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Abstract: Aluminosilicate clay minerals are often a major component of soils and sediments and
many of these clays contain structural Fe (e.g., smectites and illites). Structural Fe(III) in smectite
clays is redox active and can be reduced to Fe(II) by biotic and abiotic processes. Fe(II)-bearing
minerals such as magnetite and green rust can reduce Hg(II) to Hg(0); however, the ability of
other environmentally relevant Fe(II) phases, such as structural Fe(II) in smectite clays, to reduce
Hg(II) is largely undetermined. We conducted experiments examining the potential for reduction
of Hg(II) by smectite clay minerals containing 0–25 wt% Fe. Fe(III) in the clays (SYn-1 synthetic
mica-montmorillonite, SWy-2 montmorillonite, NAu-1 and NAu-2 nontronite, and a nontronite from
Cheney, Washington (CWN)) was reduced to Fe(II) using the citrate-bicarbonate-dithionite method.
Experiments were initiated by adding 500 µM Hg(II) to reduced clay suspensions (4 g clay L−1)
buffered at pH 7.2 in 20 mM 3-morpholinopropane-1-sulfonic acid (MOPS). The potential for Hg(II)
reduction in the presence of chloride (0–10 mM) and at pH 5–9 was examined in the presence of
reduced NAu-1. Analysis of the samples by Hg LIII-edge X-ray absorption fine structure (XAFS)
spectroscopy indicated little to no reduction of Hg(II) by SYn-1 (0% Fe), while reduction of Hg(II)
to Hg(0) was observed in the presence of reduced SWy-2, NAu-1, NAu-2, and CWN (2.8–24.8% Fe).
Hg(II) was reduced to Hg(0) by NAu-1 at all pH and chloride concentrations examined. These results
suggest that Fe(II)-bearing smectite clays may contribute to Hg(II) reduction in suboxic/anoxic soils
and sediments.
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1. Introduction

Mercury (Hg) is present in the environment as a result of natural and anthropogenic processes
including mineral weathering, volcanic emission, mining activity, fossil fuel burning, and industrial
and consumer use [1,2]. As such, Hg is a common contaminant in many terrestrial and aquatic
systems [3,4], and its bioaccumulation in organisms, including humans, is a major environmental
concern [5–7]. Although Hg can exist as Hg(II), Hg(I), or Hg(0), Hg(I) is prone to disproportionation
and is not commonly found under typical environmental conditions. Hg(II) is particularly soluble in
water and can form highly toxic compounds like dimethylmercury as a result of microbial activity [8,9].
Metallic Hg(0) exists as a liquid at room temperature and is also quite toxic, but is considerably less
soluble in water than Hg(II). However, due to its low vapor pressure, Hg(0) readily partitions into
the atmosphere and is mobile on a global scale. Thus, the reduction of Hg(II) to Hg(0) in soils and
sediments, facilitated by both abiotic and microbially-mediated processes, is a key component of the
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cycling of Hg between atmospheric and aquatic/terrestrial reservoirs and the overall biogeochemical
cycling of Hg [3,9–11].

Iron (Fe) is a highly abundant element in the lithosphere (~5% by mass) and Fe
oxides (including formal Fe oxides, oxyhydroxides, and hydroxides such as ferrihydrite
(Fe5HO8·4H2O), hematite (α-Fe2O3), maghemite (γ-Fe2O3), magnetite (Fe3O4), goethite (α-FeOOH),
lepidocrocite (γ-FeOOH)), and Fe-bearing clay minerals (smectites, illites, chlorites, etc.) are common
constituents of soils and sediments. The biogeochemistry of Fe in most aquatic and terrestrial
environments is driven largely by microbial activity, particularly in Fe-rich soils and sediments
where Fe redox cycling by microorganisms is a significant component of C cycling and energy
flux [12–16]. Microbial reduction of ferric iron (Fe(III)) can result in the formation of a broad
range of Fe(II) species including soluble and adsorbed Fe(II) and mineral phases containing
structural Fe(II) (e.g., magnetite, siderite (FeCO3), vivianite [Fe3(PO4)2·8H2O], green rust, chukanovite
[Fe2(OH)2CO3], and Fe(II)-bearing clays) [17–27]. Fe(II) is one of the most abundant reductants
typically present in aquatic and terrestrial environments under suboxic and anoxic conditions [28–30],
often providing substantial redox buffering capacity to these systems, and many Fe(II) species are
effective reductants for a wide range of organic and inorganic contaminants, including nitroaromatics,
chlorinated hydrocarbons, nitrate, heavy metals, and radionuclides [31–42]. In 2003, we reported the
reduction of Hg(II) to Hg(0) by green rust [43], a layered redox-reactive Fe(II)-Fe(III) hydroxide with a
pyroaurite-type structure. Since then, other Fe(II)-bearing minerals have been shown to reduce Hg(II)
to Hg(0), including magnetite [44–47], siderite [48], and mackinawite (FeS) [49], as well as solution
phase and adsorbed Fe(II) [50,51]. These results suggest that other Fe(II)-bearing minerals may be
effective reductants for Hg(II).

