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Aleksandra Gawȩda 1, Anna Zagórska 2, Ewa Deput 2, Nikolay Gospodinov 5

and Kamila Banasik 1

1 Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia in Katowice, Będzińska 60,
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Abstract: Southeastern Bulgaria is composed of a variety of rocks from pre-Variscan (ca. 0.3 Ga) to
pre-Alpine sensu lato (ca. 0.15 Ga) time. The Sakar Unit in this region comprises a series of granitoids and
gneisses formed or metamorphosed during these events. It is cut by a series of post-Variscan hydrothermal
veins, yet lacks pervasive Alpine deformation. It thus represents a key unit for detecting potential tectonism
associated with the enigmatic Cimmerian Orogenic episode, but limited geochronology has been undertaken
on this unit. Here we report age constraints on hydrothermal activity in the Sakar Pluton. The investigated
veins contain mainly albite–actinolite–chlorite–apatite–titanite–quartz–tourmaline–epidote and accessory
minerals. The most common accessory minerals are rutile and molybdenite. Apatite and titanite from the
same vein were dated by U–Pb LA–ICP-MS geochronology. These dates are interpreted as crystallization
ages and are 149 ± 7 Ma on apatite and 114 ± 1 Ma on titanite, respectively. These crystallization ages are
the first to document two stages of hydrothermal activity during the late Jurassic to early Cretaceous, using
U–Pb geochronology, and its association with the Cimmerian orogenesis. The Cimmerian tectono-thermal
episode is well-documented further to the east in the Eastern Strandja Massif granitoids. However,
these are the first documented ages from the western parts of the Strandja Massif, in the Sakar Unit.
These ages also temporally overlap with previously published Ar–Ar and K–Ar cooling ages, and firmly
establish that the Cimmerian orogeny in the studied area included both tectonic and hydrothermal activity.
Such hydrothermal activity likely accounted for the intense albitization found in the Sakar Unit.
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1. Introduction

The Balkan Peninsula consists of a series of variably metamorphosed terranes that predominantly
formed in the Phanerozoic due to the collision of Gondwana against Baltica, then Laurussia,
and later proto-Africa against proto-Europe during the Caledonian, Variscan, and Alpine orogeny [1].
Southern Bulgaria is divided into the Rhodope and Strandja massifs, with the relationship between
them remaining uncertain [2]. These massifs are composed of highly deformed orthogneisses and
paragneisses. The highly metamorphosed and deformed pre-Variscan basement is intruded by
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Variscan granites, which formed as a result of the collision of Gondwana and Laurussia during Pangea
assembly [3]. Later, Cimmerian-aged events preceded the main collision of Africa and Europe during
the Alpine Orogeny [4]. The Cimmerian Orogeny (~200–150 Ma; [5] and references therein) occurred
to the south and east of Bulgaria, with most Cimmerian tectonism documented between Turkey
and Central Asia [4–7]. The enigmatic Cimmerian Orogeny in Southeastern Europe, however, is
difficult to identify mostly due to the pervasive later Alpine orogenic overprint [8]. In Southeastern
Bulgaria, the late Variscan Sakar pluton intrudes the pre-Variscan basement [9] and is in turn affected
by later events of deformation and metamorphism, which in the past have been attributed to the
Alpine Orogeny [10]. Many of the Sakar granitoids are affected by a series of veins and pervasive
albitization, connected with Na-metasomatism of undetermined age [11,12]. Herein, we provide the
first U–Pb LA-ICP-MS dates from apatite and titanite in one vein type, documenting two episodes of
hydrothermal activity within the Sakar Unit of the Strandja Massif, which critically escaped significant
Alpine overprinting.

