Next Issue
Volume 10, April
Previous Issue
Volume 10, February
 
 

Minerals, Volume 10, Issue 3 (March 2020) – 89 articles

Cover Story (view full-size image): Scanning electron microscopy image showing the new mineral eliopoulosite, V7S8, in association with grammatikopoulosite, tsikourasite, awaruite, nickelphosphide, and chromite, from the chromitite of Agios Stefanos, Othrys ophiolite, Greece. The arrow indicates a portion of its crystal structure, which consists of a twelve-fold superstructure of the NiAs-type subcell with V-atoms octahedrally coordinated by S atoms. On the background, a wire/stick image of the eliopoulosite structure as seen down the c-axis. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
3 pages, 149 KiB  
Editorial
Editorial for Special Issue “Novel Methods and Applications for Mineral Exploration”
by Paul Alexandre
Minerals 2020, 10(3), 246; https://doi.org/10.3390/min10030246 - 25 Mar 2020
Viewed by 2555
Abstract
The mineral exploration industry is [...] Full article
(This article belongs to the Special Issue Novel Methods and Applications for Mineral Exploration)
13 pages, 5516 KiB  
Article
Nucleation and Initial Growth of Garnet in Low-Grade Metamorphic Rocks of the Sanbagawa Metamorphic Belt, Kanto Mountains, Japan
by Mutsuko Inui, Yumenosuke Wakai and Hiirou Sakuragi
Minerals 2020, 10(3), 292; https://doi.org/10.3390/min10030292 - 24 Mar 2020
Cited by 3 | Viewed by 2861
Abstract
The beginning of the recrystallization of minerals within a subducting oceanic plate provides a valuable record of dehydration within the subduction zone. Pelitic schists of the Nagatoro area, Kanto Mountains, Japan, record the initial stages of garnet growth. Consequently, these rocks were studied [...] Read more.
The beginning of the recrystallization of minerals within a subducting oceanic plate provides a valuable record of dehydration within the subduction zone. Pelitic schists of the Nagatoro area, Kanto Mountains, Japan, record the initial stages of garnet growth. Consequently, these rocks were studied to analyze garnet nucleation and growth during metamorphism of the Sanbagawa metamorphic belt, one of the world’s most comprehensively studied subduction complexes. The garnet grains are small, euhedral, and occur only within micaceous lamellae that define the schistosity. Crystal size distribution analyses revealed most of the garnet grains follow the log-normal size distribution, indicating that they formed in the same event. A few exceptionally large garnet grains exist that do not seem to follow the log-normal distribution. The latter garnet grains contain a rounded fragmental area with a different chemical composition inside the core. It is possible that detrital fragments of garnet contribute to the irregular crystal size distribution of garnet in the studied area. Many of the smaller (log-normal) garnet grains have relatively large, homogeneous Mn-rich cores. The lack of chemical zoning within the garnet cores suggests that they grew under constant pressure and temperature in response to overstepping of the garnet-in reaction. The chemical composition changes very sharply at the boundary between the core and the surrounding mantle. The size of the Mn-rich core is different from sample to sample, suggesting that the nucleation was controlled by the local chemical condition of each sample. Full article
(This article belongs to the Special Issue From Diagenesis to Low-Grade Metamorphism)
Show Figures

Figure 1

14 pages, 2310 KiB  
Article
New Combined Depressant/Collectors System for the Separation of Powellite from Dolomite and the Interaction Mechanism
by Yunlou Qian, Wei Ding, Zhen Wang and Yang Peng
Minerals 2020, 10(3), 291; https://doi.org/10.3390/min10030291 - 24 Mar 2020
Cited by 3 | Viewed by 2551
Abstract
The flotation beneficiation of powellite from dolomite was achieved with a new reagent system that consists of a mixed collector of sodium oleate (NaOl) and benzohydroxamic acid (BHA) and a depressant sodium hexametaphosphate (SHMP). The interaction mechanism of the reagent regime with minerals [...] Read more.
The flotation beneficiation of powellite from dolomite was achieved with a new reagent system that consists of a mixed collector of sodium oleate (NaOl) and benzohydroxamic acid (BHA) and a depressant sodium hexametaphosphate (SHMP). The interaction mechanism of the reagent regime with minerals was studied using zeta potential and X-ray photoelectron spectroscopy (XPS) detection together with crystal chemistry and interaction energy analysis. The matching features of O–O distance in BHA with that in saline minerals and active site density/activity were used as methods to explain the reagent/mineral interaction. The results of microflotation finally established the new reagent regime at pH 8–12: 2.5 × 10−4 M SHMP, 2 × 10−4 M mixed collector containing 1.5 × 10−4 M NaOl and 0.5 × 10−4 M BHA. SHMP selectively depresses the adsorption of NaOl and BHA onto dolomite but minimally affects the adsorption of NaOl and BHA on the powellite surface. Full article
(This article belongs to the Special Issue Interface Science in Mineral (Bio)Processing)
Show Figures

Graphical abstract

20 pages, 12069 KiB  
Article
Processing of Waste Copper Converter Slag Using Organic Acids for Extraction of Copper, Nickel, and Cobalt
by Pratima Meshram, Uday Prakash, Lalit Bhagat, Abhilash, Hongbo Zhao and Eric D. van Hullebusch
Minerals 2020, 10(3), 290; https://doi.org/10.3390/min10030290 - 23 Mar 2020
Cited by 16 | Viewed by 4739
Abstract
An innovative, economical, and environmentally sound hydrometallurgical process has been proposed for recovering Cu, Ni, and Co from copper-rich converter slag by organic acids. In the leaching experiments, the effects of organic acid concentrations, pulp density, temperature, and time were investigated. Optimum recovery [...] Read more.
An innovative, economical, and environmentally sound hydrometallurgical process has been proposed for recovering Cu, Ni, and Co from copper-rich converter slag by organic acids. In the leaching experiments, the effects of organic acid concentrations, pulp density, temperature, and time were investigated. Optimum recovery of 99.1% Cu, 89.2% Ni, 94% Co, and 99.2% Fe was achieved in 9–10 h at 308 K (35 °C) temperature and 15% pulp density with 2 N citric acid using <45 µm particles. Pourbaix diagrams of metal-water-citrate systems were supplemented to examine solubility of ligands at the desired conditions. Furthermore, the leaching mechanism was based on the SEM-EDS (energy-dispersive X-ray spectroscopy) and XRD characterization as well as the leaching results obtained. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Graphical abstract

21 pages, 8598 KiB  
Article
Mechanism for the Bio-Oxidation and Decomposition of Pentlandite: Implication for Nickel Bioleaching at Elevated pH
by Jianzhi Sun, Jiankang Wen, Biao Wu and Bowei Chen
Minerals 2020, 10(3), 289; https://doi.org/10.3390/min10030289 - 23 Mar 2020
Cited by 11 | Viewed by 4230
Abstract
This work investigated the effects of Fe3+, H+ and adsorbed leaching bacteria on the bioleaching of pentlandite. Collectively, an integrated model for the oxidation and decomposition of pentlandite was built to describe the behaviors of different components in a bioleaching [...] Read more.
This work investigated the effects of Fe3+, H+ and adsorbed leaching bacteria on the bioleaching of pentlandite. Collectively, an integrated model for the oxidation and decomposition of pentlandite was built to describe the behaviors of different components in a bioleaching system. Proton ions and ferric ions could promote the break and oxidation of Ni-S and Fe-S bonds. The iron-oxidizing microorganisms could regenerate ferric ions and maintain a high Eh value. The sulfur-oxidizing microorganisms showed significant importance in the oxidation of polysulfide and elemental sulfur. The atoms in pentlandite show different modification pathways during the bioleaching process: iron transformed through a (Ni,Fe)9S8 → Fe2+ → Fe3+ → KFe3(SO4)2(OH)6 pathway; nickel experienced a transformation of (Ni,Fe)9S8 → NiS → Ni2+; sulfur modified through the pathway of S2−/S22− → Sn2− → S0 → SO32− → SO42−. During bioleaching, a sulfur-rich layer and jarosite layer formed on the mineral surface, and the rise of pH value accelerated the process. However, no evidence for the inhibition of the layers was shown in the bioleaching of pentlandite at pH 3.00. This study provides a novel method for the extraction of nickel from pentlandite by bioleaching at elevated pH values. Full article
(This article belongs to the Special Issue Surface Chemistry in Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