Smectite clays (e.g., montmorillonite, beidellite, nontronite, saponite, and hectorite) are a group of
2:1 (an alumina octahedral sheet bound between two tetrahedral silicate sheets) hydrous aluminum
phyllosilicate minerals found in many soils and sediments. Among clay minerals, the high surface
area and cation exchange capacity of smectite clays makes them particularly good sorbents for metals
including Hg2+ [52–57]. Although composed primarily of Si and Al, smectites typically contain Fe
(ranging from <1 wt% up to ~30 wt% [58]) due to isomorphic substitution of Fe3+ for Si4+ in the
tetrahedral layer and Fe3+ for Al3+ in the octahedral layer. As such, smectite clays can be an important
component of the Fe pool in soils and sediments. Moreover, the structural Fe(III) in smectites is
redox active and can be reduced to Fe(II) by biotic and abiotic processes [59–66]. Although structural
Fe(II) in smectite clays has been shown to reduce contaminants including nitroaromatics, chlorinated
hydrocarbons, chromate, and pertechnetate [67–74], the ability of clays to reduce Hg(II) is unknown,
impeding evaluation of their contribution to the redox cycling of Hg in the environment.

In this study we used X-ray absorption fine structure (XAFS) spectroscopy to examine the potential
for reduction of Hg(II) by structural Fe(II) in a suite of smectite clay minerals containing 0–25 wt%
structural Fe.

2. Materials and Methods

2.1. Clay Minerals

SYn-1 (Barasym SSM-100, a synthetic mica-montmorillonite), SWy-2 (a Na-rich montmorillonite
from Crook County, WY, USA), NAu-1 (a green-colored, Al-enriched nontronite from Uley Mine,
South Australia) and NAu-2 (a brown colored, Al-poor nontronite containing tetrahedral Fe from
Uley Mine, South Australia) were obtained from the Clay Minerals Society’s Source Clays Repository.
CWN, a nontronite from Cheney, Washington, USA was purchased from Ward’s Natural Sciences
Establishment, Inc. SYn-1 and SWy-2 were in powder form and were used as received. Chunks of
NAu-1, NAu-2, and CWN were ground in a ball mill. The clays were Na saturated, dispersed, and the
clay-sized fraction (<2 um) isolated by sedimentation as described by O’Loughlin et al. [75] and
maintained as an aqueous suspension. The Fe content of the clay-sized fraction was determined by HF
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dissolution. A 25 mg dry mass sample of each clay was placed in a 50 mL polypropylene centrifuge
tube followed by the addition of 6 mL of 1.8 M H2SO4 and 500 µL of 48 wt% HF. The open tubes were
placed in a boiling water bath for 30 min. After cooling to ambient temperature, 5 mL of a 5 wt%
H3BO3 solution was added to neutralize the HF prior to analysis of the Fe concentration by inductively
coupled plasma-optical emission spectrometry. Based on this analysis, the clays had the following
Fe content (wt%): Barasym (0%), SWy-2 montmorillonite (2.8%), NAu-1 (18.8%), NAu-2 (24.8%),
and CWN (21.4%).