2. Geological Setting

The Sakar Unit of the Strandja Zone [13], also known as the Strandja (Strandzha) Massif (SM; [14,15]
and references therein) or Istranca Massif (IM; [16]), is located in the southeastern part of Bulgaria,
close to the border with Turkey and Greece (Figure 1A). It belongs to the East Srednogorie Zone of the
Balkan Orogenic System [17,18]. The Sakar Unit is exposed in the Sakar Mountains, which neighbor
the Rhodope and Strandja Mountains, and is bounded by the Maritsa and Tundzha rivers (Figure 1A).
The Sakar Unit consists of the Sakar Pluton, which intruded into high-grade meta-igneous and
metasedimentary rocks, and in turn are unconformably overlain by Triassic to middle Jurassic
metasedimentary rocks (Figure 1B). The Sakar Pluton is an East–West elongated magmatic body, ca.
20 km long and up to ca. 15 km wide, forming the major component of the Sakar Unit. In the west
and north of the unit, the contact between the pluton and the host rocks is covered by Neogene
sedimentary rocks (Figure 1), whereas in the northeast and south, the intensely sheared contacts of
the pluton are exposed [13,19,20]. The Sakar Pluton consists of various granitoids divided into three
groups: equigranular granitoids, porphyritic granitoids also with feldspar megacrysts, and aplitic
leucogranites. The Sakar granitoids contain xenoliths of the country rock and are cut by numerous
aplite veins and some mafic dykes [11]. Locally, the granitoids are affected by extensive albitization
(e.g., documented from the northeastern part of pluton, south of the Orlov dol village and Kanarata
quarry near Hlyabovo [11,12]). The timing of albitization is unknown; however, this process also
affected the low-grade Triassic metasedimentary rocks, and is therefore post-Triassic [11,12].

The crystallization age of the Sakar Pluton, as well as the age of the meta-igneous and
metasedimentary rocks has been the subject of long debate. Isotope dating by the Rb–Sr method from
the Sakar Pluton has yielded contradictory results of 320 ± 18 Ma [21], 499 ± 70 Ma [21], and 250 ± 35
Ma [22], which is discussed by Ivanov et al. [23], who proposed a post-middle-Triassic emplacement
age for the Sakar Pluton. K–Ar ages range between ca. 144 Ma and ca. 111 Ma [21,24–27] and likely
reflect a regional thermal overprint. However, preliminary U–Pb zircon dating results presented
by Peytcheva et al. [28], Bonev et al. [9], and Pristavova et al. [20] yield late-Carboniferous to early
Permian (ca. 305 Ma to ca. 295 Ma) crystallization ages for the Sakar Pluton. These new results
contradict the timing of supposed Jurassic to early Cretaceous emplacement of the granitoid presented
by Ivanov [23] which was supported by field observations of Gerdjikov [13]. These new late-Variscan
(ca. 300 Ma) ages also provide a minimum age for the host rocks of the Sakar Pluton (the Strandja
Massif). The Strandja Massif has widely been accepted as Precambrian in age [29], although there are
no modern geochronological studies, apart from the recent study by Bonev et al., [9], which indicates
the presence of an Ordovician magmatic event in the massif. Thus the Paleozoic, pre-Carboniferous
evolution of the Strandja Massif thus remains uncertain.
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Figure 1. The Sakar Mountains in Bulgaria—study area: (A) geological map of the Strandja Massif
(Southeast Bulgaria) and neighboring regions; (B) geological sketch map of the Sakar Unit (modified
after [10,11]); (C) Kanarata quarry—sample locality.

3. Sample Locality and Methods

Rock samples for this study were collected from the Kanarata quarry (Figure 1C), located ca. 3 km
north of Hlyabovo village and ca. 5 km east of Topolovgrad (Haskovo District), within the northeastern
part of the Sakar Pluton. The quarry is located near the contact with the country rock (<500 m to the west
of the quarry), and contains granitoids with abundant amphibolite xenoliths, which are a common feature
of the margin of the pluton. The quarry is currently active, with the granites being exploited as dimension
stone. The locality is also known for the occurrence of gemstone-quality apatite ([30]; Figure 2A).

