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Abstract: Geological, geochemical and ground magnetic techniques are used to characterize the
University alkaline-gabbroid pluton and crosscutting N-S trending alkaline dikes, located northeast
of the Kuznetsk Alatau ridge, Siberia. Trace element concentrations and isotopic compositions of the
igneous units were determined by XRF, ICP-MS and isotope analysis. The Sm-Nd age of subalkaline
(melanogabbro, leucogabbro 494–491 Ma) intrusive phases and crosscutting alkaline dikes (plagioclase
ijolite, analcime syenite 392–389 Ma) suggests two stages of activity, likely representing separate
events. The subalkaline and alkaline rocks are characterized by low silicic acidity (SiO2 = 41–49 wt %),
wide variations in alkalinity (Na2O + K2O = 3–19 wt %; Na2O/K2O = 1.2–7.2 wt %), high alumina
content (Al2O3 = 15–28 wt %) and low titanium content (TiO2 = 0.07–1.59 wt %). The new trace
element data for subalkaline rocks (

∑
REE 69–280 ppm; La/Yb 3.7–10.2) of the University pluton and

also the crosscutting younger (390 Ma) alkaline dikes (
∑

REE 10–1567 ppm; La/Yb 0.7–17.8 ppm)
both reflect an intermediate position between oceanic island basalts (OIBs) and island arc basalts
(IABs). The presence of a negative Nb–Ta anomaly and the relative enrichment in Rb, Ba, Sr,
and U indicate a probable interaction of mantle plume material with the lithospheric mantle
beneath previously formed accretion complexes of subduction zones. The isotopic signatures of
strontium (εSr(T) +3.13–+28.31) and neodymium (εNd(T) +3.2–+8.7) demonstrate the evolution of
parental magmas from a plume source from moderately depleted PREMA mantle, whose derivatives
underwent selective crustal contamination.

Keywords: magnetometry; alkaline-gabbroid association; Rb-Sr and Sm-Nd geochronology; plume
lithospheric interaction; Kuznetsk Alatau; Central Asian Orogenic Belt

1. Introduction

Alkaline magmatism has been long considered to be typical of platformal settings, and where it
occurred within folded regions, and then it was given secondary importance. Various origins have been
considered: (1) under conditions of a quiet tectonic regime (platform, postorogenic), differentiation
of mafic magmas resulting in the formation of small volumes of residual alkaline melts [1–3]; (2) an
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association with extensional processes and more specifically with rifting events [4,5] and (3) a link with
plume activity [6,7]. We consider the setting of alkaline magmatism in the Central Asian Orogenic Belt
(CAOB) [8–35] developing from the Neoproterozoic to the Late Paleozoic [36–42].

In the western CAOB, the large Altai-Sayan orogenic system [43] frames the southern part of
the Siberian craton. This system includes several smaller terranes, such as the Kuznetsk Alatau (KA),
Western and Eastern Sayan, Tuva-Sangilen and Tuva-Mongolian [44,45]. The KA is a Caledonian
terrane dominated by accretionary structural-material complexes belonging to the active margin of
the Paleo-Asian Ocean [22], where Paleozoic alkaline basic magmatism (volcanic, subvolcanic and
intrusive) is extensive [45,46] and at least two pulses of regional intraplate magmatic activity are
present: ca. 500 Ma picrite and picrodolerite magmatism, and younger widespread magmatism [47]
and associated rifts dated ca. 400 Ma, which have been called the Altai-Sayan Rift System and the
Altai-Sayan LIP (Large Igneous Province) [43,48]. This magmatism includes small (up to 1–3 km2)
differentiated alkaline-basic plutons, composed of different proportions of subalkaline and alkaline
gabbro, basic and ultrabasic foidolites, nepheline and alkaline syenites (Figure 1b).
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This paper will highlight our results on the University pluton, which contributes to an
understanding of the regional alkaline magmatism in this CAOB terrane. The University pluton and
surrounding region are discussed in detail including their magnetic expression, and the petrology and
geochemistry of the various magmatic units, which include subalkaline gabbroids, leucotheralites and
basic and ultrabasic foidolites, to determine the time and conditions of formation of the University
pluton and crosscutting alkaline dikes.

2. Geology and Petrography of the University Pluton

The Kuznetsk Alatau (KA) terrane is a typical Early Caledonian (Salairian) tectonic terrane, with
folding processes completing in the middle-upper Cambrian [52,53]. This area also includes inliers of
Precambrian basement, a system of troughs and uplifts of the Salair orogen and superimposed Middle
Paleozoic rift basins belonging to the Altai-Sayan Rift/LIP system [43,48].

The University pluton (N55◦05′30′′, E88◦23′30′′) is an inlier localized in a small erosion window
(0.86 km2) of Early Cambrian carbonate deposits, which are overlapped by Middle Cambrian volcanic
rocks. The pluton is poorly exposed and partially overlain by large-blocks of deluvium deposits
derived from erosion of the Voskresenskii gabbro-diorite-granodiorite intrusion (presumably Upper
Cambrian) from the northern part of the area. The contacts of the pluton are almost everywhere
tectonic with gabbroids and plagiogranites of the Voskresenskii intrusion. The pluton shape resembles
a stock (2.5 × 0.2–0.6 km, with a total area of 0.53 km2), significantly complicated by faults (Figure 2).
The Ust-Kundat Formation of the Lower Cambrian is composed of limestones with interlayers of
clay shales, sandstones, tuffs and metavolcanics of andesite-basaltic composition. Volcanic units
consisting of basalts of andesite-basalts, dacites and tuffs of the Middle Cambrian Berikul Formation
are widespread in the region, and occur with an angular unconformity with underlying rocks.
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The petrographic varieties of the pluton are represented mainly by subalkaline gabbroids
(Figure 3a,b) and their subvolcanic analogs (subalkaline gabbro-dolerites). In the northeastern part of
the University pluton, subalkaline gabbroids cut bodies of feldspar ijolites containing local zones of
leucotheralites (Figure 3c,d). The crosscutting N-S-trending dikes are represented by a wide variety
of compositions: ultrabasic foidolites (urtite-porphyry, microijolites with inclusions of urtites and
ijolite-porphyry; Figure 3e,f), basic foidolites (plagioclase ijolite and plagioclase ijolites with varying
degrees of crystallization with globules of analcime syenites; Figure 3g), nepheline microsyenites
containing varieties of the tamaraites type) and subalkaline plagioclase porphyrites [32,54,55].
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Figure 3. Macrophotography of the main petrographic varieties of the University pluton:
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analcime syenite (globule) in fine-grained ijolite (sample 7A).
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3. Materials and Methods