14 pages, 2246 KiB  
Article
Rheological Properties of Cemented Paste Backfill with Alkali-Activated Slag
by Yunpeng Kou, Haiqiang Jiang, Lei Ren, Erol Yilmaz and Yuanhui Li
Minerals 2020, 10(3), 288; https://doi.org/10.3390/min10030288 - 22 Mar 2020
Cited by 72 | Viewed by 3914
Abstract
This study investigates the time-dependent rheological behavior of cemented paste backfill (CPB) that contains alkali-activated slag (AAS) as a binder. Rheological measurements with the controlled shear strain method have been conducted on various AAS-CPB samples with different binder contents, silicate modulus (Ms: SiO [...] Read more.
This study investigates the time-dependent rheological behavior of cemented paste backfill (CPB) that contains alkali-activated slag (AAS) as a binder. Rheological measurements with the controlled shear strain method have been conducted on various AAS-CPB samples with different binder contents, silicate modulus (Ms: SiO2/Na2O molar ratio), fineness of slag and curing temperatures. The Bingham model afforded a good fit to all of the CPB mixtures. The results show that AAS-CPB samples with high binder content demonstrate a more rapid rate of gain in yield stress and plastic viscosity. AAS-CPB also shows better rheological behavior than CPB samples made up of ordinary Portland cement (OPC) at identical binder contents. It is found that increasing Ms yields lower yield stress and plastic viscosity and the rate of gain in these parameters. Increases in the fineness of slag has an adverse effect on rheological behavior of AAS-CPB. The rheological behavior of both OPC- and AAS-CPB samples is also strongly enhanced at higher temperatures. AAS-CPB samples are found to be more sensitive to the variation in curing temperatures than OPC-CPB samples with respect to the rate of gain in yield stress and plastic viscosity. As a result, the findings of this study will contribute to well understand the flow and transport features of fresh CPB mixtures under various conditions and their changes with time. Full article
(This article belongs to the Special Issue Alkali Activated Materials: Advances, Innovations, Future Trends)
Show Figures

Figure 1

18 pages, 6643 KiB  
Article
In Situ Hyperspectral Raman Imaging of Ternesite Formation and Decomposition at High Temperatures
by Nadine Böhme, Kerstin Hauke, Manuela Neuroth and Thorsten Geisler
Minerals 2020, 10(3), 287; https://doi.org/10.3390/min10030287 - 21 Mar 2020
Cited by 16 | Viewed by 3569
Abstract
Knowledge of the high-temperature properties of ternesite (Ca5(SiO4)2SO4) is becoming increasingly interesting for industry in different ways. On the one hand, the high-temperature product has recently been observed to have cementitious properties. Therefore, its formation [...] Read more.
Knowledge of the high-temperature properties of ternesite (Ca5(SiO4)2SO4) is becoming increasingly interesting for industry in different ways. On the one hand, the high-temperature product has recently been observed to have cementitious properties. Therefore, its formation and hydration characteristics have become an important field of research in the cement industry. On the other hand, it forms as sinter deposits in industrial kilns, where it can create serious problems during kiln operation. Here, we present two highlights of in situ Raman spectroscopic experiments that were designed to study the high-temperature stability of ternesite. First, the spectra of a natural ternesite crystal were recorded from 25 to 1230 °C, which revealed a phase transformation of ternesite to the high-temperature polymorph of dicalcium silicate (α’L-Ca2SiO4), while the sulfur is degassed. With a heating rate of 10 °C/h, the transformation started at about 730 °C and was completed at 1120 °C. Using in situ hyperspectral Raman imaging with a micrometer-scale spatial resolution, we were able to monitor the solid-state reactions and, in particular, the formation properties of ternesite in the model system CaO-SiO2-CaSO4. In these multi-phase experiments, ternesite was found to be stable between 930 to 1020–1100 °C. Both ternesite and α’L-Ca2SiO4 were found to co-exist at high temperatures. Furthermore, the results of the experiments indicate that whether or not ternesite or dicalcium silicate crystallizes during quenching to room temperature depends on the reaction progress and possibly on the gas fugacity and composition in the furnace. Full article
(This article belongs to the Special Issue Modern Raman Spectroscopy of Minerals)
Show Figures

Figure 1

17 pages, 3739 KiB  
Article
The Origin and Evolution of Ore-Bearing Rocks in the Loypishnun Deposit (Monchetundra Massif, NE Fennoscandian Shield): Isotope Nd-Sr and REE Geochemical Data
by Evgeniy Kunakkuzin, Elena Borisenko, Luydmila Nerovich, Pavel Serov, Tamara Bayanova and Dmitry Elizarov
Minerals 2020, 10(3), 286; https://doi.org/10.3390/min10030286 - 21 Mar 2020
Cited by 3 | Viewed by 3037
Abstract
The Monchetundra massif is located in the north-eastern Fennoscandian Shield and refers to Paleoproterozoic massifs of the East-Scandinavian Large Igneous Province. The general section of the massif comprises two parts, the lower norite-orthopyroxenite and the upper mafic zones. The lower zone is of [...] Read more.
The Monchetundra massif is located in the north-eastern Fennoscandian Shield and refers to Paleoproterozoic massifs of the East-Scandinavian Large Igneous Province. The general section of the massif comprises two parts, the lower norite-orthopyroxenite and the upper mafic zones. The lower zone is of great interest due to its associated industrial platinum group elements (PGE) mineralization. The structure and peculiar features of rocks in the lower zone were studied using a drill core from the borehole MT-70 in the south-eastern slope of the Monchetundra massif intersecting the ore zone 1 of the Loypishnun deposit (according to the CJSC Terskaya Mining Company data). A comparison of the barren and ore-bearing varieties of norites and pyroxenites in the Loypishnun deposit shows that the ore samples have the lowest negative εNd values, a relatively more differentiated distribution spectrum with the Light rare earth elements (LREE) dominating over the Heavy REE (HREE), Eu/Eu* ≥ 1, and a higher mean content of alkali and large-ion lithophile elements (Ba, Rb, and Cs). New geochemical data indicated an origin of magmas for rocks from a layered series in the Loypishnun deposit by a high degree of melting of a LREE-rich source with a low mean content of REE. Negative εNd values, low ISr values, and a marked negative Nb indicate that the crustal material affected the evolution of rocks in the lower zone of the massif more than in the upper zone. The formation of ore bodies in the Loypishnun deposit was governed by the crust-mantle interaction, magmatic differentiation, and association with the most differentiated varieties, and by further concentration of the ore at the late and post-magmatic stages in a highly permeable environment for fluids in the Monchetundra fault zone. Full article
Show Figures

Figure 1

9 pages, 1345 KiB  
Article
Microbial Gold Biosortion and Biomineralization from Aqueous HAuCl4 Solution
by Ichiro Maeda and Takehiko Tsuruta
Minerals 2020, 10(3), 285; https://doi.org/10.3390/min10030285 - 21 Mar 2020
Cited by 4 | Viewed by 2423
Abstract
The removal of gold (III) from aqueous systems using biosorption and biomineralization by microbial cells was investigated. High levels of gold (III) were removed from a hydrogen tetrachloroaurate (III) solution for 72 h by microbial species, including bacteria, fungi and yeasts. Previously, we [...] Read more.
The removal of gold (III) from aqueous systems using biosorption and biomineralization by microbial cells was investigated. High levels of gold (III) were removed from a hydrogen tetrachloroaurate (III) solution for 72 h by microbial species, including bacteria, fungi and yeasts. Previously, we reported that the amounts of gold (III) removed through biosorption by gram-positive bacteria, fungi, and yeasts was lower than that by gram-negative bacteria. Candida krusei was able to remove large amounts of gold (III) through biosorption and biomineralization. Interestingly, more gold was removed by atomic reduction than by biosorption. Additionally, we examined time, pH, concentration and other factors affecting gold removal. The rate of gold (III) removal by C. krusei increased for 6 h, and then stabilized, however, the rate of removal increased after 22 h, and reached a second equilibrium after 68 h. Full article
(This article belongs to the Special Issue Biosorption and Biomineralization in Metal Removal)
Show Figures