Pale-blue apatite and olive-green titanite crystals (Figure 2B) from the Hlyabovo (Alpine-type)
fissures were collected for U–Pb laser ablation–inductively coupled plasma mass spectrometry
(LA-ICP-MS) dating.
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Figure 2. Example of minerals within the investigated veins. (A) Blue apatite crystal on albite and
chlorite, (B) green titanite, (C) albite crystals, (D) actinolite overgrown by albite, (E) epidote aggregate,
(F) molybdenite flake on milky quartz, and (G) rutile crystals in quartz. Scale bars are 1 cm.

3.1. Microscopy

Petrographic analyses of thin sections, using light microscopy, were undertaken at the Faculty of
Natural Sciences in the University of Silesia in Katowice, Sosnowiec, Poland, using an Olympus BX−51
microscope to constrain mineralogical, textural, and microstructural relationships of the samples and
to determine the presence of dateable accessory minerals. The petrographic observations were used to
select representative minerals for subsequent electron probe microanalysis (EMPA) and whole-rock
major and trace-element geochemical analyses.

3.2. Electron Probe Micro-Analyses (EMPA)

Microprobe analyses of the main rock-forming and accessory minerals were carried out at the
Inter-Institutional Laboratory of Microanalyses of Minerals and Synthetic Substances, University of
Warsaw, Warsaw, using a CAMECA SX−100 electron microprobe. The analytical conditions employed
an accelerating voltage of 15 kV, a beam current of 20 nA, counting times of 4 s for peak and background,
and a beam diameter of 1–5 µm. The full analytical procedures are listed in Table S1.

3.3. LA–ICP-MS U–Pb Apatite and Titanite Dating

U–Pb apatite and titanite ages were determined by using a Photon Machines Analyte Exite 193 nm
ArF Excimer laser-ablation system with a Helex 2-volume ablation cell coupled to an Agilent 7900
ICP-MS, using an Aerosol Rapid Introduction System (ARIS; Teledyne Photon Machines), at the
Department of Geology, Trinity College, Dublin, Ireland. The ICP-MS was tuned, using NIST 612
standard glass to yield Th/U ratios of unity and low oxide production rates (ThO+/Th+ typically
<0.15%). A 0.15 L/min He carrier gas was fed into the cell body, and 0.25 L/min He was fed into
the cup, the aerosol was subsequently mixed with 0.6 L/min Ar make-up gas and a small volume of
N2 (~7 mL/min) in a ~1 cm3 signal-smoothing device coupled to the ARIS, to enhance signal sensitivity
and reduce oxide formation. For apatite, the following 30 isotopes were measured (with their respective
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dwell times in milliseconds listed in parentheses): 31P (10), 35Cl (20), 43Ca (10), 51V(7.5), 55Mn (75),
88Sr (7.5), 89Y (5), 90Zr (10), 137Ba (10), 139La (5), 140Ce (5), 141Pr (5), 146Nd (5), 147Sm (7.5), 153Eu (10),
157Gd (10), 159Tb (10), 163Dy (10), 165Ho (10), 166Er (10), 169Tm (10), 172Yb (10), 175Lu (15), 202Hg (5),
204Pb (5), 206Pb (75), 207Pb (75), 208Pb (5), 232Th (5), and 238U (75), corresponding to a total dwell time of
456 ms and a total cycle time of 510 ms. For titanite, the following 25 isotopes were measured (with
their respective dwell times in milliseconds listed in parentheses): 43Ca (10), 49Ti(10), 90Zr (5), 139La
(5), 140Ce (5), 141Pr (5), 146Nd (5), 147Sm (5), 153Eu (5), 157Gd (5), 159Tb (5), 163Dy (5), 165Ho (7), 166Er
(7), 169Tm (7), 172Yb (7), 175Lu (10), 202Hg (25), 204Pb (25), 206Pb (50), 207Pb (70), 208Pb (20), 232Th (10),
and 238U (30), corresponding to a total dwell time of 343 ms and a total cycle time of 379.5 ms. For both
titanite and apatite analyses, the laser fluence was 2.5 J/cm2, with a repetition rate of 15 Hz, a 47 µm
spot size, and an analysis time of 20 s, followed by an 8 s background measurement.