Ground magnetic prospecting at the University pluton site was carried out in 1983 with an M-27
optical-mechanical magnetometer with the measurement of the vertical component of the magnetic
field vector in gammas [56]—units of the CGS system: 1 gamma = 10−5 oersted (Oe). In modern
research, magnetic field maps are plotted according to the values of magnetic induction, measured in
nT. 1 nT = 10−9 T are SI units of magnetic induction. 1 Oe is numerically equal to 10−4 T. In this article,
the magnetic survey results are presented in modern concepts based on the calculation that 1 gamma
is numerically equal to 1 nT.

The concentrations of petrogenic and rare trace elements were measured by XRF at the Institute of
Geology and Mineralogy V.S. Sobolev Siberian Branch of the Russian Academy of Sciences (Novosibirsk,
Russia) on spectrometer ARL-9900XP and by ICP-MS at Tomsk State University (Tomsk, Russia) on
spectrometer Agilent 7500.

X-ray fluorescence silicate analysis was performed from fused pellets: the analyzed sample was
dried at 105 ◦C for 1.5 h, then annealed at 960 ◦C for 2.5 h and then mixed with flux (66.67% lithium
tetra borate; 32.83% lithium meta borate and 0.5% lithium bromide) in a ratio of 1:9 (the total weight of
the mixture was 5 g). The mixture was melted in platinum crucibles in a Lifumat-2.0-Ox induction
furnace according to the standard method [57].

To perform mass spectral analysis with inductively coupled plasma, a 0.1 g sample was treated
with 10 mL of HF acid with 4-h exposure in an open system at a temperature of 70 ◦C, after which
2 mL of HNO3 concentrate was added. The samples were exposed to microwave action in a closed
system at a power of 700 W with a gradual increase in temperature to 200 ◦C. After this, the sample
was evaporated to dryness, treated twice with 6.2 M HCl, then evaporated again and treated with
concentrated HNO3. Then the dry residue was transferred to a solution of 15% HNO3. Indium was
used as an internal standard. Immediately prior to ICP-MS measurements, the sample was diluted by
nitric acid to yield a concentration 3%. The dilution factor was 1000 [58].

Sm-Nd and Rb-Sr-isotope analysis was carried out at the Geological Institute of the Kola Science
Center of the Russian Academy of Sciences (Apatity, Russia) using Finnigan-MAT-262 (RPQ) and
MI-1201-T mass spectrometers in a static measurement mode according to the adopted method [59].
Measurements of the JNdi-1 standard [60] yielded 143Nd/144Nd = 0.512081 ± 13 (N = 11) for gabbro and
143Nd/144Nd = 0.512090± 13 (N = 9) for alkaline rocks. The analytical error (2σ) does not exceed 0.5% for
147Sm/144Nd, 0.005% for 143Nd/144Nd [61]. The Sr isotopic composition was normalized to the values
of the NBS SRM-987 standard (87Sr/86Sr = 0.710235) [62]. The error in determining the Sr concentration
is 0.04% and the Rb–Sr ratio was 1.5%. To calculate the primary isotopic ratios, εNd, εSr, the modern
parameters of the model reservoirs CHUR (143Nd/144Nd = 0.512630, 147Sm/144Nd = 0.1960) [63] and
UR (87Sr/86Sr = 0.7045; 87Rb/86Sr = 0.0816) [64] were used. The construction of isochrones was carried
out by the method of D. York [65] using the Isoplot/Ex program [66].

4. Results

4.1. The Magnetic Field of the University Pluton Site

As noted above, the University pluton is poorly exposed, and in order to properly delineate it,
both geological mapping (boreholes, pits and ditches) and a ground magnetic survey were used [56].
The magnetic map (based on the ground survey; Figure 4) revealed both the University pluton and
crosscutting N-trending dike rocks by elevated values which range from +15 to +150 nT. The zone is
characterized by a complex structure, but it stands out quite well against the background values of −10
to −50 nT, created by non-magnetic host sedimentary rocks of the Ust-Kundat and Berikul formations.
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with processing by the authors. K-S = Kiiskii-Shaltyr river; V = Voskresenka stream; U = University
stream. Same area as in Figure 2. The center of the image is at about N55◦05′30′′, E88◦23′30′′. Red box
locates Figure 2.

Values of the magnetic field up to +30 nT are observed over subalkaline gabbroids and
gabbro-dolerites that are part of the University pluton. The N-trending dikes of ultrabasic and basic
foidolites occur as linear anomalies with amplitudes of +30–+80 nT, and in some cases up to +80–+150 nT.
A high-intensity +50–+200 nT anomaly located northwest of the University pluton is associated with
gabbro-diorites and plagiogranites of the Voskresenskii intrusion (Figure 4). The submeridional linear
anomaly with amplitude of more than +200 nT on the western flank of the University pluton is of
interest as deposits of nepheline ores, and we gave it the name, Boloto intrusion (Figure 4). In its
shape, it is similar to the anomalies from the N-S dikes cutting the University pluton, but typically
with almost twice the amplitude.