Figure 1

34 pages, 6584 KiB  
Article
Li and Ca Enrichment in the Bristol Dry Lake Brine Compared to Brines from Cadiz and Danby Dry Lakes, Barstow-Bristol Trough, California, USA
by Michael R. Rosen, Lisa L. Stillings, Tyler Kane, Kate Campbell, Matthew Vitale and Ray Spanjers
Minerals 2020, 10(3), 284; https://doi.org/10.3390/min10030284 - 21 Mar 2020
Cited by 6 | Viewed by 4332
Abstract
Relatively few discharging playas in western United States extensional basins have high concentrations of lithium (Li) and calcium (Ca) in the basin-center brines. However, the source of both these ions is not well understood, and it is not clear why basins in close [...] Read more.
Relatively few discharging playas in western United States extensional basins have high concentrations of lithium (Li) and calcium (Ca) in the basin-center brines. However, the source of both these ions is not well understood, and it is not clear why basins in close proximity within the same extensional trough have notably different concentrations of Li and Ca. In the Barstow-Bristol Trough, California, USA, three playas in separate topographically closed basins vary in Li and Ca concentrations from northwest to southeast: 71–110 mg/L Li and 17–65 g/L Ca at Bristol Dry Lake, 20–80 mg/L Li and 7.5–40 g/L Ca at Cadiz Dry Lake, and <5 mg/L Li and <0.5 g/L Ca at Danby Dry Lake. Using new and historic data from recently drilled wells (2017–2018), it has been determined that there is minimal variation of temperature, Li, and major ion concentrations with depth (down to 500 m), suggesting that the brines are well mixed and likely to circulate slowly due to density driven flow. Although it has been postulated that geothermal fluids supply the Li and Ca to Bristol and Cadiz closed basins, there is little to no surface evidence for geothermal fluids, except for a young (80,000-year-old) volcanic crater in Bristol Dry Lake. However, major-ion chemistry of fluid inclusions in bedded halite deposits show no change in brine chemistry over the last 3 million years in Bristol Dry Lake indicating that the source of lithium is not related to these recent basaltic eruptions. Mg–Li geothermometry of basin-center brines indicates that Bristol and Cadiz brines have possibly been heated to near 160 °C at some time and Danby brine water has been heated to less than 100 °C, although Cadiz and Danby lakes have no known surface geothermal features. The difference in Li concentrations between the different basins is likely caused by variable sources of both ions and the hydrology of the playas, including differences in how open or closed the basins are, recharge rates, evaporative concentration, permeability of basin-center sediments, and the possible amount of geothermal heating. The differences in Ca concentrations are more difficult to determine. However, historic groundwater data in the basins indicate that less saline groundwater on the north side of the basins has molar Ca:HCO3 and Ca:SO4 ratios greater than one, which indicates a non-saline groundwater source for at least some of the Ca. The similar Li and Ca concentrations in Bristol and Cadiz lakes may be because they are separated only by a low topographic divide and may have been connected at times in the past three million years. All three basins are at least Miocene in age, as all three basins have been interpreted to contain Bouse Formation sediments at various depths or in outcrop. The age of the basins indicates that there is ample time for concentration of Li and Ca in the basins even at low evaporation rates or low geothermal inputs. The source of Li for brines in Bristol and Cadiz basins is postulated to be from ancient geothermal fluids that no longer exist in the basin. The source of Li to the sediment may be either geothermal fluids or dissolution and concentration of Li from tephra layers and detrital micas or clays that are present in the sediments, or a combination of both. The source of Ca must at least partially come from groundwater in the alluvial fans, as some wells have Ca:HCO3 ratios that are greater than one. The source of Ca could be from the dissolution of Ca-bearing igneous rocks in the surrounding catchments with limited HCO3 contribution, or dilute geothermal water migrating up through faults in the basin margin. The relatively low concentration of Li and Ca in Danby playa is likely caused by a lack of sources in the basin and because the basin was (or is) partially hydrologically open to the south, reducing the effectiveness of evaporative concentration of solutes. Bristol Dry Lake is likely the only hydrologically closed basin of the three because although Cadiz has a similar brine chemistry and salinity, there is almost no halite deposition in the basin. It is only Bristol Dry Lake that contains 40% halite in its basin center. Full article
(This article belongs to the Special Issue Evolution of Li-rich Brines)
Show Figures

Figure 1

20 pages, 5722 KiB  
Article
Does the Methylene Blue Test Give Equally Satisfactory Results in All Studied Igneous Rocks Relative to the Identification of Swelling Clay Minerals?
by Panagiota P. Giannakopoulou, Petros Petrounias, Aikaterini Rogkala, Paraskevi Lampropoulou, Eleni Gianni, Dimitrios Papoulis, Petros Koutsovitis, Basilios Tsikouras and Konstantin Hatzipanagiotou
Minerals 2020, 10(3), 283; https://doi.org/10.3390/min10030283 - 21 Mar 2020
Cited by 4 | Viewed by 3894
Abstract
The presence or the absence of swelling clay minerals in rocks, which are used in various construction applications, constitutes a determinant factor for their strength, and consequently, in their general behavior in various construction applications, as they have the ability to swell up [...] Read more.
The presence or the absence of swelling clay minerals in rocks, which are used in various construction applications, constitutes a determinant factor for their strength, and consequently, in their general behavior in various construction applications, as they have the ability to swell up to 400 times of their usual volume, causing failures to any application in which they participate. The aim of this study is to respond to the question of whether the empirical method of methylene blue yields equally safe and correct results in different types of igneous rocks and if not, which is the determining factor affecting the results. The answer to this complex question is feasible by investigating the microscopic structure and the mineralogy of the studied rocks, and particularly, using the content of specific phyllosilicate minerals which may be related or not with the methylene blue values. According to the results, the methylene blue test seems to work correctly for the intermediate (Group I) and mafic (Group II) examined rocks, but it seems to be wrong for the highly serpentinized ultramafic rocks (up to 70% of serpentine) (Group III). Full article
(This article belongs to the Special Issue Applied Petrography of Construction Materials)
Show Figures

Figure 1

11 pages, 1804 KiB  
Article
Bastnaesite, Barite, and Calcite Flotation Behaviors with Salicylhydroxamic Acid as the Collector
by Wenliang Xiong, Jie Deng, Kaile Zhao, Weiqing Wang, Yanhong Wang and Dezhou Wei
Minerals 2020, 10(3), 282; https://doi.org/10.3390/min10030282 - 20 Mar 2020
Cited by 22 | Viewed by 3675
Abstract
The flotation of bastnaesite, as a major mineral source of rare earth elements, attracting much attention in the mineral processing field, is challenging owing to the natural flotability of calcium-bearing minerals. To promote the application of flotation, we systematically investigated the flotation behavior [...] Read more.
The flotation of bastnaesite, as a major mineral source of rare earth elements, attracting much attention in the mineral processing field, is challenging owing to the natural flotability of calcium-bearing minerals. To promote the application of flotation, we systematically investigated the flotation behavior of bastnaesite, barite, and calcite, with salicylhydroxamic acid (SHA) as the collector through micro-flotation experiments, zeta-potential measurements, Fourier transform infrared (FT-IR) analyses, X-ray photoelectron spectroscopy (XPS) analyses, and solution chemistry analyses. Micro-flotation experiments confirm that the flotability of bastnaesite is high at pH 6.5–8.5, while calcite floats at pH 8.0–9.5, and barite has little flotation response. The results of FT-IR, XPS, and zeta-potential measurements indicate that there is chemical adsorption of SHA on the bastnaesite surface, and physical adsorption also occurs. However, as for barite and calcite, there is only physical adsorption of SHA on the surfaces. The solution chemistry results show that SHA anions can interact with RE3+, REOH2+, and RE(OH)2+ on bastnaesite surfaces in aqueous suspensions, resulting in bastnaesite flotation. Full article
(This article belongs to the Special Issue Surface Chemistry in Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