The raw isotope data were reduced, using the “VizualAge UcomPbine” data-reduction scheme
(DRS) of Chew et al. [31], a modification of the U–Pb geochronology “VizualAge” DRS of Petrus
and Kamber [32] that can account for the presence of variable common Pb in the primary standard
materials. The DRS runs within the freeware IOLITE package of Paton et al. [33]. In IOLITE,
user-defined time intervals are established for the baseline correction procedure to calculate session-wide
baseline-corrected values for each isotope. The time-resolved fractionation response of individual
standard analyses is then characterized, using a user-specified down-hole correction model (such as
an exponential curve, a linear fit, or a smoothed cubic spline). The VizualAge data-reduction scheme
then fits this appropriate session-wide “model” U–Th–Pb fractionation curve to the time-resolved
standard data and the unknowns. Sample-standard bracketing is applied after the correction of
down-hole fractionation to account for long-term drift in isotopic or elemental ratios by normalizing
all ratios to those of the U–Pb reference materials. Common Pb in the apatite and titanite standards
was corrected by using the 207Pb-based correction method.

Blocks of nine standards and two NIST612 standard glass analyses were followed by 20 unknown
samples. For apatite analyses, the Madagascar natural mineral standard [34] was used (weighted
mean ID-TIMS concordia age of this crystal is 473.5 ± 0.7 Ma). McClure Mountain syenite apatite
(weighted mean 207Pb/235U age of 523.51 ± 2.09 Ma [35], and Durango apatite (31.44 ± 0.18 Ma [36],
were used as secondary standards. As the in-house standards, McClure Mountain apatite yielded
a U–Pb Tera–Wasserburg concordia lower intercept age of 523.5 ± 3.0 Ma (MSWD = 2.4), anchored
using a 207Pb/206Pb value of 0.88198 derived from an apatite ID-TIMS total U–Pb isochron [35].
The Durango apatite standard yielded a U–Pb Tera–Wasserburg concordia lower intercept age of
33.43 ± 0.62 Ma (MSWD = 1.8), anchored using a 207Pb/206Pb value of value of 0.838 derived from the
Stacey and Kramers [37] terrestrial Pb evolution model at an age of 31.44 Ma. For titanite analyses,
MKED1 titanite (207Pb/206Pb TIMS age of 1521.02 ± 0.55 Ma; [38]) was used as the primary standard.
OLT−1 titanite (U–Pb TIMS concordia age of 1014.8 ± 2.0 Ma; [39]) and BLR titanite (U–Pb TIMS
age of 1047.1 ± 0.4 Ma; [40] were used as the secondary U–Pb calibration standards and yielded
weighted average 207Pb-corrected ages of 1017.4 ± 6.7 Ma (n = 17, MSWD = 3.4) and 1067.9 ± 6.2 Ma
(n = 14, MSWD = 2.4), respectively.

4. Results

4.1. Petrography

The studied rocks are hosted by the so-called Aleksandrovo-type granites (see [12] and references
therein), which in Kanarata quarry are represented by medium-grained albitized granitoids (Figure 3A).
These rocks contain amphibolite xenoliths from tens of centimeters up to 3 m in length (Figure 3B).
All of the xenoliths have sharp contacts with the country rock and exhibit a distinctive mineral lineation
(Figure 3B,C).
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Figure 3. Photographs of the most common rock types in the investigated Kanarata quarry. (A) monzonite
with an albite nest, (B) amphibolite xenolith within the contact zone, (C) an example of Alpine-type fissures,
and (D) the second vein type with massive quartz and epidote. Ap = apatite, Chl = chlorite, Ab = albite,
Ep = epidote, and Qtz = quartz.