4.2. Main Petrographic Varieties of the University Intrusion Site

The petrographic description is provided only for the main units of the University pluton for
which geochemical and isotope-geochronological studies were carried out.

Subalkaline melanocratic gabbro (N55◦05′48′′, E88◦23′47′′) is widespread in the eastern and
northeastern parts of the pluton (Figure 2). It is a gray to dark gray rock with a medium grain structure
and taxite texture (Figures 3a and 5a). The thin section contains hypidiomorphic-grained, poikilitic and
poikilophyte structures, of which titanoaugite grains (Fs14) had a higher degree of idiomorphic than
plagioclase (An37-67). This unit has a noticeably higher content of dark-colored mineral components by
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10–15%. Olivine (Fo58-67) is present in significant amounts up to 10% and has large idiomorphic grains.
Minor minerals are titanomagnetite, apatite, hornblende and serpentine.
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Figure 5. Photomicrographs of samples from the University pluton and crosscutting N-trending
dikes: (a,b) subalkaline melanogabbro (sample C36/147.0) and leucogabbro (sample C41/87.0) mainly
consist of clinopyroxene, plagioclase and olivine in different proportions and are characterized
by a hypidiomorphic to ophitic structure; and the crosscutting N-trending dikes: (c) plagioclase
ijolite (sample 6A) consists of nepheline, clinopyroxene, plagioclase and titanomagnetite with a
distinct hypidiomorphic granular texture; (d) leucotheralite (sample 8A) consists of nepheline,
clinopyroxene and plagioclase and is represented by a hypidiomorphic granular texture and
(e,f) ijolite-porphyry (sample 8/19) and urtite xenolith in ijolite-porphyry (sample KC-7/1) are
composed of nepheline and clinopyroxene in different proportions and are represented by a porphyry
texture. The matrix of ijolite porphyry in which the urtite xenolith is placed is represented by a
microhypidiomorphic-grained texture; (g) analcime syenite (globule) in fine-grained ijolite (sample 7A)
consists of analcime, alkaline feldspar and amphibole with a hypidiomorphic-grained texture.
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Subalkaline leucocratic gabbro (N55◦05′34′′, E88◦23′39′′) is the most widespread unit and forms
the central and western parts of the pluton (Figure 2). In appearance, these gabbroids are gray and light
gray, medium and coarse-grained leucocratic rocks, and often exhibit a trachytic texture defined by
the sub parallel arrangement of elongated plagioclase crystals (Figures 3b and 5b). Ophitic, less often
poikilitic textures, with a pronounced idiomorphic shape of the main plagioclase (An48-62) more than
the pyroxene is characteristic. Pyroxene has a light gray and yellow-greenish color (Fs10-11). Olivine is
found in this section less than in the melanocratic variety and is represented by hyalosiderite (Fo34-47).
Accessory minerals include titanomagnetite, sometimes apatite and calcite.

Plagioclase ijolites or theralites, leucotheralites (basic foidolites; N55◦05′40′′, E88◦24′54′′)
corresponding to the second magmatic series, compose rather large the N-S dikes up to 40 m
thick and a separate intrusive body in the northeast of the pluton with an area of up to 0.4 km2

(Figure 2). In appearance, plagioclase ijolite is represented by fine- and medium-grained, massive or
weakly taxite rock of melanocratic (dark gray) appearance (Figures 3c and 5c). A hypidiomorphic
granular structure is observed under the microscope. Mineralogical composition: nepheline 40% (Ks22),
ferrosilite 35% (Fs23), plagioclase 15% (An41-63) and titanomagnetite up to 8%. Hornblende, apatite,
analcime and calcite are minor minerals 2%. Leucotheralite is a light gray coarse-grained leucocratic
rock with hypidiomorphic-grained and poikilitic micro texture (Figures 3d and 5d). The unit consists
of nepheline 42% (Ks20-25), salite 37% and plagioclase 19% (An50-55). Hornblende (large single grains),
biotite, titanomagnetite and apatite are present as minor minerals 2%.

Ijolite-porphyries and micro-ijolites (N55◦05′37′′, E88◦24′00′′) are feldspar-free fine-grained dark
gray rocks, sometimes with a greenish tint. On visual observation, they are well defined by regular
nepheline large crystals 2–40 mm (Figures 3e and 5e) defining a porphyritic texture. Nepheline 50–55%
(Ks20) is transparent and has a greenish and brownish color, however, it is more often replaced
by libenerite, spreushtein and limonite. Pyroxene is represented by aegirine-augite, less often by
titanoaugite 35–40% (Fs23). Minor minerals in the amount of up to 5% include titanomagnetite
and apatite.

Ijolite-porphyries with urtite xenoliths (N55◦04′54′′, E88◦23′00′′) are distinguished by the presence
of schlieren segregates of fully-crystalline urtites from fine to coarse-grained and pegmatoid in texture
(Figures 3f and 5f), rounded and slightly elongated in shape up to 5–8 cm in size, which we consider
as urtite xenoliths. Under the microscope, the agpaitic structure of ijolite-urtite is clearly visible,
which is composed of 65–80% nepheline (Ks20-25), ferrosilite 18–33% (Fs22-26) with a slight admixture
of 2% titanomagnetite and apatite.