2.2. Preparation of Reduced Clays

The clays were reduced (Figure 1) using a modified version of the citrate-bicarbonate-dithionite
(CBD) method as described by Ilgen et al. [76]. Briefly, citrate-bicarbonate (CB) buffer solution was
prepared by combining 800 mL of 0.3 M sodium citrate with 100 mL of 1 M NaHCO3. A volume of clay
suspension corresponding to 500 mg dry mass was added to 50 mL of CB buffer and dispersed with
mild sonication. The CB/clay suspensions were then transferred to a 240 mL serum bottle, an additional
100 mL of CB buffer was added to each, and the bottles were sparged with Ar to remove O2 from the
suspension and headspace. After sparging for 15 min, 267 mg of sodium dithionite was added, and the
bottles were sealed with rubber septa and aluminum crimp caps and placed in a 70 ◦C water bath for
30 min with periodic mixing. The bottles were then placed in an anoxic glove box (Coy Laboratory
Products, Grass Lake, Michigan, 3–5% H2 in N2 and Pd catalyst to maintain O2 in the box <1 ppm) and
the CBD-reduced clay suspensions were immediately transferred to 250 mL centrifuge bottles with
O-ring closures. The reduced clays were recovered by centrifugation and washed (i.e., resuspension
followed by centrifugation) with a series of anoxic solutions over a period of ~6 h as follows: 1 wash
with 75 mL of 5 mM NaCl; 2 washes with 75 mL of 2 M NaCl adjusted to pH 4 with 1 M HCl; 1 wash
with 75 mL of 5 mM NaCl; and 1 wash with 75 mL of 20 mM 3-morpholinopropane-1-sulfonic acid
(MOPS) buffer (pH 7.2). After the final washing, the clays were resuspended in 20 mM pH 7.2 MOPS
buffer. All work with the CBD-reduced clays was conducted under anoxic conditions.
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Figure 1. Oxidized and citrate-bicarbonate-dithionite (CBD)-reduced NAu-1 nontronite.

2.3. Experimental Setup

Experiments were initiated by spiking 10 mL of either native or CBD-reduced clay suspensions
(4 g clay L−1 in pH 7.2 MOPS buffer) in 15-mL polypropylene centrifuge tubes with 500 µL of 10 mM
Hg(II) acetate. The tubes were placed on a rotating mixer (Rotamix RKVSD, Appropriate Technical
Resources). After 24 h, samples were prepared for XAFS spectroscopy. The suspensions were
centrifuged, and the solids were placed inside holes machined in 1.5 mm thick Plexiglass sample
holders (slide-mount sample holders) that were then covered with Kapton film held in place with
Kapton tape. All work was conducted under anoxic conditions and the samples for XAFS were
transferred to the beamline nearby in gas-tight containers.

Using the procedure described above, the effects of pH were examined over the range
of pH 5–9 with CBD-reduced NAu-1. Suspensions of NAu-1 were prepared in 20 mM
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1,4-diethylpiperazine (DEPP, pH 5.14); 2-morpholinoethanesulfonic acid (MES, pH 6.08);
MOPS (pH 7.10); 1,4-piperazinedipropanesulfonic acid (PIPPS, pH 8.09); or DEPP (pH 9.23) and
spiked with 500 µL of 10 mM Hg(II). Similarly, the effects of chloride concentration were examined in
suspensions of NAu-1 buffered at pH 7.2 in 20 mM MOPS containing either 0, 1, or 10 mM NaCl and
spiked with 500 µL of 10 mM Hg(II).

2.4. Hg XAFS Analysis

Hg LIII-edge (12,284 eV) XAFS measurements were carried out at the MR-CAT/EnviroCAT
insertion device beamline (Sector 10, Advanced Photon Source City State, Abbr (if USA), Country) [77].
X-ray absorption near edge spectra (XANES) and extended X-ray absorption fine structure (EXAFS)
spectra were collected in fluorescence mode using gas-filled ionization chambers on samples prepared
under anoxic conditions as described above in Section 2.3. Samples were transported in O2-free
containers to the beamline and spectra were collected at −140 ◦C within several hours of sample
preparation using a Linkam®stage cooled by liquid N2. The anoxic integrity of samples prepared
and analyzed this way has been demonstrated in previous work [78]. Absolute energy calibration
was established by setting the inflection point in the spectrum of Au foil to 11,919 eV. Relative energy
calibration between samples was maintained by simultaneous in-line scanning a Hg/Sn amalgam
sample [45]. Radiation-induced changes in the spectra were not observed at this temperature.
Spectra were obtained from up to 10 fresh locations on each sample and averaged to produce the
final spectrum.

Analysis of the spectra was based on comparisons to Hg standards. The standards spectra dataset
included: hydrated Hg(II) and Hg(II) complexed to acetate in aqueous solution [45]; polycrystalline HgO
from Sigma-Aldrich; 2 mM HgClO4 sorbed to 4 g maghemite L−1 at pH 6.0 [46]; Hg2Cl2 (calomel)
powder obtained from Sigma-Aldrich; and Hg(0) produced by reduction with ferrous phases
(magnetite, green rust) [43,46]. The polycrystalline Hg powders were mounted on the adhesive
side of Kapton tape and their absorption spectra were measured in transmission. Solution samples
were mounted in a 1.5 mm thick sample holder with Kapton film windows and the spectrum was
measured in fluorescence. Adsorbed Hg standards were mounted as wet pastes in a 1.5 mm thick sample
holder with Kapton windows and measured in fluorescence mode. Normalization and background
removal of the data were done using the program AUTOBK [79].

