Supplementary Materials: Optimisation of Radium Removal from Saline Produced Waters during Oil and Gas Extraction

Joel Garner and David Read

Tuble of chalderballon of production which non hydraune fracturing operations.									
	Na⁺	Ca ²⁺	Ba ²⁺	Cl-	SO ₄ ^{2–}	TDS	²²⁶ Ra	T T	
Location	mg/dm ³							рн	
		Range							
Bowland Shale, West Lancashire, UK [1]	<200–33,300	nr	nr	15,400-92,800	nr	nr	14–90	6–8	
Lower Saxony, Germany [2]	3200-44,800	612–22,000	≤455	7010–115,140	4–1100	nr	nr	nr	
Marcellus Shale, Pennsylvania, USA [3-6]	8-82,000	16-40,000	0.06–22,400	18–200,000	1–1700	2.8–390,000	0.002–629	5.8–6.6	
DJ Basin, Colorado, USA [7]	nr	nr	nr	13,600	1.3	22,500	nr	6.8	
West Texas Region, USA [8]	540-74,600	137–20,100	≤2175	1200–153,000	≤2000	2900–252,000	nr	nr	

Table S1. Characterisation of production water from hydraulic fracturing operations.

nr-not reported, TDS-total dissolved solids.

Tab	le S2. 22	⁶ Ra recovery	⁷ by cc	-preci	pitation	at 0.3	and	3 M	NaCl	(all 0	.22 ml	M B	a).
-----	-----------	--------------------------	--------------------	--------	----------	--------	-----	-----	------	--------	--------	-----	-----

SO 4 ²⁻	²²⁶ Ra Recovery					
(mM)	(mM) $\% \pm 2\sigma^*$					
	Low salinity (0.3 M)					
	21.9 ± 5.9					
0.11	9.5 ± 2.3	12.0				
	4.6 ± 1.1					
	20.9 ± 5.6					
0.18	25.1 ± 7.4	21.2				
	17.6 ± 4.7					
0.35	70.8 ± 22.3	64.5				

Minerals 2020

	66.0 ± 21.9	
	56.8 ± 17.3	
	68.3 ± 22.4	
0.75	72.7 ± 21.6	72.0
	74.9 ± 21.9	
	92.5 ± 27.0	
1.46	103.7 ± 26.7	91.4
	78.0 ± 22.5	
	107.8 ± 27.7	
2.54	92.4 ± 24.9	95.6
	86.6 ± 22.7	
	84.3 ± 24.9	
3.58	73.0 ± 24.1	89.6
	111.7 ± 27.8	
	High salinity (3 M)	
	5.9 ± 1.6	
0.10	8.1 ± 2.6	5.7
	3.1 ± 0.9	
	11.6 ± 3.7	
0.15	6.2 ± 2.0	9.0
	9.2 ± 2.5	
	13.1 ± 3.6	
0.34	10.8 ± 3.6	11.5
	10.6 ± 3.1	
	23.4 ± 8.2	
1.49	21.2 ± 7.3	21.0
	18.3 ± 6.1	
	48.1 ± 22.3	
3.48	42.3 ± 24.6	44.0
	41.6 ± 21.4	

S2 of S5

Minerals 2020

	70.7 ± 22.9	
7.15	68.1 ± 19.9	70.0
	71.3 ± 26.5	
	111.6 ± 31.3	
14.69	93.3 ± 26.9	98.4
	90.2 ± 28.0	
	70.6 ± 26.0	
35.46	87.6 ± 28.7	84.4
	95.0 ± 29.0	
	89.9 ± 29.8	
70.83	103.2 ± 27.9	96.6
	96.8 ± 30.2	

* 2σ error based on counting statistics only.

Table 3. ²²⁶Ra recovery by co-precipitation at 0.3 and 3 M NaCl (all 5 mM Ba).

SO4 ²⁻ (mM)	% ²²⁶ Ra Recovery $\pm 2\sigma^*$					
Lov	w salinity (0.3 M)					
0.50	24.4 ± 4.9					
1.25	38.5 ± 9.4					
5.00	94.6 ± 18.8					
Hi	High salinity (3 M)					
0.50	22.5 ± 4.4					
1.25	43.6 ± 10.0					
5.00	99.6 ± 20.7					

 $*2\sigma$ error based on counting statistics only.

Sampling — Interval	% ²²⁶ Ra Recovery $\pm 2\sigma^*$						
	Low Salinity (0.3 M),	High Salinity (3 M),					
	1.5 mM SO4 ^{2-†}	15 mM SO _{4^{2-†}}					
30 min	26.3 ± 0.2	5.1 ± 0.03					
1 h	39.0 ± 0.3	6.2 ± 0.04					
2 h	40.7 ± 0.3	13.1 ± 0.1					
3 h	59.4 ± 0.6	16.6 ± 0.1					
6 h	60.4 ± 0.6	30.3 ± 0.2					
24 h	79.9 ± 1.1	63.4 ± 0.6					
48 h	84.4 ± 1.3	68.9 ± 0.8					
3 d	86.0 ± 1.4	72.7 ± 0.8					
4 d	86.7 ± 1.4	74.0 ± 0.9					
7 d	87.3 ± 1.5	76.3 ± 1.0					
14 d	86.1 ± 1.4	80.1 ± 1.1					

Table 4. ²²⁶Ra recovery by post-precipitation at 0.3 and 3 M NaCl (all 0.22 mM Ba).

 $^{*}2\sigma$ error based on counting statistics only. $^{+}Amount$ of $SO_{4}{}^{2-}$ used to precipitate barite before addition of $^{226}Ra.$

Table 5. PHREEQC* output for ^{226}Ra recovery by co-precipitation at 0.3 and 3 M NaCl (all 0.22 mM Ba).

Initial SO _{4²⁻}	NaCl	Ion Activity (mM)		Barite	Theoretical % ²²⁶ Ra	²²⁶ Ra xi for Bai Ra SO			
Conc. (mM)	(M)	Ba ²⁺	SO4 ²⁻	SI	Recovery (a ₀ = 1)	$(a_0 = 1)$			
Low salinity (0.3 M)									
0.11	0.29	0.06	0.02	1.11	35.3	4.15×10^{-8}			
0.18	0.29	0.06	0.04	1.33	60.3	4.67×10^{-8}			
0.35	0.29	0.06	0.08	1.63	92.1	5.33×10^{-8}			
0.75	0.29	0.06	0.17	1.96	97.8	5.45×10^{-8}			
1.46	0.29	0.06	0.34	2.23	99.0	5.48×10^{-8}			
2.54	0.29	0.05	0.58	2.46	99.5	5.49×10^{-8}			
3.58	0.29	0.05	0.82	2.59	99.6	5.49×10^{-8}			
			High salin	ity (3 M)					
0.10	3.02	0.04	0.01	0.26	4.8	1.64×10^{-8}			
0.15	3.02	0.04	0.01	0.44	11.1	1.90×10^{-8}			
0.34	3.02	0.04	0.02	0.79	38.5	3.01×10^{-8}			
1.49	3.02	0.04	0.08	1.42	85.2	4.90×10^{-8}			
3.48	3.03	0.04	0.18	1.79	93.8	5.25×10^{-8}			
7.15	3.04	0.04	0.38	2.09	97.0	5.38×10^{-8}			
14.69	3.07	0.04	0.77	2.39	98.5	5.44×10^{-8}			
35.46	3.15	0.04	1.82	2.73	99.3	5.47×10^{-8}			
70.83	3.28	0.03	3.52	2.97	99.6	5.49×10^{-8}			

*SIT database; x_i – mole fraction; a_0 – non-dimensional Guggenheim parameter.

Initial	_	Ion Activ	ity (mM)		Theoretical	226 Dav: for		
SO ₄ ²⁻ conc. (mM)	(mM) NaCl ^{04²⁻ conc. (M) Ba²⁺ SO^{4²⁻} (mM)}		Barite SI	% ²²⁶ Ra Recovery (a ₀ = 1)	$Ba_{1-x}Ra_xSO_4$ $(a_0 = 1)$			
Low salinity (0.3 M)								
0.50	0.301	1.28	0.10	3.07	6.6	1.61 × 10-9		
1.25	0.303	1.26	0.25	3.46	17.6	1.70×10^{-9}		
5.00	0.312	1.14	1.00	4.02	98.7	2.41×10^{-9}		
		H	igh salinity (3	M)				
0.50	3.037	0.99	0.03	2.30	2.8	6.85×10^{-9}		
1.25	3.040	0.99	0.07	2.70	8.0	7.77×10^{-9}		
5.00	3.053	0.98	0.26	3.29	92.0	2.28×10^{-9}		

Table 6. PHREEQC* output for ²²⁶Ra recovery by co-precipitation at 0.3 and 3 M NaCl (all 5 mM Ba).

*SIT database; xi-mole fraction; a0-non-dimensional Guggenheim parameter.

References

- 1. Environment Agency. *Shale Gas: North West–Monitoring of Flowback Water;* The Environment Agency: Bristol, UK, 2011.
- 2. Olsson, O.; Weichgrebe, D.; Rosenwinkel, K.H. Hydraulic fracturing wastewater in Germany: Composition, treatment, concerns. *Environ. Earth Sci.* **2013**, *70*, 3895–3906.
- 3. Shih, J.-S.; Saiers, J.E.; Anisfeld, S.C.; Chu, Z.; Muelenbachs, L,A.; Olmstead, S.M. Characterization and analysis of liquid waste from Marcellus Shale gas development. *Environ. Sci. Technol.* **2015**, *49*, 9557–9565.
- 4. Haluszczak, L.O.; Rose, A.W.; Kump, L.R. Geochemical evaluation of flowback brine from Marcellus gas wells in Pennsylvania, USA. *Appl. Geochem.* **2013**, *28*, 55–61.
- Rowan, E.L.; Engle, M.A.; Kirby, C.S.; Kraemer, T.F. Radium content of oil- and gas-field produced waters in the northern Appalachian Basin (USA)—Summary and discussion of data; Scientific Investigations Report 2011-5135; U.S. Geological Survey: Reston, VA, USA, 2011; p. 31
- Rowan E.L., Engle, M.A., Kraemer, T.F., Schroeder, K.T, Hammack, R.W., Doughten, M.W. Geochemical and isotopic evolution of water produced from Middle Devonian Marcellus shale gas wells, Appalachian basin, Pennsylvania. *AAPG Bulletin* 2015, *99*, 181–206.
- Lester, Y.; Ferrer, I.; Thurman, E.M.; Sitterley, K.A.; Korak, J.A.; Aiken, G.; Linden, K.G. Characterization of hydraulic fracturing flowback water in Colorado: Implications for water treatment. *Sci. Total Environ.* 2015, *512–513*, 637–644.
- 8. Haghshenas, A.; Nasr-El-Din, H.A. Effect of dissolved solids on reuse of produced water at high temperature in hydraulic fracturing jobs. *J. Nat. Gas Sci. Eng.* **2014**, *21*, 316–325.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).