16 pages, 7004 KiB  
Article
Typomorphic Features of Placer Gold from the Billyakh Tectonic Melange Zone of the Anabar Shield and Its Potential Ore Sources (Northeastern Siberian Platform)
by Boris Gerasimov, Vasily Beryozkin and Alexander Kravchenko
Minerals 2020, 10(3), 281; https://doi.org/10.3390/min10030281 - 20 Mar 2020
Cited by 5 | Viewed by 2602
Abstract
Precambrian shields and outcropped Precambrian rock complexes in the Arctic may serve as the most important sources of various types of mineral raw materials, including gold. The gold potential of the Anabar shield in the territory of Siberia has, thus far, been poorly [...] Read more.
Precambrian shields and outcropped Precambrian rock complexes in the Arctic may serve as the most important sources of various types of mineral raw materials, including gold. The gold potential of the Anabar shield in the territory of Siberia has, thus far, been poorly studied. A number of primary and placer gold occurrences have been discovered there, but criteria for the prediction of and search for gold mineralization remain unclear. The main purpose of this paper was to study the typomorphic features of placer gold in the central part of the Billyakh tectonic mélange zone in the Anabar shield and to compare them to mineralization from primary sources. To achieve this, we utilized common methods for mineralogical, petrographic, and mineragraphic analyses. Additionally, geochemical data were used. As a result of this investigation, important prospecting guides were identified, and essential criteria for the prediction of and search for gold deposits were elucidated. The characteristics of the studied placer gold were specific for gold derived from a proximal provenance. These characteristics included the poor roundness of the native gold grains, a cloddy–angular and dendritic form, an uneven surface, and a high content of coarse-fraction native gold (0.5–2 mm), which was as high as 24% of the volume of analyzed native gold. In addition, we conducted a study on the mineralogical features of the gold-sulfide mineralization that was disseminated throughout a small exposure area of paleo-Proterozoic para- and orthogneisses in the Anabar shield basement. A comparison of mineral inclusions in the coarse-fraction native gold and mineral assemblages in the ore deposits showed that one of the possible primary sources for placer gold might be small bodies of metasomatically altered orthogneisses associated with large granitoid plutons. Full article
Show Figures

Figure 1

11 pages, 3467 KiB  
Article
Lauryl Phosphate Flotation Chemistry in Barite Flotation
by Ying Lu, Weiping Liu, Xuming Wang, Huaigang Cheng, Fangqin Cheng and Jan D. Miller
Minerals 2020, 10(3), 280; https://doi.org/10.3390/min10030280 - 20 Mar 2020
Cited by 9 | Viewed by 2938
Abstract
Barite has numerous applications including barium mud for oil well drilling, manufacture of elemental barium, filler for paper and rubber industries, and contrast material for X-ray radiology for the digestive system. Currently, froth flotation is the main method for the beneficiation of barite [...] Read more.
Barite has numerous applications including barium mud for oil well drilling, manufacture of elemental barium, filler for paper and rubber industries, and contrast material for X-ray radiology for the digestive system. Currently, froth flotation is the main method for the beneficiation of barite using fatty acid as a typical collector. In this research, it was found that lauryl phosphate is also a promising collector for barite flotation. Results from microflotation, contact angle, and zeta potential indicate that lauryl phosphate is adsorbed on the barite surface and thus achieves superior flotation efficiency at a wide pH range. The interfacial water structure and wetting characteristics of barite surface with/without lauryl phosphate adsorption were also evaluated by molecular dynamics simulations (MDS). The results from molecular dynamics simulations and interaction energy calculations are in accord with the experimental results, which suggest that lauryl phosphate might be a potential collector for the flotation of barite. Full article
(This article belongs to the Special Issue Barite)
Show Figures

Figure 1

27 pages, 9367 KiB  
Article
Provenance and Tectonic Implications of Sedimentary Rocks of the Paleozoic Chiron Basin, Eastern Transbaikalia, Russia, Based on Whole-Rock Geochemistry and Detrital Zircon U–Pb Age and Hf Isotopic Data
by Ludmila I. Popeko, Yulia N. Smirnova, Victor A. Zaika, Andrey A. Sorokin and Sergey I. Dril
Minerals 2020, 10(3), 279; https://doi.org/10.3390/min10030279 - 19 Mar 2020
Cited by 2 | Viewed by 2857
Abstract
The Chiron Basin extends along the southern periphery of the Siberian Craton and the western margin of the Mongol–Okhotsk Belt. Here, we present whole-rock geochemical data (major and trace elements and Sm–Nd isotopes) along with zircon U–Pb geochronology and Lu–Hf isotopic data from [...] Read more.
The Chiron Basin extends along the southern periphery of the Siberian Craton and the western margin of the Mongol–Okhotsk Belt. Here, we present whole-rock geochemical data (major and trace elements and Sm–Nd isotopes) along with zircon U–Pb geochronology and Lu–Hf isotopic data from Paleozoic sedimentary rocks within the Chiron Basin to investigate their provenance and tectonic history. εNd(t) values of the siliciclastics rocks of the Khara–Shibir, Shazagaitui, and Zhipkhoshi formations vary from −17.8 to −6.6, with corresponding two-stage Nd model ages (tNd(C)) ranging from 2.56 to 1.65 Ga. Detrital zircon grains from these rocks are predominantly Archean, Paleoproterozoic, and Carboniferous–Devonian in age. The data suggest that the southern flank of the Siberian Craton is the only viable source area for Archean and Paleoproterozoic zircon grains with Hf model ages (tHf(C)) of >2.20 Ga. The majority of zircon grains from sandstones from the Khara–Shibir, Shazagaitui, and Zhipkhoshi formations are Devonian–Carboniferous in age. With respect to their Hf model ages, the zircon grains can be subdivided into two groups. The first group of Devonian–Carboniferous zircon grains is characterized by relatively old (mainly Paleoproterozoic) tHf(C) model ages of 2.25–1.70 Ga and the source was the southern margin of the Siberian Craton. The second group of Devonian–Carboniferous zircon grains is characterized by significantly younger (mainly Neoproterozoic) tHf(C) model ages of 1.35–0.36 Ga, which are consistent with a juvenile source, most likely eroded island arcs. Our data, show that sedimentary rocks of the Chiron Basin likely formed in a back-arc basin on the southern periphery of the Siberian Craton facing the Paleozoic Mongol–Okhotsk Ocean. Full article
Show Figures

Figure 1

11 pages, 2725 KiB  
Article
Optimisation of Radium Removal from Saline Produced Waters during Oil and Gas Extraction
by Joel Garner and David Read
Minerals 2020, 10(3), 278; https://doi.org/10.3390/min10030278 - 19 Mar 2020
Cited by 3 | Viewed by 2940
Abstract
Unconventional shale gas exploitation presents complex problems in terms of radioactive waste disposal. Large volumes of saline produced water resulting from hydraulic fracturing are typically enriched in radium isotopes, up to several hundred Bq/dm3, orders of magnitude above national discharge limits. [...] Read more.
Unconventional shale gas exploitation presents complex problems in terms of radioactive waste disposal. Large volumes of saline produced water resulting from hydraulic fracturing are typically enriched in radium isotopes, up to several hundred Bq/dm3, orders of magnitude above national discharge limits. There is a need, therefore, to decontaminate the fluid prior to discharge, preferably by creating a less problematic radium-containing, solid waste form. Barite (barium sulphate) co-precipitation is a cost-effective method for achieving these objectives, provided the process can be controlled. In this work, radium recovery of ~90% has been achieved for simulant produced waters containing 100 Bq/dm3, using a single, optimised co-precipitation step. However, salinity has a significant effect on the efficiency of the process; higher salinity solutions requiring substantially more reagent to achieve the same recovery. If >90% radium removal is sought, multiple co-precipitation steps provide a much faster alternative than post-precipitation recrystallization of the barite solid phase, albeit at higher cost. The resulting solid waste has a relatively high specific radium activity but a much smaller volume, which presents a less intractable disposal problem for site operators than large volumes of radium-contaminated fluid. Full article
(This article belongs to the Special Issue Barite)
Show Figures