All investigated veins are Alpine-type fissures, varying from a few centimeters to up to 1 m
in length (Figure 3A,C). These veins are rich in albite, actinolite, chlorite, apatite, and titanite.
The albite is composed of milky to translucent crystals, with an anorthite content up to 3.5 wt.%
(Table S2). The albite crystals are euhedral, and up to 1 cm in length (Figure 2D,E). Actinolite
(Mg-rich hornblende; Table S3), forms different varieties of pale- to dark-green crystals. They typically
have a needle-like habit, with long prismatic crystals up to 2–3 cm in length and an aspect ratio
as high as 100:1. The actinolite commonly occurs as inclusions in albite. The chlorite in the vein
contains 50%–82% of the clinochlore (Mg5Al)(Si3Al)O10(OH) end-member, 12%–49% of the chamosite
(Fe2+

5Al)(Si3Al)O10(OH) end-member, and <3% of the pennantite (Mn5Al)(Si3Al)O10(OH) end-member
(classification after Bailey [41]; Table S4). The chlorite flakes partially overgrow albite and actinolite,
and mostly form aggregates up to 300 µm in length. Chlorite thermometry, using the Cathelineau and
Nieva’s [42], Jowett’s [43], and Karaniditis et al.’s [44] methodologies, yielded temperature ranges
of 298–340 ◦C, 286–329 ◦C, and 272–300 ◦C, respectively (Table S4; Figure 5). Apatite generally
forms well-shaped hexagonal milky to bluish crystals, which commonly are prismatic, dipyramidal,
and stubby. Sporadically, flat or tabular plates were also noted (Figure 2A). The apatite crystals are
up to 5–7 cm in length, with an aspect ratio of 4:1. Twinned crystals are lacking. All investigated
crystals are fluorapatite (Ca-apatite; Table 1), and imaging by EMPA reveals the chemical homogeneity
of the investigated apatite crystals. Titanite from the same locality usually forms euhedral crystals,
twinned on {221}. Some of the crystals may be in flattened into tabular or even prismatic forms,
with pointed terminations and complex dipyramidal crystals. The titanite crystals are pale to dark
green, and are up to 2 cm in length (Figure 2B). The crystals do not reveal any chemical zonation
(Table S2). The titanite in most cases is not overgrown by any associated minerals. Titanite crystals
contain more chlorite inclusions than the apatite, regardless of the crystal size. Moreover, both phases
do not form intergrowths between each other. The presence of rutile is limited to prismatic metallic
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crystals, with lengths up to 200 µm. The rutile crystals are often strongly weathered. This type of vein
(the Alpine-type fissures) is often located close to amphibolite xenoliths.

Sporadically, veins composed mainly of quartz, epidote–clinozoisite, tourmaline (schörl), albite,
rutile, and molybdenite are also noted, although these were not dated in this study. The groundmass
of these veins is mainly quartz. Barren quartz sporadically forms euhedral crystals (up to 4–5 cm
in length) that are smoky to in color transparent. The more common massive quartz is mostly
gray–milky in color (Figure 2F,G). Quartz is associated only with this type of vein. Albite forms white
crystals, which are orientated perpendicular to the contact with the host rock. A similar situation is
observed if rutile crystals are present, with the rutile crystals reaching up to 4 cm in length (Figure 2E).
Prismatic, elongated crystals of rutile, with a prominent trigonal prism and pyramid, were observed.
The surface of the rutile crystals appears to be oxidized and coated by a thin film of Fe-hydroxides
(goethite/limonite?). Epidote group minerals are present in this vein-type as radial aggregates of
acicular to columnar crystals, having pale-green to green color (Figure 2E). Molybdenite in this vein
type is up to 2.5 cm across, and the crystals are commonly tabular- and barrel-shaped (Figure 2F).
Tourmaline group minerals are represented by schörl, which forms prismatic to acicular crystals,
and sporadically may be modified along the [0001] plane, with a prominent trigonal prism and pyramid.
The crystals are up to 8 cm in length, with an aspect ratio of 10:1. Tourmaline mostly occurs only
with quartz.

