.6 and younger Nd model
ages (tNd(C) = 1.78–1.65 Ga). Schists of the Aga–Borshchovochnyi metamorphic complex had similar
isotopic characteristics to those of the Khara–Shibir Formation.

Figure 9. Plots of crystallization age (Ma) versus εNd(t) values for Aga–Borshchovochnyi metamorphic
complex and siliciclastic rocks of the Chiron Basin (black lines, data from Table 2), in comparison
with whole-rock compositions of the magmatic and metamorphic rocks of the Dzhugdzhur-Stanovoy
Superterrane (grey field, data from [70]).
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Table 2. Whole-rock Sm-Nd isotopic compositions of the rocks of Chiron Basin.

Sample Formation/Complex Lithology Age *, Ma Sm, ppm Nd, ppm 147Sm/144Nd 143Nd/144Nd Err ** εNd(0) εNd(t) tNd(DM) tNd(C)

Y−92 Khara–Shibir Sandstone 330 2.08 11.76 0.10765 0.512025 16 −12.0 −8.2 1615 1783
Y−98 Khara–Shibir Sandstone 330 3.24 19.93 0.09821 0.512087 2 −10.7 −6.6 1402 1650

Y−96−3 Shazagaitui Sandstone 324 5.58 31.93 0.10637 0.511849 6 −15.4 −11.7 1844 2064
Y−97 Shazagaitui Sandstone 324 3.61 21.79 0.10006 0.511523 4 −21.7 −17.8 2175 2565
Y−93 Zhipkhoshi Sandstone 313 3.49 21.75 0.09762 0.511813 11 −16.1 −12.1 1752 2094
Y−94 Zhipkhoshi Sandstone 313 3.85 21.94 0.10612 0.512078 2 −10.9 −7.3 1518 1696
Y−99 Aga-Borshchovochnyi Greenschist 492 3.65 18.41 0.11982 0.512016 2 −12.1 −7.3 1838 1841

Y−101 Aga-Borshchovochnyi Greenschist 492 3.40 21.01 0.09868 0.511962 6 −13.2 −7.0 1573 1817

* Age of the youngest zircon grains. ** The errors (2σ) refer to the last digits.
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5. Discussion

5.1. Depositional Age of the Formations

The Aga–Borshchovochnyi metamorphic complex is tentatively assigned a late Paleozoic age
(middle Paleozoic, according to the Russian stratigraphic nomenclature) [34], but the youngest
concordant zircon age in this complex is 492 ± 6 Ma. We consider that if the Aga–Borshchovochnyi
metamorphic schists were indeed late Paleozoic in age, then they would have contained Devonian
and, possibly, early Carboniferous zircons, as is the case with the other formations. On this basis, a
Cambrian age for the Aga–Borshchovochnyi metamorphic complex cannot be excluded. Alternatively,
the complex contains rocks of different ages.

As shown in Section 2, the stratigraphic position of the Khara–Shibir Formation corresponds
to the lower Bashkirian stage [32], with the youngest concordant zircon age being 330 ± 4 Ma,
corresponding to the Visean–Serpukhovian boundary. On the basis of faunal data, the Shazagaitui
Formation is assigned an upper Bashkirian stage [32]. The youngest concordant zircon age found
in the sandstone of the Shazagaitui Formation is 324 ± 4 Ma, which essentially corresponds to the
Mississippian–Pennsylvanian boundary and does not contradict its biostratigraphic age.

There is an inconsistency between the Sakmarian–early Artinskian [32] or late Asselian–early
Artinskian ages [41] proposed for the Zhipkhoshi Formation, as determined from faunal data, and the
youngest zircon concordant age of (313 ± 3 Ma). It looks somewhat odd considering that intense
magmatism is recognized both in the Carboniferous and Permian in the region (see Section 5.2 therein).

5.2. Provenance

Given the major age populations and variability in isotopic compositions of zircon grains such
as εHf(t) (from −17.8 to −6.6) from the Khara–Shibir, Shazagaitui, and Zhipkhoshi formations and
whole-rocks two-stage Hf model ages tHf(C) (from 2.56 to 1.65 Ga), we can assume that the sources
of these zircons varied markedly. As structural analysis of the region attests [7,9,10,30,71–75], the
oldest zircon grains in sandstones of the Khara–Shibir, Shazagaitui, and Zhipkhoshi formations, which
have Hf model ages (tHf(C)) of >2.20 Ga, could be derived from the southern edge of the Siberian
Craton (Figure 1). Igneous and metamorphic complexes that represent fragments of the cratonic
basement could be a source for these zircons. Suitable Archean rocks include c. 2.86 Ga tonalite
gneiss [70], c. 2.78 Ga gneiss [76], c. 2.83 Ga granite [77], c. 2.62 and 2.52–2.40 Ga granite [78], c. 2.78 Ga
metagabbro [79], and c. 2.64 Ga granite gneiss [80]. Moreover, amphibolite-facies metavolcanic and
metasedimentary rocks containing zircon grains with ages of 2.90–2.70 Ga could be a source of the
Archean zircons.