Graphical abstract

14 pages, 2267 KiB  
Article
Vibrational Investigation of Pressure-Induced Phase Transitions of Hydroxycarbonate Malachite Cu2(CO3)(OH)2
by Jing Gao and Xueyin Yuan
Minerals 2020, 10(3), 277; https://doi.org/10.3390/min10030277 - 19 Mar 2020
Cited by 6 | Viewed by 2925
Abstract
Malachite Cu2(CO3)(OH)2 is a common hydroxycarbonate that contains about 15.3 wt % H2O. Its structural chemistry sheds light on other hydroxyl minerals that play a role in the water recycling of our planet. Here using Raman [...] Read more.
Malachite Cu2(CO3)(OH)2 is a common hydroxycarbonate that contains about 15.3 wt % H2O. Its structural chemistry sheds light on other hydroxyl minerals that play a role in the water recycling of our planet. Here using Raman and infrared spectroscopy measurements, we studied the vibrational characteristics and structural evolution of malachite in a diamond anvil cell at room temperature (25 °C) up to ~29 GPa. Three types of vibrations were analyzed including Cu–O vibrations (300–600 cm−1), [CO3]2− vibrations (700–1600 cm−1), and O–H stretches (3200–3500 cm−1). We present novel observations of mode discontinuities at pressures of ~7, ~15, and ~23 GPa, suggesting three phase transitions, respectively. First, pressure has a great effect on the degree of deformation of the [CuO6] octahedron, as is manifested by the various shifting slopes of the Cu–O modes. [CuO6] deformation results in a rotation of the structural unit and accordingly a phase transition at ~7 GPa. Upon compression to ~15 GPa, the O–H bands redshift progressively with significant broadness, indicative of an enhancement of the hydrogen bonding, a shortening of the O···O distance, and possibly somewhat of a desymmetrization of the O–H···O bond. O–H mode hardening is identified above ~15 GPa coupled with a growth in the amplitude of the lower-energy bands. These observations can be interpreted as some reorientation or reordering of the hydrogen bonding. A further increment of pressure leads to a change in the overall compression mechanism of the structure at ~23 GPa, which is characterized by the blueshift of the O–H stretches and the softening of the O–C–O in-plane bending bands. The hydrogen bonding weakens due to a substantial enhancement of the Cu–H repulsion effect, and the O···O bond length shows no further shortening. In addition, the change in the local geometry of hydrogen is also induced by the softening of the [CO3]2− units. In this regard we may expect malachite and other analogous hydroxyl minerals as capable of transporting water downward towards the Earth’s transition zone (~23 GPa). Our results furnish our knowledge on the chemistry of hydrogen bonding at mantle conditions and open a new window in understanding the synergistic relations of water and carbon recycling in the deep Earth. Full article
(This article belongs to the Special Issue Vibrational (Infrared and Raman) Spectroscopy of Minerals)
Show Figures

Graphical abstract

50 pages, 45430 KiB  
Review
The Record of Environmental and Microbial Signatures in Ancient Microbialites: The Terminal Carbonate Complex from the Neogene Basins of Southeastern Spain
by Raphaël Bourillot, Emmanuelle Vennin, Christophe Dupraz, Aurélie Pace, Anneleen Foubert, Jean-Marie Rouchy, Patricia Patrier, Philippe Blanc, Dominique Bernard, Julien Lesseur and Pieter T. Visscher
Minerals 2020, 10(3), 276; https://doi.org/10.3390/min10030276 - 19 Mar 2020
Cited by 12 | Viewed by 5910
Abstract
The Messinian microbialites of the Terminal Carbonate Complex (TCC) from the Neogene basins of southeastern Spain show both diversified morphologies and an excellent preservation of primary microbial microstructures. Their stratigraphic architecture, fabric (micro-, meso-, and macro-fabric), and mineralogical composition were investigated in eight [...] Read more.
The Messinian microbialites of the Terminal Carbonate Complex (TCC) from the Neogene basins of southeastern Spain show both diversified morphologies and an excellent preservation of primary microbial microstructures. Their stratigraphic architecture, fabric (micro-, meso-, and macro-fabric), and mineralogical composition were investigated in eight localities from three sedimentary basins of southeastern Spain: The Sorbas and Bajo Segura basins and the Agua Amarga depression. Two recurrent microbialite associations were distinguished. Laterally linked low relief stromatolites predominated in Microbialite Association 1 (MA1), which probably formed in low energy lagoons or lakes with fluctuating normal marine to hypersaline water. The microfabrics of MA1 reflected the predominance of microbially induced/influenced precipitation of carbonates and locally (Ca)-Mg-Al silicates. Microbialite Association 2 (MA2) developed in high energy wave and tidal influenced foreshore to shoreface, in normal marine to hypersaline water. High-relief buildups surrounded by mobile sediment (e.g., ooids or pellets) dominated in this environment. MA2 microbialites showed a significant proportion of thrombolitic mesofabric. Grain-rich microfabrics indicated that trapping and binding played a significant role in their accretion, together with microbially induced/influenced carbonate precipitation. The stratigraphic distribution of MA1 and MA2 was strongly influenced by water level changes, the morphology and nature of the substratum, and exposure to waves. MA1 favorably developed in protected areas during third to fourth order early transgression and regression phases. MA2 mostly formed during the late transgressions and early regressions in high energy coastal areas, often corresponding to fossil coral reefs. Platform scale syn-sedimentary gypsum deformation and dissolution enhanced microbial carbonate production, microbialites being thicker and more extended in zones of maximum deformation/dissolution. Microbial microstructures (e.g., microbial peloids) and microfossils were preserved in the microbialites. Dolomite microspheres and filaments showed many morphological similarities with some of the cyanobacteria observed in modern open marine and hypersaline microbialites. Dolomite potentially replaced a metastable carbonate phase during early diagenesis, possibly in close relationship with extracellular polymeric substances (EPS) degradation. Double-layered microspheres locally showed an inner coating made of (Ca)-Mg-Al silicates and carbonates. This mineral coating could have formed around coccoid cyanobacteria and indicated an elevated pH in the upper part of the microbial mats and a potential dissolution of diatoms as a source of silica. Massive primary dolomite production in TCC microbialites may have resulted from enhanced sulfate reduction possibly linked to the dissolving gypsum that would have provided large amounts of sulfate-rich brines to microbial mats. Our results open new perspectives for the interpretation of ancient microbialites associated with major evaporite deposits, from microbe to carbonate platform scales. Full article
(This article belongs to the Special Issue Microbialites: Preservation of Extant and Extinct Systems)
Show Figures

Figure 1

13 pages, 2371 KiB  
Article
Unique Authigenic Mineral Assemblages and Planktonic Foraminifera Reveal Dynamic Cold Seepage in the Southern South China Sea
by Yang Zhou, Pengfei Di, Niu Li, Fang Chen, Xin Su and Jinpeng Zhang
Minerals 2020, 10(3), 275; https://doi.org/10.3390/min10030275 - 19 Mar 2020
Cited by 9 | Viewed by 2932
Abstract
Many cold seeps and gas hydrate areas have not been discovered beside the Beikan basin in the southern South China Sea (SCS), and their characteristics and histories also remain poorly known. Here we describe authigenic minerals and the carbon and oxygen isotopic composition [...] Read more.
Many cold seeps and gas hydrate areas have not been discovered beside the Beikan basin in the southern South China Sea (SCS), and their characteristics and histories also remain poorly known. Here we describe authigenic minerals and the carbon and oxygen isotopic composition of planktonic foraminifera Globigerinoides ruber from sediment core 2PC, recovered from the gas hydrate zone of the Nansha Trough, southern SCS, to elucidate its history of dynamic cold seepage. We infer that the occurrence of authigenic gypsum crystals and pyrite concretions, and anomalously negative δ13C values of Globigerinoides ruber, reflect paleo-methane seepage. Two major methane release events were identified, based on remarkable excursions in foraminifera δ13C at depths of 150–250 cm and 350–370 cm. Euhedral gypsum crystals and tubular pyrite concretions co-occur with extremely negative planktonic foraminifera δ13C values, indicating a shift in the sulfate methane transition zone and a change in the methane flux. Our data suggest that authigenic mineral assemblages and δ13C values of planktonic foraminifera provide a valuable tool in elucidating the characteristics of dynamic methane seepage in a marine environment. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