4.2. U–Pb Geochronology

The homogeneity and size of the titanite (Table 1) and apatite (Table 2) grains in this study
make them useful for U–Pb dating. Sixty titanite grains were analyzed, and all the data points are
highly discordant due to high proportions of common Pb relative to radiogenic Pb. All data lie on
an unanchored Tera–Wasserburg discordia line with a lower intercept age of 114 ± 1 Ma (MSWD = 1.3)
and a 207Pb/206Pb initial ratio of 0.6799 ± 0.011 (Figure 4A).

Apatite grains were also analyzed, and the 49 data points were also highly discordant due to the
high proportion of common Pb compared to radiogenic Pb. The data points all fall on an unanchored
Tera–Wasserburg discordia, with a lower intercept age of 149 ± 7 Ma (MSWD = 1.7) and a 207Pb/206Pb
initial ratio of 0.772 ± 0.021 (Figure 4B). All LA–ICP-MS data are listed in Table S5.

Table 1. Representative electron microprobe analyses (EMPA) of apatite and number of a.p.f.u. are
calculated on the basis of 25 O2− of the investigated sample from the Kanarata quarry, Bulgaria.

Compound 1 2 3 4 5 6 7 8 9 10

CaO (wt.%) 55.69 55.82 55.57 55.57 55.83 55.77 55.75 56.13 56.11 56.26
SiO2 0.23 0.10 b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l.
P2O5 41.51 42.32 41.83 42.56 42.58 42.31 41.87 42.61 42.42 42.07
SO3 0.12 0.13 b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l.

F 2.83 2.82 3.05 2.55 2.27 2.88 1.99 2.79 2.64 2.40
H2O 0.39 0.41 0.27 0.54 0.68 0.37 0.80 0.43 0.50 0.61

O=F,Cl 1.19 1.19 1.29 1.07 0.96 1.22 0.84 1.18 1.11 1.01

Total 99.58 100.42 99.44 100.14 100.41 100.11 99.57 100.79 100.56 100.33

Ca (a.p.f.u.) 10.37 10.27 10.36 10.20 10.21 10.31 10.26 10.29 10.30 10.34
Si 0.04 0.02 - - - - - - - -
P 6.11 6.15 6.16 6.18 6.15 6.18 6.09 6.17 6.15 6.11
S 0.02 0.02 - - - - - - - -

XF 1.55 1.53 1.68 1.38 1.22 1.57 1.08 1.51 1.43 1.30
XOH 0.45 0.47 0.32 0.62 0.78 0.43 0.92 0.49 0.57 0.70

Note: b.d.l.—below detection limit.
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5. Discussion

5.1. Age Significance: Apatite vs. Titanite

Titanite (CaTiSiO5) and apatite (Ca5(PO4)3(Cl/F/OH)) are common accessory minerals in
a compositionally wide range of igneous, metamorphic (especially in amphibolite facies),
and hydrothermal rocks. Both minerals are also important carriers for numerous trace elements,
including U, Th, and Pb. Titanite commonly contains trace amounts of U and largely excludes initial Pb,
thus making it useful for radiometric dating using the U–Pb–Th isotopic system (e.g., [45–47]).
Multi-equilibrium thermobarometry suggests that the titanite closure temperature falls within
a restricted range of 660–700 ◦C (e.g., [48]). For apatite, experimental determination of the diffusion
parameters of Pb by high-temperature annealing experiments [49] and ion implantation with Rutherford
backscattering techniques [50] imply closure temperatures of between 450 and 550 ◦C. Apatite
is chemically stable at middle-amphibolite facies conditions (i.e., temperatures above its closure
temperature). Under such conditions, it is thought the U–Pb systematics of apatite are controlled
predominantly by volume diffusion rather than by the new growth or recrystallization [51]. Taking
the above factors into consideration, the titanite and apatite ages represent separate crystallization
episodes in the same vein type, as the calculated ages lie significantly outside of their mutual analytical
uncertainties. In addition, the significantly lower 207Pb/206Pb initial ratio of the titanite (suggesting
derivation from a radiogenic fluid), also implies separate crystallization episodes.
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Figure 4. Tera–Wasserburg concordia plots for LA–ICP-MS U–Pb titanite (A) and apatite (B) analyses
from the Kanarata quarry. Data-point error ellipses are 2σ.