The analcime syenite (globule) in the plagioclase fine-grained ijolite (N55◦04′41′′, E88◦24′00′′)
has a light gray to dark green color, fine-grained (bulk) and medium-grained (globule) structures,
and massive texture (Figures 3g and 5g). In the thin section, the globule is represented by a trachytic
texture with a mineral composition: analcime 27%, alkaline feldspar 35%, amphibole 35% and minor
minerals 3% apatite and sphene.

In the central-western area of the University pluton, the drill hole material from approximately
100 m depth shows the presence of urtite-porphyry dikes N-trending (up to 7 cm in size) in the core
(N55◦04′60′′, E88◦23′06′′; the location of the sample C-46 can be seen in Figure 4; Figure 6a). These are
independent dikes that cut the ijolite-porphyries, and volcanic strata of the Berikul Formation and
provide proof of the existence of a direct genetic relationship between ijolites and urtites, and the
formation of urtites as a result of crystallization differentiation from an ijolite melt [45].

The intrusive nature of the relationship of gabbroids with host volcanic rocks can be observed
from the same deluvium clastic material, in which acute-angled xenoliths of basaltic clastic rock are
clearly recorded as xenoliths in gabbroids (N55◦05′17′′, E88◦24′24′′) of the pluton (Figure 6b).
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Figure 6. Hand sample photographs of some small dikes N-trending belonging to the University
pluton: (a) an urtite-porphyry dike intersecting the volcanogenic deposits of the Berikul Formation
in the core of the drill hole (sample C-46); (b) subalkaline gabbro with xenoliths of brecciated basalt
fragments (sample UN-2/1) and (c) veinlet’s of pegmatoid nepheline syenite in feldspar micro-ijolite,
which cut the ijolite plagioclase (sample 15B).

In some dikes, nepheline syenites (N55◦04′45′′, E88◦23′14′′) and microsyenites are noted, which cut
thin veins of ijolite plagioclase (Figure 6c).
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4.3. Major- and Trace-Element Compositions of Subalkaline and Alkaline rocks

The igneous rocks of the University pluton are characterized by low silicic acidity
(SiO2 = 41–49 wt %), wide variation in alkalinity (Na2O + K2O = 3–19 wt %; Na2O/K2O = 1.2–7.2 wt %),
low titanium content (TiO2 = 0.07–1.59 wt %) and high alumina content (Al2O3 = 15–28 wt %),
which corresponds to K-Na derivatives of the basic alkaline formation (Figure 7a; Table S1). The average
compositions of the main varieties are plotted on the APF diagram (Figure 7b). The rocks of the pluton
were divided into four groups according to their mineralogical composition: subalkaline gabbroids
(ca. 490 Ma), foidolites, syenites (N-S dikes of ca. 390 Ma) and leucotheralites (there was no data on age,
but we linked their formation with N-S dikes of ca. 390 Ma), which occupy an intermediate position in
composition between gabbroids and foidolites.
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Figure 7. Classification of silicate rocks of the University pluton. (a) On the (TAS) diagram,
the classification fields are given according to [67] and (b) classification of plutonic rocks in the
system (APF) according to modal content of minerals in volume percent according to [68]. The stars
indicate: 1 = subalkaline gabbro ca. 490 Ma and subalkaline gabbro-dolerites; 2 = leucotheralites;
3 = foidolites ca. 390 Ma; 4 = nepheline and alkaline syenites ca. 390 Ma.

The units of the University pluton are characterized by lanthanide values of La/Yb(n)
and by the sum of rare earth elements

∑
REE (subalkaline gabbroids La/Yb(n) = 2.68–6.97,∑

REE = 64.09–236.65 ppm; leucotheralites La/Yb(n) = 4.90–7.37,
∑

REE = 135.48–279.83 ppm;
foidolites La/Yb(n) = 0.53–12.74,

∑
REE = 10.02–217.61 ppm; nepheline and alkaline syenites La/Yb(n)

= 5.14–9.07,
∑

REE = 73.24–1566.96 ppm; Table S1). The enrichment of light rare earth elements (LREE)
relative to heavy rare earth elements (HREE) was characteristic of all samples (Figure 8).

4.4. Nd–Sr Isotope Systematics

Subalkaline, alkaline rocks of the University pluton had common values of primary isotopes of
neodymium 143Nd/144Nd(t) = 0.512223–0.512358 and εNd(T) ranging from +3.2 to +8.7 and, possibly,
originated from the moderately depleted mantle type (PREMA) with crustal enrichment of the primary
strontium isotope ratio 87Sr/86Sr(t) = 0.704834–0.706037 and εSr(T) from +12.93 to 28.31 (Figure 9,
Table 1). Enrichment in radiogenic 87Sr was found for many Paleozoic-Mesozoic alkaline and carbonatite
complexes in the northern part of the Kuznetsk Alatau, Southeastern Tuva, and the southeastern part
of the Russian Altai [31].
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Figure 8. Chondrite-normalized rare earth elements (REE) and primitive mantle normalized
high-field-strength elements (HFSE) [69] igneous rocks of the University pluton. The oceanic island
basalt (OIB) spectrum line is given in [69], island arc basalt (IAB) in [70]. Subalkaline gabbro ca. 490 Ma;
leucotheralites (there is no data on age, but we link their formation with N-S dikes of ca. 390 Ma);
alkaline syenites and foidolites ca. 390 Ma.
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КС-7/1(WR), КS 6.614 20.709 0.153049 0.512221 ± 9 0.512271 +4.0 
УН-1(WR), U 3.981 22.298 0.107919 0.512693 ± 7 0.512273 +3.5 
8а(WR), LT 2.906 16.428 0.106922 0.512667 ± 19 0.512223 +4.9 
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Px 8.38 29.9 0.1693 0.512745 ± 5   
Ne 0.689 4.11 0.1015 0.512569 ± 25   

Figure 9. A plot of εNd(T) versus εSr(T) for the University pluton and some other alkaline-basic
complexes of the northern part of the KA ridge: 1 = University (U); 2 = Kiya-Shaltyrskii (K-S) after [21];
3 = Upper Petropavlovka (U-P) after [9]; 4 = Goryachegorskii (G) after [31]; 5 = Belogorskii (B), after [8];
6 = Dedovogorskii (D) and 7 = Kurgusuyulskii (Kl) after [21]. Positions of reservoirs DM (depleted
mantle); PREMA (dominant mantle); HIMU (mantle with high U/Pb ratio); BSE (bulk composition
of silicate Earth) and EM I and EM II (two types of enriched mantle characterized by high values of
143Nd/144Nd and 87Sr/86Sr) are given according to their current isotopic parameters [71].