26 pages, 51610 KiB  
Article
Geochronology, Geochemistry, and Pb–Hf Isotopic Composition of Mineralization-Related Magmatic Rocks in the Erdaohezi Pb–Zn Polymetallic Deposit, Great Xing’an Range, Northeast China
by Zhitao Xu, Jinggui Sun, Xiaolong Liang, Zhikai Xu and Xiaolei Chu
Minerals 2020, 10(3), 274; https://doi.org/10.3390/min10030274 - 18 Mar 2020
Cited by 5 | Viewed by 3008
Abstract
Late Mesozoic intermediate–felsic volcanics and hypabyssal intrusions are common across the western slope of the Great Xing’an Range (GXAR). Spatiotemporally, these hypabyssal intrusions are closely associated with epithermal Pb–Zn polymetallic deposits. However, few studies have investigated the petrogenesis, contributions and constraints of these [...] Read more.
Late Mesozoic intermediate–felsic volcanics and hypabyssal intrusions are common across the western slope of the Great Xing’an Range (GXAR). Spatiotemporally, these hypabyssal intrusions are closely associated with epithermal Pb–Zn polymetallic deposits. However, few studies have investigated the petrogenesis, contributions and constraints of these Pb–Zn polymetallic mineralization-related intrusions. Therefore, we examine the representative Erdaohezi deposit and show that these mineralization-related hypabyssal intrusions are composed of quartz porphyry and andesite porphyry with concordant zircon U–Pb ages of 160.3 ± 1.4 Ma and 133.9 ± 0.9 Ma, respectively. These intrusions are peraluminous and high-K calc-alkaline or shoshonitic with high Na2O + K2O contents, enrichment in large ion lithophile elements (LILEs; e.g., Rb, Th, and U), and depletion in high field strength elements (HFSEs; e.g., Nb, Ta, Zr, and Hf), similar to continental arc intrusions. The zircon εHf(t) values range from 3.1 to 8.0, and the 176Hf/177Hf values range from 0.282780 to 0.282886, with Hf-based Mesoproterozoic TDM2 ages. No differences exist in the Pb isotope ratios among the quartz porphyry, andesite porphyry and ore body sulfide minerals. Detailed elemental and isotopic data imply that the quartz porphyry originated from a mixture of lower crust and newly underplated basaltic crust, while the andesite porphyry formed from the partial melting of Mesoproterozoic lower crust with the minor input of mantle materials. Furthermore, a magmatic–hydrothermal origin is favored for the Pb–Zn polymetallic mineralization in the Erdaohezi deposit. Integrating new and published tectonic evolution data, we suggest that the polymetallic mineralization-related magmatism in the Erdaohezi deposit occurred in a back-arc extensional environment at ~133 Ma in response to the rollback of the Paleo-Pacific Plate. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

15 pages, 2100 KiB  
Article
Gravimetric Separation of Heavy Minerals in Sediments and Rocks
by Sergio Andò
Minerals 2020, 10(3), 273; https://doi.org/10.3390/min10030273 - 18 Mar 2020
Cited by 37 | Viewed by 11218
Abstract
The potential of heavy minerals studies in provenance analysis can be enhanced conspicuously by using a state-of-the-art protocol for sample preparation in the laboratory, which represents the first fundamental step of any geological research. The classical method of gravimetric separation is based on [...] Read more.
The potential of heavy minerals studies in provenance analysis can be enhanced conspicuously by using a state-of-the-art protocol for sample preparation in the laboratory, which represents the first fundamental step of any geological research. The classical method of gravimetric separation is based on the properties of detrital minerals, principally their grain size and density, and its efficiency depends on the procedure followed and on the technical skills of the operator. Heavy-mineral studies in the past have been traditionally focused on the sand fraction, generally choosing a narrow grain-size window for analysis, an approach that is bound to introduce a serious bias by neglecting a large, and sometimes very large, part of the heavy-mineral spectrum present in the sample. In order to minimize bias, not only the largest possible size range in each sample should be considered, but also, the same quantitative analytical methods should be applied to the largest possible grain-size range occurring in the sediment system down to 5 μm or less, thus including suspended load in rivers, loess deposits, and shallow to deep-marine muds. Wherever the bulk sample cannot be used for practical reasons, we need to routinely analyze the medium silt to medium sand range (15–500 μm) for sand and the fine silt to sand range (5–63 or > 63 μm) for silt. This article is conceived as a practical handbook dedicated specifically to Master and PhD students at the beginning of their heavy-mineral apprenticeship, as to more expert operators from the industry and academy to help improving the quality of heavy-mineral separation for any possible field of application. Full article
(This article belongs to the Special Issue Heavy Minerals: Methods & Case Histories)
Show Figures

Figure 1

21 pages, 4289 KiB  
Article
The Color Palette of the Mosaics in the Roman Villa of Noheda (Spain)
by Nadine Schibille, Cristina Boschetti, Miguel Ángel Valero Tévar, Emmanuel Veron and Jorge de Juan Ares
Minerals 2020, 10(3), 272; https://doi.org/10.3390/min10030272 - 18 Mar 2020
Cited by 18 | Viewed by 5998
Abstract
Excavations at the Roman villa of Noheda (Spain) revealed the remains of an exceptionally elaborate fourth-century floor mosaic that contains a surprisingly large number of glass tesserae, representing a broad spectrum of colors. This paper presents the results of the chemical (LA-ICP-MS) and [...] Read more.
Excavations at the Roman villa of Noheda (Spain) revealed the remains of an exceptionally elaborate fourth-century floor mosaic that contains a surprisingly large number of glass tesserae, representing a broad spectrum of colors. This paper presents the results of the chemical (LA-ICP-MS) and microstructural analyses (SEM-EDS, XRPD) of 420 glass tesserae from these mosaics. The high number of data allowed us to establish the compositional variability and to elucidate questions of supply in relation to a large-scale artistic campaign. The tesserae from Noheda were almost exclusively made from recycled mixed Roman Mn and Sb base glass, thus demonstrating that recycling of Roman base glasses was common practice in the fourth century, occurring on a near industrial scale. It also suggests that the workshops specializing in the production of mosaic tesserae might have been in the western Mediterranean. A limited number of coloring and opacifying additives (Mn, Co, Cu, Sb, Pb) were identified, which resulted in a wide range of hues. These were differentially associated with various trace elements, which implies the use of different raw materials. A sub-set of red, green, and orange tesserae reflect distinct base glass characteristics as well as coloring technologies that point to an Egyptian provenance. Full article
(This article belongs to the Special Issue Historical Mineral Pigments)
Show Figures

Figure 1

22 pages, 8569 KiB  
Article
Geochemistry and Origin of Scheelites from the Xiaoyao Tungsten Skarn Deposit in the Jiangnan Tungsten Belt, SE China
by Qiangwei Su, Jingwen Mao, Jia Sun, Linghao Zhao and Shengfa Xu
Minerals 2020, 10(3), 271; https://doi.org/10.3390/min10030271 - 18 Mar 2020
Cited by 7 | Viewed by 3245
Abstract
The type, association, variations, and valence states of several metal elements of scheelite can trace the source and evolution of the ore-forming fluids. There are four types of scheelite from the Xiaoyao deposit: (1) scheelite intergrown with garnet in the proximal zone (Sch1a) [...] Read more.
The type, association, variations, and valence states of several metal elements of scheelite can trace the source and evolution of the ore-forming fluids. There are four types of scheelite from the Xiaoyao deposit: (1) scheelite intergrown with garnet in the proximal zone (Sch1a) and with pyroxene in the distal zone (Sch1b), (2) scheelite replaced Sch1a (Sch2a) and crystallized as rims around Sch1b (Sch2b), (3) quartz vein scheelite with oscillatory zoning (Sch3), and 4) scheelite (Sch4) within micro-fractures of Sch3. Substitutions involving Mo and Cd are of particular relevance, and both elements are redox-sensitive and oxidized Sch1a, Sch2b, Sch3 are Mo and Cd enriched, relatively reduced Sch1b, Sch2a, Sch4 are depleted Mo and Cd. Sch1a, Sch2a, Sch3, and Sch4 are characterized by a typical right-inclined rare earth element (REE) pattern, inherited from ore-related granodiorite and modified by the precipitation of skarn minerals. Sch1b and Sch2b are characterized by low light rare earth element/heavy rare earth element (LREE/HREE) ratios, influenced by a shift in fO2 during fluid-rock alteration. Sch1b, Sch2b and Sch3 have higher Sr contents than those of Sch1a and Sch2a, reveal that host-rock alteration and fluid–rock interaction have elevated Sr contents. The Y/Ho ratios of scheelite gradually increase from skarn to quartz vein stages, due to fluid fractionation caused by fluid–rock interaction. Thus, the variation in REE and trace elements in scheelite in time and space reflects a complex magmatic-hydrothermal process involving various fluid–rock interactions and fluid mixing. Full article
Show Figures