The Alpine-type fissure veins contain abundant apatite, titanite, albite, actinolite, and chlorite,
and they exhibit similarities with vein systems across most orogenic zones connected with the Alpine
collision in most of Southern Europe, from Italy to Greece, to Turkey, and onward to Iran and China
(e.g., [52–56]). This veining is associated with hydrothermal activity, which is interpreted in this study
as being the cause of Na-albitization in the country rocks. The occurrence of two mineral phases of
different ages in one druse indicates two discrete hydrothermal crystallization episodes. Chlorite
temperature calculations show that the most probable temperature for hydrothermal activity occurred
in the range of ca. 290–330 ◦C (Figure 5).
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5.2. Geotectonic Implications of the Apatite and Titanite Ages

The margins of the late-Carboniferous to early Permian Sakar Pluton (305–295 Ma [9,12,28];
Figure 6A) are affected by extensive Na-albitization, as documented by Kamenov et al., [11] and
Pristvova et al., [12], along with the vein systems such as those are observed at Kanarata quarry
(Figure 6B,C). The obtained U–Pb LA-ICP-MS ages of 149 ± 7 Ma on apatite and 114 ± 1 Ma on titanite,
respectively, suggest two discrete crystallization ages within the Sakar Pluton. The hydrothermal
veins, therefore, represent either a long-lived (i.e., ca. 35 Myr) hydrothermal episode within the Sakar
Unit in the late-Jurassic to early Cretaceous, or two different episodes of fracturing associated with
hydrothermal activity. Albitization from Kanarata quarry was documented by Pristavova et al., [12];
however, the timing of this alteration process remained unknown. As field relationships suggest
the spatial and temporal link of albitization and veining here, we suggest the hydrothermal activity
within the Sakar Unit is coeval with K–Ar ages between ca. 144 and ca. 111 Ma [21,22,24–27]. Similar
late-Jurassic to early Cretaceous ages are also documented from the eastern part of the Strandja Zone,
where a two-stage process of ductile and brittle deformation is documented by Elmas et al., [57],
between ca. 156 and ca. 143 Ma and between ca. 136 and ca. 119 Ma, respectively. This deformation
was interpreted by Elmas et al., [57] as being coincident with core complex formation during extension.
However, this contradicts previous interpretations by Dabovski et al., [18] and Okay et al., [14],
who connected ca. 155 Ma Rb–Sr ages as being related to regional metamorphism and thrusting
during orogenesis.
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Table 2. Representative electron microprobe analyses (EMPA) of titanite and number of ion a.p.f.u.
calculated on the basis of 18 O2− of the investigated sample from the Kanarata quarry, Bulgaria.

Compound 1 2 3 4 5 6 7 8 9 10

SiO2 (wt.%) 30.20 30.19 29.93 30.18 30.04 30.12 30.31 30.19 30.23 29.91
TiO2 38.65 38.47 38.47 36.88 38.38 38.81 38.21 38.54 38.54 38.59
CaO 28.33 28.26 28.07 28.24 28.25 28.41 28.24 28.24 28.26 28.21

Al2O3 1.11 1.23 1.02 1.75 0.95 0.87 1.18 1.03 0.84 0.86
MnO b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. 0.12 0.12 b.d.l. b.d.l.
Fe2O3 0.68 0.60 0.76 0.64 0.61 0.74 0.71 0.34 0.76 0.43
Y2O3 0.13 0.16 0.11 0.16 0.17 b.d.l. 0.14 0.15 0.14
V2O5 0.19 0.25 0.27 0.26 0.30 0.24 0.29 0.19 0.31 0.24

F 0.24 0.18 0.10 0.41 0.12 0.02 0.22 0.16 0.26 0.10
O=F 0.10 0.08 0.04 0.17 0.05 0.01 0.09 0.07 0.11 0.04

Total 99.42 99.25 98.69 98.35 98.78 99.21 99.32 98.88 99.09 98.44

Si (a.p.f.u.) 3.58 3.58 3.57 3.62 3.58 3.57 3.60 3.60 3.60 3.58
Ti 3.45 3.43 3.45 3.33 3.44 3.46 3.41 3.45 3.45 3.47
Ca 3.60 3.59 3.58 3.63 3.61 3.61 3.59 3.60 3.60 3.61
Al 0.16 0.17 0.14 0.25 0.13 0.12 0.17 0.14 0.12 0.12
Mn - - - - - - 0.01 0.01 - -
Fe 0.06 0.05 0.07 0.06 0.06 0.07 0.06 0.03 0.07 0.04
Y 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
V 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
F 0.09 0.07 0.04 0.16 0.04 0.01 0.08 0.06 0.10 0.04

Total 10.96 10.92 10.87 11.08 10.90 10.85 10.96 10.92 10.95 10.88

Note: b.d.l.—below detection limit.
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Figure 6. Simplified model of the hydrothermal activity in the Sakar Unit of Southeastern Bulgaria, based
on the geochronological data presented in this study and field observations. (A) Formation of the Variscan
host rock (~305–295 Ma). (B) The first, older hydrothermal event forms the primary mineralization (ca.
149 Ma. (C) The second, younger hydrothermal episode forms titanite (ca. 114 Ma age).
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The ages presented here are coeval with other regional events, such as those documented further
west in the Rhodope Massif [58,59], to the north in the Carpathians [60–62], and to the east in Turkey
and Iran [63], and they are likely connected to the Cimmerian Orogeny [4]. The Cimmerian Orogeny is
mostly documented from Central Asia, where oceanic island arcs were subducted beneath Asia prior
to the arrival of India and the of the Neo-Tethys basin [4]. However, recent work shows that the orogen
extended much further to the west, including into Iran, Turkey and into Bulgaria [8]. In Şengör [4,64],
the Cimmerian Orogeny was defined by the continent–continent collision of a Gondwana-derived
continental ribbon on to Laurasia. However, more recent work indicates a series of Cimmerian tectonic
events [62,65–69]. The Cimmerian Orogeny is succeeded by the Alpine Orogeny, which stretches further
to the west, and includes the Pyrenees, Alps, Carpathians, Balkanides, Pontides, Zagros, and ultimately,
the Himalayas, as the bulk of Africa and India collided with Europe and Asia, respectively. However,
distinguishing between Cimmerian- and Alpine-related structures is difficult. The Sakar Unit, along
with the majority of the Strandja Massif further to the east, appears to have escaped any significant
Alpine orogenesis, sensu stricto [8]. Although the final stages of the Cimmerian Orogeny likely
overlapped in age with the Alpine Orogeny sensu lato, the ages from this study predate the Alpine
Orogeny and are not affected by it. The Alpine Orogeny is documented further to the north in the
Carpathians and Srednogorie mountains [70,71] and to the west, in the Rhodope Massif [72].

6. Conclusions

1. The U–Pb ages in this study are interpreted as distinct crystallization episodes, at 149 ± 7
Ma on apatite and 114 ± 1 Ma on titanite, respectively. They are the first evidence for two stages
of hydrothermal activity during the late-Jurassic to early Cretaceous in Southeastern Bulgaria and
are broadly coeval with the Cimmerian orogenesis. The ages obtained in this study are broadly
coeval with other units from the eastern part of the Strandja Massif, where two stages of deformation
are documented.

2. The U–Pb apatite concordia systematics are robust, with both the U–Pb apatite and U–Pb
titanite data implying they were unaffected by open system processes above their respective
closure temperatures.

3. The study also confirms the lack of any significant Alpine orogenic footprint on the western part
of the Strandja Massif, making it distinct from the neighboring Rhodope and Balkanides mountains.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-163X/10/3/266/s1.
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number of a.p.f.u. calculated on the basis of 12 O2− of the investigated sample from the Kanarata quarry, Bulgaria.
Table S4: Representative electron microprobe analyses (EMPA) of chlorites and number of a.p.f.u. calculated
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