Table 1. Nd-Sr isotopic composition of subalkaline unit’s ca. 490 Ma of the University pluton and
younger crosscutting N-S alkaline dike swarm ca. 390 Ma.

Sample, Rock Sm, ppm Nd, ppm 147Sm/144Nd 143Nd/144Nd ± 2σ (143Nd/144Nd)T εNd(T)

C-41/87.0(WR), LG 1.769 7.462 0.143307 0.512907 ± 12 0.512355 +8.7
Pl 0.588 3.44 0.1033 0.512797 ± 9
Ol 3.95 11.02 0.2165 0.513160 ± 12
Px 2.43 7.99 0.1841 0.513041 ± 25

C-36/147.0(WR), MG 3.418 15.266 0.135334 0.512808 ± 9 0.512358 +7.3
Pl 1.531 9.458 0.0978 0.512709 ± 16
Ol 4.49 13.23 0.2050 0.513051 ± 10
Px 4.18 15.02 0.1682 0.512922 ± 8

AC-7/1(WR), AS 6.614 20.709 0.153049 0.512221 ± 9 0.512271 +4.0
УH-1(WR), U 3.981 22.298 0.107919 0.512693 ± 7 0.512273 +3.5

8a(WR), LT 2.906 16.428 0.106922 0.512667 ± 19 0.512223 +4.9
6a(WR), I 6.61 20.7 0.1530 0.512692 ± 12 0.512236 +3.2

Px 8.38 29.9 0.1693 0.512745 ± 5
Ne 0.689 4.11 0.1015 0.512569 ± 25

7a(WR), AS 3.98 22.3 0.1079 0.512694 ± 13 0.512291 +5.8
Pl 0.469 3.2 0.0887 0.512621 ± 12

Amp 12.91 50.8 0.1536 0.512794 ± 11
Anl 0.93 5.59 0.1006 0.512664 ± 8

Sample, Rock Rb ppm Sr ppm 87Rb/86Sr 87Sr/86Sr ± 2σ (87Sr/86Sr)T εSr(T)

C-41/87.0(WR), LG 13.75 744.94 0.052077 0.70520 ± 20 0.704834 +12.93
C-36/147.0(WR), MG 19.33 582.49 0.093628 0.70620 ± 23 0.705541 +22.99

AC-7/1(WR), AC 47.49 1261.1 0.106247 0.70615 ± 22 0.705556 +21.48
УH-1(WR), U 54.1 1414.8 0.107886 0.70664 ± 19 0.706037 +28.31

8a(WR), LT 44.3 963.86 0.129674 0.70649 ± 20 0.705766 +24.44
6a(WR), I 23.46 1023.7 0.064658 0.70633 ± 21 0.705969 +27.34

7a(WR), AS 36.42 2542.9 0.040409 0.70574 ± 16 0.705514 +20.87

Note. LG = subalkaline leucogabbro and MG = subalkaline melanogabbro ca. 490 Ma; KC = urtite xenolith in
ijolite-porphyry, U = urtite-porphyry, LT = leucotheralite, I = plagioclase ijolite and AS = analcime syenite (globule)
in fine-grained ijolite ca. 390 Ma. WR, whole-rock composition, Pl, plagioclase, Ol, olivine, Px, pyroxene, Ne,
nepheline, Amp, amphibole, Anl, analcime. (143Nd/144Nd)T and εNd(T) are calculated for the age of 490 Ma for
melanogabbro and leucogabbro and 392 Ma for plagioclase ijolite and analcime syenite.

The ages of the University pluton and associated N-S dike swarm were determined by Sm-Nd
dating of minerals and whole compositions. The two samples from the main phase of the pluton yielded
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ca. 490 Ma ages for the subalkaline gabbro (melanogabbro 494 ± 36 Ma; leucogabbro 491 ± 36 Ma).
The second phase of crosscutting N-S trending alkaline dikes had ca. 390 Ma age’s (plagioclase ijolite
394 ± 16 Ma; analcime syenite 389 ± 37 Ma; Figure 10). These approximate ages suggest that the
University pluton belongs ca. 500 Ma event, which is widespread in Mongolia (Figure 6 in [20,47]),
while the crosscutting N-S dikes belong to the ca. 400 Ma Altay-Sayan Rift/LIP event [43,48].

 

2 

 

 

1000000 

Figure 10. Sm–Nd isochrones for mineral separations and whole rock compositions of the University
pluton and crosscutting N-S trending younger swarm of alkaline dikes [72]: (a,b) subalkaline
melanogabbro (sample C36/147.0) and leucogabbro (sample C41/87.0) ca. 490 Ma; (c,d) plagioclase
ijolite (sample 6A) and analcime syenite (globule) in fine-grained ijolite (sample 7A) ca. 390 Ma.
Explanations of abbreviations see in Table 1.