Paleoproterozoic granitoids are widespread around the periphery of the Siberian craton ([78,81–95]
and references therein) and can be divided into eight groups by crystallization age: c. 2.52–2.40,
2.15–2.04, 2.06–2.00, 2.00–1.95, 1.95–1.90, 1.90–1.87, 1.87–1.84, and 1.76–1.71 Ga. Granulite-facies rocks of
the Mogocha Formation, which were metamorphosed at 1873 ± 8 Ma [96], along with Paleoproterozoic
(~1.87 Ga) gabbro-anorthosites [97], could also have been a source for Paleoproterozoic zircon grains
within sedimentary rock assemblages of the Chiron Basin.

A small group of Neoproterozoic zircon grains with tHf(C) = 1.52–1.16 Ga (Figure 8, Table S3)
could be derived from metamorphic rocks of the Ikat Terrane [10] or the Ikat–Bagdarin Zone [75], as
well as island-arc complexes of the Kelyan Island Arc. In particular, plagiogranites (971 ± 14 Ma, [98]),
gabbros (939 ± 11 Ma, [75]), and metabasalts (892 ± 16 Ma, [99,100]) have recently been discovered
within this terrane. According to Gordienko et al. [99,100], the island-arc series includes calc-alkaline
volcanic rocks with crystallization ages of 837 ± 11 and 789 ± 8 Ma [101].

Zircon grains with Cambrian ages are rare in sedimentary rocks of the Chiron Basin, and we
report Hf isotope data from a single grain only (Figure 8, Table S3). This grain has a tHf(C) of 1.00 Ga
and could be related to denudation of a differentiated andesite–dacite–rhyolite association assigned to
the Caledonian stage of the Uda–Vitim island-arc system, which extends along the southern periphery
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of the Siberian Craton [100,102]. According to Gordienko [102], volcanic rocks have the following
crystallization ages: 529 ± 3 Ma (plagio-rhyolites in the Eravna Area), 516 ± 5 Ma (quartz porphyry in
the Eravna Area), 529 ± 3 and 534 ± 6 Ma (rhyolites in the Oldynda Area), and 530 ± 26 Ma (dacites in
the Kydzhimit Area).

The majority of zircon grains from sandstones of the Khara–Shibir, Shazagaitui, and Zhipkhoshi
formations are Devonian–Carboniferous in age. In terms of Hf model ages, the zircon grains can be
subdivided into two groups. The first group is characterized by relatively old (mainly Paleoproterozoic)
model ages (tHf(C) = 2.25–1.7 Ga) (Figure 8, Table S3), the sources of which could be the southern fringe
of the Siberian Craton, where granitoids of the Olekma Complex have an age of 358 ± 6 Ma [103].
In addition, granitoids of the Barguzin (or Vitimkan) Complex, which are dated at 330–310 Ma [104,105],
could constitute a source of the early Carboniferous zircons. However, this is unlikely as the age of this
complex is 297–279 Ma [106]. In addition, there is no certainty regarding the source of Late Devonian
zircons. Conceivably, their sources could be intrusions of the Krestovsky and Kruchinin complexes [9],
for which there are no reliable age data.

The second group of Devonian–Carboniferous zircons is characterized by significantly younger
(mainly Neoproterozoic) model ages (tHf(C) = 1.35–0.36 Ga) (Figure 8, Table S3), suggesting derivation
from a source with a significant juvenile component, likely to have been eroded island arcs. Considering
the location of the Chiron Basin along the boundary between the southern margin of the Siberian Craton
and the western segment of the Mongol–Okhotsk Fold Belt (Figure 1), the sources of such zircons could
have been Paleozoic island arcs of the Mongol–Okhotsk Ocean, whose existence is inferred in most
geodynamic models ([2,29,107] and references therein). Conceivably, a fragment of such an arc is the
Zun–Shiveya Complex, which consists of rhyolites, rhyodacites, and granite porphyry, which have
tentatively been ascribed as Late Devonian to early Carboniferous in age [9].

In conclusion, it should be noted that like zircon grains from the Khara–Shibir, Shazagaitui,
and Zhipkhoshi formations, zircon grains from the Aga–Borshchovochnyi metamorphic complex
display a similar range of ages (with the exception of those with Devonian–Carboniferous ages) and
have identical isotopic characteristics (Figure 8; Table 2, Table S3). This supports an interpretation in
which Archean, Paleoproterozoic, Neoproterozoic, and Cambrian zircons of the Aga–Borshchovochnyi
metamorphic complex and Khara–Shibir, Shazagaitui, and Zhipkhoshi formations were derived from
the same source.

Sandstones of the Shazagaitui Formation have the oldest model tNd(C) ages of 2.65 Ga (Table 2),
consistent with the observation that the highest number of Paleoproterozoic and Archean zircons occur
in these rocks (Figure 7c). On this basis, we assume that source materials for these rocks must have
been derived from the Siberian Craton. Sandstones from the Khara–Shibir and Zhipkhoshi formations
have younger model ages (tNd(C) = 1.70–1.65 Ga) and contain fewer Paleoproterozoic and Archean
zircons (Figure 7b,d). Considering the Hf isotope data, we suggest at least two sources, one within the
Siberian Craton and another that does not represent reworked early Precambrian continental crust,
such as the island arcs mentioned above.

5.3. Tectonic Environments of Sedimentation

For establishing compositions of source rocks, we used well-known discrimination diagrams
based on the values and ratios of major and trace elements. Some of these diagrams are shown in
Figure 10. Plots of data from siliciclastic rocks within the Khara–Shibir, Shazagaitui, and Zhipkhoshi
formations in Na2O–K2O–CaO (Figure 10a), (CaO + MgO)–(Na2O + K2O)–(SiO2/10) (Figure 10b),
and F1 versus F2 diagrams (Figure 10c) indicate that the source areas were composed mainly of
felsic–intermediate igneous rocks. However, plots of the data in Na2O–K2O–CaO (Figure 10a) and
Zr/Sc versus Th/Sc) (Figure 10d) suggest a contribution of recycled material.
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Figure 10. Plots of Na2O–K2O–CaO after [108] (a), (CaO + MgO)–(Na2O + K2O)–(SiO2/10) after [49]
(b), F1 versus F2 after [109] (c), and Zr/Sc versus Th/Sc after [110] (d) for siliciclastic rocks of the
Chiron Basin. Fields for the various sources: A–andesites, D–dacites, GR–granodiorites, G–granites,
R–recycled sediments.

Additional diagrams were used to constrain the paleotectonic environments of sedimentation.
In the bivariate diagrams (Fe2O3* + MgO) versus (Al2O3/SiO2), (Fe2O3* + MgO) versus (Al2O3/(CaO
+ Na2O), F3 versus F4, and SiO2 versus K2O/Na2O, data for siliciclastic rock samples of all
formations suggest that they accumulated in island-arc and active continental-margin settings
(Figure 11a−d). A similar conclusion can be drawn from the ternary diagrams (K2O + Na2O)–(TiO2

+ Fe2O3 + MgO)–(SiO2/20) and Co–Zr/10–Th (Figure 11e,f). Thus, the geochemical features of the
rocks indicate that the Khara–Shibir, Shazagaitui, and Zhipkhoshi formations were deposited in
subduction-related settings.

On the whole, the geochemical characteristics of the siliciclastic rocks (Figure 11), including their
wacke/greywacke composition (Figure 4a,b), weak degree of source weathering (Figure 4c), and the
presence of interbedded conglomerate and gravelstone (see Section 2), are evidence that sedimentation
proceeded in an active tectonic regime. Considering that the clastic sedimentary rocks were sourced
from igneous and metamorphic rocks of the Siberian Craton on the one hand, and island arcs on the
other, we believe that sedimentation occurred in a backarc-basin setting of the southern periphery of
the Siberian Craton facing the Paleozoic Mongol–Okhotsk Ocean.
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Figure 11. Tectonic discrimination plots of Fe2O3* + MgO versus Al2O3/SiO2 after [108] (a), Fe2O3* +

MgO versus Al2O3/(CaO + Na2O) after [108] (b), F3 versus F4 after [109] (c), SiO2 versus K2O/Na2O
after [109] (d), (K2O + Na2O)–(TiO2 + Fe2O3 + MgO)–(SiO2/20) after [111] (e), and Co–Zr/10–Th
after [112] (f) for siliciclastic rocks of the Chiron Basin. Fields for the various tectonic settings:
A—Oceanic island arc; B—Continental island arc; C—Active continental margin; D—Passive margin.
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6. Conclusions

On the basis of our investigation of detrital zircon U–Pb and Hf isotope data and whole-rock Nd
isotope data for sedimentary rocks of the Chiron Basin, we draw the following conclusions.

1. Geochemical characteristics of the siliciclastic rocks, as well as the presence of conglomerate and
gravelstone interbeds, suggest that sedimentation occurred in an active tectonic regime.

2. The main source of sedimentary rocks of the Chiron Basin was igneous and metamorphic rocks
from the southern periphery of the Siberian Craton. Devonian–Carboniferous zircon grains with
relatively young (mainly Neoproterozoic) Hf model ages were derived from island arcs.

3. Combining the new data with regional geological data suggests that sedimentary rocks of the
Chiron Basin likely formed in a back arc basin setting on the southern periphery of the Siberian
Craton facing the Paleozoic Mongol–Okhotsk Ocean.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-163X/10/3/279/s1,
Table S1. Chemical composition of the sedimentary rocks of the Chiron Basin. Table S2. U–Th–Pb LA-ICP-MS
data for zircons from metasedimentary rocks of the Chiron Basin. Table S3. Hf isotopic data for zircons from
metasedimentary rocks of the Chiron Basin. References.
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