3. Results and Discussion

3.1. Interaction of Hg(II) with Native and CBD-Reduced Smectites

The reaction of Hg(II) with the native clays is not expected to result in reduction of Hg(II),
as a priori the solids have no reducing equivalents to be transferred to Hg (the clay purification
process and the reactions with Hg(II) were carried out under ambient (i.e., oxic) conditions). Thus,
the spectra measured from the native oxidized solids are expected to represent Hg(II) adsorbed onto
the corresponding clays. Figure 2 compares the data to aqueous and solid Hg(II) standards. The edge
position and shape of the clay samples is similar to the Hg(II) standards, showing a characteristic
“knee” between 12,285 eV and 12,290 eV corresponding to the deep dip and the large second peak in the
derivative spectra near 12,287 eV and 12,292 eV, respectively. Although there is speciation-dependent
variation in their position and amplitude, these features in the XANES are present in all Hg(II) spectra
and have been used for determining Hg(II) in prior work [45,46,48,49]. Therefore, Hg associates with
the native clays as adsorbed Hg(II) and these spectra represent the speciation of solid-phase Hg(II) in
the absence of redox processes.
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Figure 2. Hg LIII-edge XANES spectra (left) and derivative (right) obtained from the solid phase in the
systems with native NAu-1 and SWy-2 clays. The spectra are compared to aqueous and solid Hg(II)
standards (symbols), which exhibit a deep dip and the large second peak in the derivative spectra
(features e and f). The vertical dashed lines (a–f) are a guide to the eye.

The Hg XANES spectra from the CBD-reduced clays reacted with Hg(II) are shown in Figure 3.
Relative to the oxidized native clay systems discussed above only the spectrum from Hg(II) reacted
with the CDB-reduced Barasym clay (0 wt% Fe) displays the XANES features corresponding to
Hg(II); which indicates no reduction of Hg(II) by either Barasym or any potential reductants
(e.g., unreacted dithionite) that might not have been removed during the washing procedure following
CBD reduction. All other systems with reduced clays (i.e., those containing 2.8–24.8 wt% Fe) lack
the “knee” and the features near 12,290 eV indicative of Hg(II). The Hg spectra from the reduced clay
systems are identical to that of the Hg(0) standard. Therefore, in all systems with CBD-reduced clays
containing Fe (SWy-2, NAu-1, NAu-2, and CWM), Hg(II) was reduced to elemental Hg(0) under the
conditions of our study.
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Figure 3. Hg LIII-edge XANES spectra (left) and derivative (right) obtained from the solids in systems
with clays of different Fe content reduced by the CBD method. Spectra are compared to that of Hg(II)
in the native (un-reduced) clays and to the Hg(0) standard (symbols). The vertical dashed lines (a–f)
are a guide to the eye, delineating features corresponding to the different valence states of Hg.
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3.2. Effect of pH on Hg(II) Reduction by CBD-Reduced NAu-1

The pH of natural systems can vary broadly, so we examined the potential for reduction of Hg(II)
by CBD-reduced NAu-1 at pH values from 5–9, a range representative of the majority of aquatic and
terrestrial environments. The XANES spectra from the CBD-reduced NAu-1 clay reacted with Hg(II)
at pH 5, 6, 7, 8, and 9 are shown in Figure 4. Relative to the native NAu-1 clay system where Hg was
associated with the solids as adsorbed Hg(II), the spectra of Hg in the reduced NAu-1 solids were
identical to that of the Hg(0) standard. Therefore, the reduction of Hg(II) by Fe(II) in reduced NAu-1
clays was possible at all pH values between 5 and 9 under the conditions of our experiments and the
resulting species was elemental Hg(0).Minerals 2019, 9, x FOR PEER REVIEW 6 of 13 
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3.3. Effect of Chloride Concentration on Hg(II) Reduction by CBD-Reduced NAu-1

Chloride (Cl−) is ubiquitous in aquatic and terrestrial environments and is known to form strong
aqueous complexes with Hg(II) [80]. The formation of these complexes (e.g., HgCl+, HgCl2, HgCl3−,
and HgCl42−) can influence the behavior of Hg(II), including inhibition of Hg(II) reduction [44,46,81–83]
and sorption on clays, metal oxides, and natural sediments [53,84–87]. Previous work has shown that
the presence of Cl− in a reducing Fe(II)/(III)-oxide system can prevent complete reduction of Hg(II) to
Hg(0) and promote formation of metastable Hg(I) as calomel (Hg2Cl2) [46]. We tested for potential
effects of Cl− on Hg(II) reduction by CBD-reduced NAu-1 clay at Cl− concentrations of 0, 1, and 10 mM;
which covers the range of Cl− concentrations typical of freshwaters, near-surface groundwater, and soils.
The XANES derivative spectra from these systems are compared to standards in Figure 5. The spectra
lack the deep minimum near 12,287 eV and the second maximum near 12,292 eV that are characteristic
of the Hg(II) and Hg(I) standards. Instead, the spectra at all Cl− concentrations are identical to the
Hg(0) standard. Therefore, the presence of Cl− did not result in calomel formation and Hg(II) was
reduced to elemental Hg(0) under the conditions of these experiments. However, given that Hg(I)
species are generally metastable, it is important to note that the lack of detection of Hg(I) in the 1 and
10 mM Cl− systems does not preclude its formation and subsequent disappearance prior to the XAFS
measurements of the solids made 24 h after exposure of Hg(II) to the CDB-reduced clay.
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3.4. Environmental Relevance

Emission of Hg(0) from aquatic and terrestrial systems to the atmosphere is a major component
of the global biogeochemical Hg cycle and reduction of Hg(II) to Hg(0) in soils and sediments is
a fundamental part of this process [8–10]. However, the mechanisms of the reduction of Hg(II) to
Hg(0) in soils and sediments are not fully understood [9]. Photochemical reduction of Hg(II) can
occur in surface waters and at the soil surface [88–90] and the dark reduction of Hg(II) can occur via
biotic and abiotic processes. Many microbes common to aquatic and terrestrial environments can
enzymatically reduce Hg(II) to Hg(0), primarily as an inducible detoxification mechanism [91,92],
although in some dissimilatory Fe(III)-reducing bacteria he ability to reduce Hg(II) is constitutive and
involves the respiratory electron transport chain [93,94]. In addition, natural organic matter (NOM),
including humic and fulvic acids, can reduce Hg(II) to Hg(0) [82,95–99]. Furthermore, the activity
of Fe(III)-reducing microbes in soils and sediments generates Fe(II) species that can reduce Hg(II) to
Hg(0) [43–46,48–51]—including structural Fe(II) in smectite clays as shown in this study—creating
the possibility for coupled biotic–abiotic Hg(II) reduction pathways under Fe(III)-reducing conditions.
Indeed, Peretyazhko et al. reported reduction of Hg(II) to Hg(0) by biogenic Fe(II) in a hydromorphic
tropical soil [100]. Similarly, Debure et al. attributed reduction of Hg(II) to Hg(0) in anoxic subsurface
sediments to the presence of magnetite and siderite [101], and Poulin et al., reported a correlation
between aqueous Hg(0) concentrations and products of microbial Fe/Mn reduction in a riparian soil
impacted by historic Hg contamination [102]. Given that Fe-bearing clays are common constituents of
many soils and sediment and that structural Fe(II) in clays has been shown to reduce a broad range
of organic and inorganic contaminants, it is reasonable to expect that they might contribute to Hg(II)
reduction and subsequent Hg(0) emission in situ.

Our results showing the reduction of Hg(II) to Hg(0) by structural Fe(II) in smectite clay minerals
increases the number of known Fe(II) species that can reduce Hg(II). However, fundamental aspects of
this reaction need to be explored including: the reaction kinetics; the effects of Hg(II) complexation by
NOM, minerals, and microbes; the presence of competing electron acceptors (e.g., molecular oxygen
and nitrate); and the potential reactivity of structural Fe(II) in other phyllosilicate clay minerals
(e.g., illites, vermiculites, etc.). Moreover, the reduction of Fe(II) in smectite clays in near-surface
environments is likely to be due primarily to microbial activity, particularly by Fe(III)-reducing bacteria
and archaea, and in laboratory studies the dynamics of Fe(II) speciation and clay mineralogy are
often quite different during microbial reduction (or simulation of microbial reduction by the addition
of Fe(II)) compared to strictly abiotic reduction (e.g., by dithionite as in this study) of structural
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Fe(III) [62,63,65,103–107]. As such, additional studies focused on the dynamics of Hg(II) during
microbial reduction of Fe(III)-bearing smectite clays are needed.
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