5. Discussion

5.1. Magnetic Anomalies of the University Pluton Site and N-S Trending Crosscutting Younger Swarm of
Alkaline Dikes

The magnetic data clearly show northwest trending faults bounding the University intrusion.
North trending linear positive magnetic anomalies mark dikes cutting the University pluton. In addition
to direct geological observations in the form of open mines (ditches and pits) [73], ground magnetic
data confirm two intense but narrow (1 km wide) dike belts (swarms) of N-S trends (see note in Figure 4
Foidolite dike).

Drilling of the University pluton (the maximum borehole depth was 160 m) did not yield the
expected nepheline ore deposits, but urtite xenoliths were found in trenches to the west of the bodies
of subalkaline gabbroids, and in drill-hole number C-46, an urtite-porphyry dike N-trending was
found breaking through the Berikul formation (see note in Figure 4 sample C-46 from drill-hole and
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Figure 6) [33,56]. We interpreted that the distinct linear anomaly in the western part of the pluton was
caused by bodies of urtites, which we discovered for the first time (Boloto intrusion). To what event
(ca. 490 Ma or ca. 390 Ma) the Boloto intrusion should be attributed to remained unclear.

5.2. Petrographic Synthesis of the University Pluton

According to geological and petrographic observations, three separate associations can be
distinguished among igneous rocks in the University pluton area: (1) subalkaline gabbroids ca. 490 Ma;
(2) dikes (N-trending) of basic foidolites, with subordinate amounts of feldspar ca. 390 Ma and (3)
dikes (N-trending) of ultrabasic foidolites, characterized by the presence of only nepheline as a salic
component ca. 390 Ma. There can be transitional boundaries between these types.

According to geological and petrographic observations in other alkaline-gabbroid plutons of the
Kuznetsk Alatau (Figure 1b), in the Belogorskii [8] and Upper Petropavlovka [9] plutons, feldspar ijolites
are independent intrusive phases and cut subalkaline gabbroids. At the Kiya-Shaltyrskii deposit [21],
urtite bodies are also an independent and later phase. Separated from gabbroids, basic foidolites
are represented as separate bodies within the Goryachegorskii pluton (both gradual transitions and
intrusive relationships between plagioclase ijolites and feldspar urtites are observed here) [31].

Thus, the alkaline dikes of the N-S trending of the ijolite-porphyry with urtite xenoliths and the
dikes of the urtite-porphyry belonging to the University pluton in their petrographic, petrochemical
and geochemical composition are identical with the urtites of the Kiya-Shaltyrskii deposit ca. 400 Ma
(deposits of rich nepheline ores) [21].

5.3. Magma Sources for the University Pluton and Crosscutting Dikes

The seven alkaline-gabbroid plutons of the northern part of the KA ridge region (Figure 9;
as described above) and six of their varieties of igneous rocks (subalkaline gabbroids, ultramafic,
basic foidolites, theralites, syenites and carbonatites) were analyzed for Sr and Nd isotopic compositions.
The samples show slight variations in radiogenic εNd(T) (from +1.74 to +8.7), but with respect to the
radiogenic εSr(T) (from +3.43 to +36.6), the values exhibited a wide range, and a shift was observed
in the early intrusive phases of gabbroids to late alkaline dike rocks (Figure 9), from more mantle
compositions toward a crustal component and this may indicate active crustal contamination of magma.
One of the possible mechanisms of selective crustal contamination during the emplacement of magmas
is the thermal mobilization of Sr-rich brines conserved in the Cambrian sedimentary strata of the
KA [74,75]. Due to the strong contamination of all igneous rocks by crustal strontium, we assumed
that the primary source of the magmatic melt was the plume component of the primitive mantle
(PREMA) and these data are consistent with a number of studies [8,9,20,27,74,76]. V.V. Yarmolyuk and
V.I. Kovalenko [77] in their work showed that the development of the Early Middle Paleozoic basic
magmatism in the northwestern part of the CAOB occurred under the influence of a North-Asian
superplume on the lithosphere, which was dominated by PREMA material.

This North-Asian superplume ca. 500 Ma affected the northern part of the KA; Gornaya Shoriya;
Batenevskii range; Gorny Altai; Eastern and Southeastern Tuva; Eastern Sayan, Southern Pribaikal’e;
Yenisei range; Priolkhon’e; Zabaikal’e, Prikhubsugul’e and Western Mongolia during the period from
the Early Cambrian to the Middle Ordovician, producing large volumes of granites and various types
of mantle magmatism [20,47,78]. The University pluton, with 494–491 Ma subalkaline gabbroids
was part of this superplume event during the accretion of the KA terrane. The next stage was the
introduction of an extensive swarm of N-S trending dikes of both alkaline and subalkaline composition
394–389 Ma. Recent studies [43,48] have recognized the large Altai-Sayan rift system (ASRS) and
associated Altai-Sayan LIP, which also extend into the KA terrane. The crosscutting N-S striking
dikes that cut the University pluton are likely related to the ASRS plume event. For a more detailed
determination of the cause-and-effect relationships with certain regional magmatic events, we planned
to conduct additional isotopic (Rb-Sr; U-Pb) studies of subalkaline and alkaline intrusions of the
University pluton and crosscutting dikes.
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5.4. Genetic Nexus of Alkaline-Basic Intrusions in the Kuznetsk Alatau Terrane

For clarity, we presented the age dates of seven complexly differentiated alkaline–basic intrusions
of the KA terrane, which were discussed in our studies earlier (Figure 9 and Section 5.3) and this
will help to divide the magmatic events of their formation into separate stages of formation (Table 2).
Consequently, it will be possible to compare the magmatic events that took place at the University
pluton with the events of other alkaline-basic intrusions KA, which will help to reveal the conditions
of the formation of the University pluton.