Figure 1

13 pages, 6602 KiB  
Article
Incorporation of Incompatible Strontium and Barium Ions into Calcite (CaCO3) through Amorphous Calcium Carbonate
by Ayaka Saito, Hiroyuki Kagi, Shiho Marugata, Kazuki Komatsu, Daisuke Enomoto, Koji Maruyama and Jun Kawano
Minerals 2020, 10(3), 270; https://doi.org/10.3390/min10030270 - 17 Mar 2020
Cited by 18 | Viewed by 4555
Abstract
Calcite is a ubiquitous mineral in nature. Heavy alkaline-earth elements with large ionic radii such as Sr2+ and Ba2+ are highly incompatible to calcite. Our previous study clarified that incompatible Sr2+ ions can be structurally incorporated into calcite through crystallization [...] Read more.
Calcite is a ubiquitous mineral in nature. Heavy alkaline-earth elements with large ionic radii such as Sr2+ and Ba2+ are highly incompatible to calcite. Our previous study clarified that incompatible Sr2+ ions can be structurally incorporated into calcite through crystallization from amorphous calcium carbonate (ACC). In this study, we synthesized Sr-doped calcite with Sr/(Sr + Ca) up to 30.7 ± 0.6 mol% and Ba-doped calcite with Ba/(Ba + Ca) up to 68.6 ± 1.8 mol%. The obtained Ba-doped calcite samples with Ba concentration higher than Ca can be interpreted as Ca-containing barium carbonates with the calcite structure which have not existed so far because barium carbonate takes the aragonite structure. X-ray diffraction (XRD) patterns of the Sr-doped and Ba-doped calcite samples obtained at room temperature showed that reflection 113 gradually weakened with increasing Sr/(Sr + Ca) or Ba/(Ba + Ca) ratios. The reflection 113 disappeared at Ba/(Ba + Ca) higher than 26.8 ± 1.6 mol%. Extinction of reflection 113 was reported for pure calcite at temperatures higher than 1240 K, which was attributed to the rotational (dynamic) disorder of CO32− in calcite. Our Molecular Dynamics (MD) simulation on Ba-doped calcite clarified that the CO32− ions in Ba-doped calcites are in the static disorder at room temperature. The CO32− ions are notable tilted and displaced from the equilibrium position of pure calcite. Full article
(This article belongs to the Special Issue Mineral Physics—In Memory of Orson Anderson)
Show Figures

Figure 1

24 pages, 5063 KiB  
Article
Assessment of Geotourism Values and Ecological Status of Mines in Kopaonik Mountain (Serbia)
by Danijela Vukoičić, Radomir Ivanović, Dragan Radovanović, Jovan Dragojlović, Nataša Martić-Bursać, Marko Ivanović and Dušan Ristić
Minerals 2020, 10(3), 269; https://doi.org/10.3390/min10030269 - 17 Mar 2020
Cited by 12 | Viewed by 3508
Abstract
Abandoned mines can pose a major environmental hazard. At the beginning of the 21st century, significant steps were taken all around the world in order to protect these historically valuable complexes, and the mining heritage was recognized as a potential for the development [...] Read more.
Abandoned mines can pose a major environmental hazard. At the beginning of the 21st century, significant steps were taken all around the world in order to protect these historically valuable complexes, and the mining heritage was recognized as a potential for the development of alternative tourism. This exploration covers mines in the Kopaonik Mountain area. Mining on this mountain began in ancient times. It has developed throughout history, and today only one mine is active. Three abandoned (Gvozdac, Suvo Rudište and Raičeva Gora) and one active mine (Belo Brdo-Zaplanina) are the subject of research. The basic aim of the research is twofold. The estimation of geo-tourist values was performed using the Geosite Assessment Model (GAM), and the ecological status assessment WAS performed according to the standard model based on negative and positive values. Based on the applied methods, it was concluded that mines (geosites) have a high level of natural characteristics, and that differences between geosites are evident in tourist values. The reason for this is insufficient tourist affirmation and the insufficient availability of tourist infrastructure. With the ecological status, positive values were observed on the geosites, which also differ from one (Raičeva Gora) to 15 points (Gvozdac). In the end, the results obtained are of great scientific importance, and their direct application is in the development of the Tourism Development Strategy in the Kopaonik area. Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
Show Figures

Figure 1

20 pages, 17593 KiB  
Article
Mineralogy, Geochemistry and Genesis of Zeolites in Cenozoic Pyroclastic Flows from the Asuni Area (Central Sardinia, Italy)
by Angela Mormone and Monica Piochi
Minerals 2020, 10(3), 268; https://doi.org/10.3390/min10030268 - 16 Mar 2020
Cited by 6 | Viewed by 3716
Abstract
Natural zeolite occurrences have been recognized in several Cenozoic pyroclastic deposits in central Sardinia. This study concerns the mineralogical and geochemical characterization of the zeolitized tuffites in the Asuni area (Oristano province) and aims to complement information regarding the zeolitization processes developed in [...] Read more.
Natural zeolite occurrences have been recognized in several Cenozoic pyroclastic deposits in central Sardinia. This study concerns the mineralogical and geochemical characterization of the zeolitized tuffites in the Asuni area (Oristano province) and aims to complement information regarding the zeolitization processes developed in the nearby Allai deposits. Optical and scanning electron microscopy, X-ray powder diffraction, qualitative vs. quantitative microanalyses and bulk-rock geochemistry were performed. Analytical results allow defining the mineral distribution, textural relationships and geochemical features of the zeolite-bearing rocks. The most abundant secondary minerals are Ca-Na mordenites. Contrarily to the most common worldwide clinoptilolite + mordenite paragenesis, mordenite is dominant and occurs in different morphologies, rarely coexisting with clinoptilolite in the studied volcanic tuffites. Glauconite and dioctahedral smectite complete the authigenic assemblages. The primary volcanic components mostly include plagioclase, quartz and glass shards, roughly retaining their original appearance. The tuffites range in composition from dacite to rhyolite. The collected dataset shows that zeolitization is most abundant in coarser-grained deposits and points to a genetic process that mainly involves an open hydrothermal environment governed by aqueous fluids with significant marine component, in post eruption conditions. Full article
Show Figures

Figure 1

13 pages, 1803 KiB  
Article
The Viscosity and Atomic Structure of Volatile-Bearing Melilititic Melts at High Pressure and Temperature and the Transport of Deep Carbon
by Vincenzo Stagno, Veronica Stopponi, Yoshio Kono, Annalisa D’Arco, Stefano Lupi, Claudia Romano, Brent T. Poe, Dionysis I. Foustoukos, Piergiorgio Scarlato and Craig E. Manning
Minerals 2020, 10(3), 267; https://doi.org/10.3390/min10030267 - 16 Mar 2020
Cited by 5 | Viewed by 3115
Abstract
Understanding the viscosity of mantle-derived magmas is needed to model their migration mechanisms and ascent rate from the source rock to the surface. High pressure–temperature experimental data are now available on the viscosity of synthetic melts, pure carbonatitic to carbonate–silicate compositions, anhydrous basalts, [...] Read more.
Understanding the viscosity of mantle-derived magmas is needed to model their migration mechanisms and ascent rate from the source rock to the surface. High pressure–temperature experimental data are now available on the viscosity of synthetic melts, pure carbonatitic to carbonate–silicate compositions, anhydrous basalts, dacites and rhyolites. However, the viscosity of volatile-bearing melilititic melts, among the most plausible carriers of deep carbon, has not been investigated. In this study, we experimentally determined the viscosity of synthetic liquids with ~31 and ~39 wt% SiO2, 1.60 and 1.42 wt% CO2 and 5.7 and 1 wt% H2O, respectively, at pressures from 1 to 4.7 GPa and temperatures between 1265 and 1755 °C, using the falling-sphere technique combined with in situ X-ray radiography. Our results show viscosities between 0.1044 and 2.1221 Pa·s, with a clear dependence on temperature and SiO2 content. The atomic structure of both melt compositions was also determined at high pressure and temperature, using in situ multi-angle energy-dispersive X-ray diffraction supported by ex situ microFTIR and microRaman spectroscopic measurements. Our results yield evidence that the T–T and T–O (T = Si,Al) interatomic distances of ultrabasic melts are higher than those for basaltic melts known from similar recent studies. Based on our experimental data, melilititic melts are expected to migrate at a rate ~from 2 to 57 km·yr−1 in the present-day or the Archaean mantle, respectively. Full article
Show Figures