Table 2. Dating of alkaline–basic intrusions in the Kuznetsk Alatau terrane.

Intrusion Rock Type (Mineral) Age, Ma Dating
Method Reference

Upper Petropavlovka Carbonatite, foidolite;
Theralite

509 ± 10
502 ± 46

147Sm/144Nd
87Rb/86Sr

[9]

University Subalkaline leucogabbro,
Subalkaline melanogabbro

494 ± 36
491 ± 36

147Sm/144Nd [32]

N-S dike swarm crosscutting
University pluton

Plagioclase ijolite,
Analcime syenite

394 ± 16
389 ± 37

147Sm/144Nd [33]

Kiya-Shaltyrskii
Melanocratic gabbro,

Pegmatoid ijolite,
Nepheline syenite

406 ± 2
398.9 ± 5.5
387.5 ± 2.8

87Rb/86Sr
206Pb/238U
206Pb/238U

[21]

Belogorskii
Plagioclase ijolite

(amphibole),
Nepheline syenite (mica)

402.9 ± 3.4
400.6 ± 3.4

40Ar/39Ar [8]

Dedovogorskii Pegmatoid nepheline syenite
(baddeleyite, zircon)

401 ± 2
400.9 ± 6.8

206Pb/238U [21]

Kurgusuyulskii Juvite 393.6 ± 9.2 206Pb/238U [21]

Goryachegorskii Foyaite 264.1 ± 1.9 206Pb/238U [31]

Accordingly, as a result of the data from isotope-geochronological studies (Sm-Nd, Rb-Sr, U-Pb and
Ar-Ar), alkaline intrusions can be divided into three age groups, corresponding to the Cambrian
and Early Ordovician (510–480 Ma), Early and Middle Devonian (410–390 Ma) and Late Permian
(265 Ma) [8–12,18,21,27,28,31–33,45,46,48,72].

Events in the Middle-Upper Cambrian, which formed the Upper Petropavlovka alkaline–basic
pluton [9] and the subalkaline gabbro University pluton, we associated with the manifestation of
the North Asian superplume [23] in the western territory of the CAOB. As a result, this intrusive
magmatism of intraplate specificity was widely developed at the initial stage of the accretionary stage of
the development of the terrane KA crust, when numerous plutons of alkaline and subalkaline rocks of
the region, and picrate and picrodolerite magmatism in the north part Mongolia ca. 500 Ma [23,47,78].

In the KA terrane, the second stage of magmatism consists of Early and Middle
Devonian alkaline-basic magmatism forming the Belogorskii [8], Kiya-Shaltyrskii, Dedovogorskii,
Kurgusuyulskii plutons [21] and dikes of the N-S trending cutting the University pluton. We associate
this event with the emergence of the Altai-Sayan rift system/LIP ca. 400 Ma [43,48].

Additionally, recent U-Pb dating of the foyaite phase of the Goryachegorskii pluton, which cuts
only Devonian volcanic sediments, in contrast to other alkaline-basic massifs where they interact
with both carbonate and volcanogenic-sedimentary strata, showed its belonging attachment to the
late Paleozoic era (Upper Permian Epoch) [21,31]. Apparently, the Goryachegorskii pluton is a
product of the bimodal basalt-comendite and basalt-pantellerite volcanic associations, which controlled
the distribution of numerous plutons of alkaline granites and syenites in the rift system of Central
Asia during the closure of the Paleo-Asian Ocean and collision of the Siberian and North China
continents [23].
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Conditions for the Formation of the University Pluton in the Kuznetsk Alatau Terrane

Subalkaline gabbro’s have LREE patterns (Figure 8) between the oceanic island basalt (OIB) [69]
and island arc basalt (IAB) [70] types [69], and HREE with the exception of (Tm ≈ 18.43; Yb ≈ 17.66;
Lu ≈ 14.88 ppm), which in turn were more enriched than oceanic islands basalts (Tm≈ 13.73; Yb ≈ 12.71;
Lu ≈ 11.81 ppm). In terms of total REE (

∑
REE ≈ 226.38 ppm), leucotheralites were more differentiated

than subalkaline gabbro the foidolites (of the pluton) and show a similar pattern to OIB, but with
a noticeable enrichment in HREE relative to OIB. Foidolites of the pluton were identical in their
pattern with subalkaline gabbro, except for a few samples (K55/6; K55/2; U6), which had the lowest
REE concentrations (

∑
REE = 59.91; 95.54; 150.37 ppm; Table S1), less than the IAB [70] standard.

The nepheline and alkaline syenites did not differ much from the subalkaline and alkaline units
of the pluton, but in two samples (15B; SH-394/4; Figure 6c) the maximum REE concentrations
(
∑

REE = 323; 1566.95 ppm) were found, which exceeded the OIB composition by several hundred
times. Comparison of the main varieties of plutonic rocks according to REE revealed a similar
distribution, both in the level of accumulation and in the level of fractionation. Among the differences,
positive Eu anomalies occurred in the subalkaline leucogabbro (Eu/Eu(n) = +1.25; +1.26 (Figure 3b);
+1.45; +1.86), leucotheralites (Eu/Eu(n) = +1.24; Figure 3c) and analcime syenite (Eu/Eu(n) = +1.31;
Figure 3g), which is possibly explained by the cumulative segregation of plagioclase as an early
crystallizing phase. Negative Eu anomalies were recorded in five samples: foyaite (Eu/Eu(n) = −0.27),
pegmatoid nepheline syenite (Eu/Eu(n) = −0.60; Figure 6c), melanogabbro (Eu/Eu(n) = −0.27; −0.65)
and leucotheralite (Eu/Eu(n) = −0.78), which is possibly the result of fractional crystallization or partial
melting, in which plagioclase remains in the melt source.

The behavior of REE and HFSE in the rocks of the University pluton suggests that the magma
sources were heterogeneous. Despite the different degrees of melt differentiation (La/Yb(n) = 0.53–12.72),
the geochemical parameters reflected the joint involvement of both OIB and IAB components in
melt genesis. Mixing of these components is also noted for a number of other Early and Middle
Paleozoic alkaline-basic intrusions of the region, the origin of which is associated with the processes
of plume-lithospheric interaction and the inheritance of geochemical signatures of subduction in the
products of mantle diapirism [8,9,18,27]. Negative (Nb, Ta, Zr and Hf) anomalies and the enrichment
of mobile elements of fluids (Rb, Sr, Ba and U) in the rocks of the studied association indicate a probable
interaction of plume melts with lithospheric mantle that was metasomatized during prior subduction
events associated with the formation of accretion complexes.

The heterogeneity of the data is confirmed by a number of trace element discrimination diagrams
(Th/Yb–Ta/Yb; Th/Ta–La/Yb; Nb/Y–Zr/Y; Tb/Ta(n)–Th/Ta(n); Zr/Nb–Nb/Th and Th/Nb–Ba/La; Figure 11).
Subalkaline and alkaline plutonic rocks of the University pluton had within-plate character suggesting a
plume source, but occurred in a region with an active continental margin (Figure 11a–d). These processes
can be the interaction of plume material with more ancient accretion-collisional complexes on the
active margin of the Paleo-Asian Ocean [8,10,20,22,27,31].

Taking into account the increased alumina content and low titanium content of subalkaline
and alkaline rocks of the University pluton, and the observed ratios of highly charged elements,
with a relative enrichment in rubidium, strontium and uranium, and with a noticeable depletion in
niobium and tantalum, these geochemical features collectively indicate a complex geodynamic paleo
environment of formation, juxtaposing convergence features of island arc, continental margin and with
intraplate magmatism (Figure 11e,f). An example of such a complex combination of tectonic regimes
initiating magmatic activity can be the modern active continental margin of the Californian type [79].
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Figure 11. Variation diagrams of HFSE in subalkaline and alkaline rocks of the University pluton.
(a) Th/Yb–Ta/Yb [80]: Oceanic arcs, ACM = active continental margins, WPVZ = within-plate
volcanic zones, WPB = within-plate basalts, OIB = ocean island basalts, E-MORB = “enriched-type”
mid-ocean ridge basalts, N-MORB = “normal-type” mid-ocean ridge basalts; (b) Th/Ta–La/Yb [81,82]:
OPB = oceanic plateau basalt, SZB = subduction zone basalt, UC = upper crust, ARC = subduction
zone basalts, CFB = continental flood basalt, PM = primitive mantle, HIMU = type basalt;
HIMU = means high µ, where the µ-value is the ratio of 238U/204Pb. EM I-type basalt and EM
II-type basalt = basalts from enriched mantle sources, DM = depleted mantle, FOZO = focal
zone; (c) Nb/Y–Zr/Y and (e) Zr/Nb–Nb/Th [83]: Arrows indicate effects of batch melting (F) and
subduction (SUB). DEP = deep depleted mantle, EN = enriched component, REC = recycled component;
(d) Tb/Ta(n)–Th/Ta(n) [84]: BAB = back-arc basin basalts, IAT = island arc tholeiites, IAB = island
arc basalts, CAMB = active continental margin basalts, CWPAB = continental within-plate alkali and
transitional basalts, (n) = primitive mantle-normalized [69]; (f) Th/Nb–Ba/La [85]: OIB [69], IAB [70],
LCC = lower continental crust [86], Crust [87], GLOSS [88], STB = Siberian traps.
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The CAOB records convergence and interactions between various types of orogenic components,
including arc systems of the Japanese, Mariana and Alaskan-Aleutian types, and active continental
margins of the Siberian Craton, which imply wide accretionary complexes and accreted arcs and
terranes [25,26,50,89]. In the KA terrane, there can be spatially combined subduction and plume
magmatism, recognized by geochemical components from heterogeneous sources [27].

6. Conclusions

Magnetic mapping of the poorly exposed University pluton of the Kuznetsk Alatau ridge,
Siberia exhibited positive anomalies of intrusive units of the University pluton against the background
of negatively magnetized host rocks (sedimentary rocks of the Ust-Kundat and Berikul formations).
The high-intensity positive anomaly in the western part of the study area is probably associated
with nepheline mineralization, which may be an analogue of the nearby economically important
Kiya-Shaltyrskii nepheline ore deposit in addition, linear (N-trending) positive anomalies are associated
with younger crosscutting N-S trending alkaline dikes.

Based on the Sm-Nd age dates presented in this manuscript, the University pluton was likely
emplaced at about 490 Ma, which indicates its likely membership in a widespread intraplate event
that extends into Mongolia [47]. The University pluton is cut by 390 Ma alkaline N-S trending dikes
that likely belong to the regional ca. 400 Ma Altay-Sayan Rift System/LIP [43,48]. As is known,
magmatism in the western part of the CAOB had a long history and some events, as in the KA
terrane, are associated with the activity of mantle plumes. The broad signature (εNd(T) from +1.74 to
+8.7 and εSr(T) from +3.43 to +36.6) of the isotopic composition of the alkaline-gabbroid association
indicates the generation of initial magmas from a plume source of the moderately depleted PREMA
mantle, whose derivatives experienced a selective crustal contamination likely through interaction
with lithosphere metasomatized during final orogenic assembly of the CAOB.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-163X/10/12/1128/s1,
Table S1: Chemical composition of igneous rocks of the University intrusion.
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