Figure 1

15 pages, 5444 KiB  
Article
Two-Stage Late Jurassic to Early Cretaceous Hydrothermal Activity in the Sakar Unit of Southeastern Bulgaria
by Krzysztof Szopa, Anna Sałacińska, Ashley P. Gumsley, David Chew, Petko Petrov, Aleksandra Gawȩda, Anna Zagórska, Ewa Deput, Nikolay Gospodinov and Kamila Banasik
Minerals 2020, 10(3), 266; https://doi.org/10.3390/min10030266 - 15 Mar 2020
Cited by 9 | Viewed by 3342
Abstract
Southeastern Bulgaria is composed of a variety of rocks from pre-Variscan (ca. 0.3 Ga) to pre-Alpine sensu lato (ca. 0.15 Ga) time. The Sakar Unit in this region comprises a series of granitoids and gneisses formed or metamorphosed during these events. It is [...] Read more.
Southeastern Bulgaria is composed of a variety of rocks from pre-Variscan (ca. 0.3 Ga) to pre-Alpine sensu lato (ca. 0.15 Ga) time. The Sakar Unit in this region comprises a series of granitoids and gneisses formed or metamorphosed during these events. It is cut by a series of post-Variscan hydrothermal veins, yet lacks pervasive Alpine deformation. It thus represents a key unit for detecting potential tectonism associated with the enigmatic Cimmerian Orogenic episode, but limited geochronology has been undertaken on this unit. Here we report age constraints on hydrothermal activity in the Sakar Pluton. The investigated veins contain mainly albite–actinolite–chlorite–apatite–titanite–quartz–tourmaline–epidote and accessory minerals. The most common accessory minerals are rutile and molybdenite. Apatite and titanite from the same vein were dated by U–Pb LA–ICP-MS geochronology. These dates are interpreted as crystallization ages and are 149 ± 7 Ma on apatite and 114 ± 1 Ma on titanite, respectively. These crystallization ages are the first to document two stages of hydrothermal activity during the late Jurassic to early Cretaceous, using U–Pb geochronology, and its association with the Cimmerian orogenesis. The Cimmerian tectono-thermal episode is well-documented further to the east in the Eastern Strandja Massif granitoids. However, these are the first documented ages from the western parts of the Strandja Massif, in the Sakar Unit. These ages also temporally overlap with previously published Ar–Ar and K–Ar cooling ages, and firmly establish that the Cimmerian orogeny in the studied area included both tectonic and hydrothermal activity. Such hydrothermal activity likely accounted for the intense albitization found in the Sakar Unit. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

23 pages, 9091 KiB  
Article
Provenance and Implication of Carboniferous–Permian Detrital Zircons from the Upper Paleozoic, Southern Ordos Basin, China: Evidence from U-Pb Geochronology and Hf Isotopes
by Ziwen Jiang, Jinglan Luo, Xinshe Liu, Xinyou Hu, Shangwei Ma, Yundong Hou, Liyong Fan and Yuhua Hu
Minerals 2020, 10(3), 265; https://doi.org/10.3390/min10030265 - 15 Mar 2020
Cited by 12 | Viewed by 2978
Abstract
Carboniferous–Permian detrital zircons are recognized in the Upper Paleozoic of the whole Ordos Basin. Previous studies revealed that these Carboniferous–Permian zircons occurred in the Northern Ordos Basin mainly originated from the Yinshan Block. What has not been well documented until now is where [...] Read more.
Carboniferous–Permian detrital zircons are recognized in the Upper Paleozoic of the whole Ordos Basin. Previous studies revealed that these Carboniferous–Permian zircons occurred in the Northern Ordos Basin mainly originated from the Yinshan Block. What has not been well documented until now is where this period’s zircons in the Southern Ordos Basin came from, and very little discussion about their provenance. To identify the provenance of the detrital zircons dating from ~350 to 260 Ma, five sandstone samples from the Shan 1 Member of Shanxi Formation and eight sandstone samples from the He 8 Member of Shihezi Formation were analyzed for detrital zircon U-Pb age dating and in situ Lu-Hf isotopic compositions. The results indicate that the two age clusters of 520–378 Ma and ~350–260 Ma in the Southern Ordos Basin most likely derived from the North Qinling Orogenic Belt–North Qilian Orogenic Belt and the North Qinling Orogenic Belt, respectively. Furthermore, we propose that the zircons aging ~320–260 Ma are representative of the important tectonothermal events occurred in the North Qinling Orogenic Belt during the Late Paleozoic. Full article
Show Figures

Figure 1

33 pages, 8967 KiB  
Article
A Plethora of Epigenetic Minerals Reveals a Multistage Metasomatic Overprint of a Mantle Orthopyroxenite from the Udachnaya Kimberlite
by Dmitriy I. Rezvukhin, Taisia A. Alifirova, Alexander V. Golovin and Andrey V. Korsakov
Minerals 2020, 10(3), 264; https://doi.org/10.3390/min10030264 - 14 Mar 2020
Cited by 9 | Viewed by 3302
Abstract
More than forty mineral species of epigenetic origin have been identified in an orthopyroxenite from the Udachnaya-East kimberlite pipe, Daldyn kimberlite field, Siberian platform. Epigenetic phases occur as: (1) Mineral inclusions in the rock-forming enstatite, (2) daughter minerals within large (up to 2 [...] Read more.
More than forty mineral species of epigenetic origin have been identified in an orthopyroxenite from the Udachnaya-East kimberlite pipe, Daldyn kimberlite field, Siberian platform. Epigenetic phases occur as: (1) Mineral inclusions in the rock-forming enstatite, (2) daughter minerals within large (up to 2 mm) crystallized melt inclusions (CMI) in the rock-forming enstatite, and (3) individual grains and intergrowths in the intergranular space of the xenolith. The studied minerals include silicates (olivine, clinopyroxene, phlogopite, tetraferriphlogopite, amphibole-supergroup minerals, serpentine-group minerals, talc), oxides (several generations of ilmenite and spinel, rutile, perovskite, rare titanates of the crichtonite, magnetoplumbite and hollandite groups), carbonates (calcite, dolomite), sulfides (pentlandite, djerfisherite, pyrrhotite), sulfate (barite), phosphates (apatite and phosphate with a suggested crystal-chemical formula Na2BaMg[PO4]2), oxyhydroxide (goethite), and hydroxyhalides (kuliginite, iowaite). The examined epigenetic minerals are interpreted to have crystallized at different time spans after the formation of the host rock. The genesis of minerals is ascribed to a series of processes metasomatically superimposed onto the orthopyroxenite, i.e., deep-seated mantle metasomatism, infiltration of a kimberlite-related melt and late post-emplacement hydrothermal alterations. The reaction of orthopyroxene with the kimberlite-related melt has led to orthopyroxene dissolution and formation of the CMI, the latter being surrounded by complex reaction zones and containing zoned olivine grains with extremely high-Mg# (up to 99) cores. This report highlights the utility of minerals present in minor volume proportions in deciphering the evolution and modification of mantle fragments sampled by kimberlitic and other deep-sourced magmas. The obtained results further imply that the whole-rock geochemical analyses of mantle-derived samples should be treated with care due to possible drastic contaminations from “hiding” minor phases of epigenetic origin. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop