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Abstract: Abundant fluorites occur in the Shihuiyao rare metal (Nb-Ta-Rb) deposit in Inner Mongolia
of NE China, and they can be classified by their occurrence into three types. Type I occurs disseminated
in greisen pockets of albitized granite. Type II occurs in the skarn zone between granite and carbonate
host rocks, and it can be subdivided into different subtypes according to color, namely dark purple
(II-D), magenta (II-M), green (II-G), light purple (II-P), and white (II-W). Type III are the fluorite-bearing
veins in the silty mudstones. On the basis of petrography of the fluorites and their high contents
of HFSEs (high field strength elements) and LILEs (large ion lithophile elements), strong negative
Eu anomalies, and tetrad effects, we suggest that Type I fluorites crystallized in a late-magmatic
stage with all the components derived from the granite. The high Y/Ho ratios suggest that the
Type II fluorites crystallized in the early- or late-hydrothermal stage. The rare earth elements
(REEs) characterized by various Eu anomalies of the Type II fluorites indicate a mixed origin for
ore-forming metals from granite-related fluids and limestones, and the oxygen fugacity increased
during fluid migration and cooling. Compared to the Type II fluorites, the similar trace element
contents of the Type III suggest a similar origin, and remarkable positive Eu anomalies represent
a more oxidizing environment. The Sr isotopic composition (87Sr/86Sr)i = 0.710861) of the Type I
fluorites may represent that of the granite-derived fluids, whereas the (87Sr/86Sr)i ratios of the Type II
(0.710168–0.710380) and Type III (0.709018) fluorites are lower than that of the Type I fluorites but
higher than those of the Late Permian-Early Triassic seawater, suggesting a binary mixed Sr source,
i.e., granite-derived fluids and marine limestones. Nevertheless, the proportion of limestone-derived
Sr in the mixture forming the Type III fluorites is much higher than that of Type II. The rare metal Nb
and Ta get into the granite-derived F-rich fluids by complexing with F and precipitate in the form of
columbite-group minerals after the Type I fluorites crystallize. Most of Nb and Ta may have deposited
as columbite-group minerals during the magmatic stage, resulting in no Nb-Ta mineralization in
the hydrothermal stage when the Type II and III fluorites formed. Hence, the Type I fluorites in the
Shihuiyao mining area can be used as an important exploration tool for the Nb-Ta mineralization.
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1. Introduction

Fluorite and its trace element geochemical features have been studied by many researchers in
an attempt to understand the geological conditions that occurred during the formation of fluorite
and associated mineralization [1–9]. Fluorite is one of the most common hydrothermal minerals
in many deposits, which has relatively high rare earth element (REE) contents. Therefore, the REE
concentrations of fluorite occurring in different stages can provide insights into the element behavior
and the evolution of a hydrothermal fluid [1–3,5,7,8,10,11]. In addition, because Rb is much less
compatible than Sr in fluorite, fluorite will possess a very low Rb/Sr ratio, permitting the determination
of 87Sr/86Sr ratio of fluids from which fluorite precipitated [10,12–15].

The Southern Great Xing’an Range (SGXR) is one of the most important polymetallic metallogenic
belts in China, and it also contains a large number of fluorite occurrences [9]. Shihuiyao was recently
discovered as a giant Nb-Ta-Rb rare metal deposit in XilinHot, Inner Mongolia. Previous studies have
mainly focused on the petrology, age, and genesis of the Nb-Ta-Rb deposits [16–18]. This deposit
may be an integrated product of the crystallization of granitic magma in the early stage and
hydrothermal metasomatic interaction later, of which the latter includes the main metallogenic
stages of Nb, Ta, and Rb [18]. The ore bodies mainly occur in albitized and greisenized granites.
The Nb-Ta minerals disseminated in the albitized granites mainly include manganocolumbite,
columbite–tantalite, columbite–manganotantalite, wodginite, microlite, and the Rb minerals are
mainly mica and amazonite [16–18]. Since fluorite is widespread in the Shihuiyao area in a close
association with the rare metal mineralization, its chemical and isotopic characteristics can shed new
light on its origin and associated rare metal mineralization. Hence, we focused on the trace and rare
earth element concentrations, as well as on Sr isotope compositions of various types of fluorites from
the Shihuiyao rare metal mining area, aiming to investigate the origin and water–rock interaction
during the formation of fluorite and associated rare metal mineralization.

2. Geological Setting and Mineralization

The Shihuiyao Nb-Ta-Rb rare metal deposit is located in the SGXR, which belongs to the
Xing’an–Mongolian Orogenic Belt (XMOB). The XMOB is the eastern segment of the Central Asian
Orogenic Belt (CAOB), and it is tectonically located in the area surrounded by the Siberian Craton to the
north, the North China Craton (NCC) to the south, and the western Pacific Plate to the east (Figure 1a).
The eastern segment of the CAOB consists of four blocks, namely, the Erguna Block (EB), the Xing’an
Block (XB), the Jiamusi Block (JB), and the Songliao–Xilinhot Block (SXB), and four sutures, including
the Xinlin–Xiguitu suture (XXS), the Heihe–Hegenshan suture (HHS), the Mudanjiang–Yilan suture
(MYS) and the SolonKer–Xar Moron suture (SXS) ([19]). The study area is situated on the southwestern
part of the SXB and lies between the HHS and the western part of SXS (Figure 1a).
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Figure 1. (a) Location map of the Shihuiyao deposit in Inner Mongolia (modified from [19]);
(b) Simplified geological setting of the Shihuiyao deposit (modified from [18]). EB—Erguna block,
XB—Xing’an block, SXB—Songliao–Xilinhot block, JB—Jiamusi block; MOS—Mongol–Okhotsk
suture, XXS—Xinlin–Xiguitu suture, HHS—Heihe–Hegenshan suture, MYS—Mudanjiang–Yilan suture,
SXS—SolonKer–Xar Moron suture.

The igneous rocks distributed along a NE trend in the area are mainly Permian granodiorites and
Yanshanian granites (Figure 1b), which are thought to be controlled by the closure of the Paleo-Asian
Ocean (300–260 Ma) and the subduction of the Paleo-Pacific plate (150–120 Ma), respectively [19–21].
The regional basement includes the Lower Paleozoic Xilin Gol Complex, Permian strata (Dashizhai,
Zhesi, and Linxi formations), and Jurassic strata (Manketouebo Formation), (Figure 1b). The Shihuiyao
mining area is constituted by Yanshanian granites, Late Permian-Early Triassic Linxi Formation,
and Quaternary. The Linxi Formation, whose depositional age is from Late Permian to Early
Triassic [22], mainly consists of mudstone, siltstone or calcareous siltstone, sandstone or calcareous
sandstone, and slate, with lesser amounts of limestone beds and lenses [23].

In the northwestern part of the Shihuiyao mining area, the fluorite mineralization mainly
occurs in the skarn zone between the albitized granite and wall rocks of the Linxi Formation,
followed by disseminated mineralization in greisen pockets and fluorite-bearing veins in wall rocks.
Fluorite mineralization in the skarn zone mainly occurs as veins, with various colors of dark or light
purple, magenta, white, and green. The veins generally consist of banded fluorite interlayered with
calcite and chalcedony.

The main rock types of the wall rocks are limestones and silty mudstones. The alteration of
the wall rocks is mainly characterized by skarnization and silicification. The albitized granite (A–G)
is composed of quartz (≈35 vol%), albite (≈25 vol%), K-feldspar (≈35 vol%), muscovite (≈5 vol%),
and minor columbite-group minerals (less than 2 vol%), with zircon and monazite as the main accessory
minerals (Figure 2a,b). Albite clearly replaced K-feldspar and muscovite (Figure 2b). In addition,
the greisen pockets are distributed randomly in the granite, with a size of several centimeters to tens of
centimeters in diameter. Sun et al. [17] obtained a muscovite 40Ar-39Ar age of 144.7 ± 1.1 Ma from the
greisen in the albitized granite.
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Figure 2. (a,b) Hand specimen and photomicrograph of the albitized granite; (c,d) Hand specimen and
photomicrograph of the fluorite-bearing greisen (Type I). Ab—albite, Fl—Fluorite, Kfs—K-feldspar,
Ms—muscovite, Qz—quartz, Clb—columbite.

3. Samples and Analytical Methods

3.1. Samples

Fifteen fluorite samples and one fresh albitized granite sample were collected from the Shihuiyao
fluorite mineralization area. The types of fluorite were identified by their occurrences. Type I: purple
fluorite (I-P) from the greisen in the albitized granites (Figure 2c,d); Type II: fluorites of various colors
from the skarn zone: dark purple fluorite (II-D) (Figure 3a,b), magenta fluorite (II-M) (Figure 3a,b),
green fluorite (II-G) (Figure 3c,d), light purple fluorite (II-P) (Figure 3c,d), and white fluorite (II-W)
(Figure 4a,b); Type III purple fluorite (III-P) from the veins in the silty mudstones (Figure 4c,d),
and the veins mainly consist of albite (altered), quartz, and fluorite (Figure 4d). We can observe some
columbite-group minerals associated with mica in greisen pockets (Figure 2d), whereas there is no Nb-Ta
mineralization in the skarn zone or veins where the Type II and III fluorites precipitated, respectively.
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3.2. Whole-Rock Trace-Elements Analyses

The albitized granite samples for whole-rock geochemical analyses were crushed to fine powders
of 200-mesh through an agate mill. Trace element contents were determined by a Finnigan MAT
Element II high-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) at State
Key Laboratory for Mineral Deposits Research, Nanjing University, Nanjing, China. The analytical
conditions and procedures are similar to those described in the paper of Gao et al. [24]. About 50 mg of
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powdered sample was dissolved in high-pressure Teflon bombs by an HF-HNO3 mixture. Rh was used
as an internal standard to monitor signal drift during counting in ICP-MS (inductively coupled plasma
mass spectrometry) analysis. The USGS rock standard GSP-1 was chosen for calibrating element
concentrations of the measured samples, and the certified values of the standard GSP-1 are refered
to [25]. Analytical uncertainties for most elements were lower than 5%.

3.3. Trace-Elements and Sr Isotopes in Fluorite

Fluorite separates were obtained by conventional separation techniques and by subsequent
handpicking under a binocular microscope (purity >99%); then, they were milled to a 200 mesh for
trace and rare earth element analysis. The analyses were performed at Guizhou Tongwei Analytical
Technology Co., Ltd. (Gui’an, China) on a ThermoFisher X Series 2 ICP-MS. Powders (approximately
20–30 mg) were digested in double-distilled 6N HCl at 160 ◦C for 3 days. Sample solutions were diluted
to about 3000×with 2% HNO3 and spiked with Rh, In, Re, and Bi as internal standards. A blank was
used to test accuracy. Instrument drift, mass, and matrix bias were corrected with internal spikes and
external monitors. The analytical uncertainties are within 3% for most of the elements reported.

The remaining stock solution left from the trace element analyses was used for the separation of
Sr by a combination of cation-exchange chromatography in H+ form and pyridinium form with the
DCTA (diaminocyclohexane tetraacetic acid) complex. The isotope ratios of Sr were analyzed on a Nu
Instrument MC-ICP-MS at Guizhou Tongwei Analytical Technology Co., Ltd. The mass fractionation
corrections for Sr isotopic ratios were on the basis of 86Sr/88Sr = 0.1194. Replicate analyses of separate
loads of SRM987 yielded a mean 87Sr/86Sr = 0.710237 ± 0.000027 (2σ). Initial 87Sr/86Sr ratios were
calculated on the basis of muscovite 40Ar-39Ar age for the albitized granite (t = 145 Ma, [17]).

4. Results

4.1. Trace Elements

The trace elements data for the fluorites and granites are listed in Table 1. Representative trace
elements variation diagrams (Mg-Fe, Ti-Mn, Sr-Sc, Cs-Rb, Nb-Ta, Zr-Hf, Th-U and Pb-Zn) for the
fluorites are shown in Figure 5.

The albitized granite shows high concentrations of large ion lithophile elements (LILEs) (Rb,
1570 ppm; Cs, 22.4 ppm; Ba, 24.5 ppm; except for Sr, 6.80 ppm) and high field strength elements
(HFSEs) (Zr, 40.0 ppm; Hf, 12.1 ppm; Nb, 22.9 ppm; Ta, 29.0 ppm; Th, 12.3 ppm; except for U, 2.44 ppm).
In addition, the contents of other elements are as follows: Li (133 ppm), Be (5.06 ppm), Sc (7.80 ppm),
Co (0.20 ppm), Ni (0.60 ppm), V (<1 ppm), Cr (7.00 ppm), Cu (14.6 ppm), Zn (275 ppm), Pb (94.8 ppm),
Mn (351 ppm), Mo (0.40 ppm), Ga (67.1 ppm), and Sn (32.0 ppm).

The contents of some trace elements in the Type I fluorites are obviously higher than the Type
II and III fluorites (Figure 5), such as Fe (197–217 ppm), Sc (2.99–3.20 ppm), Mn (73.8–77.7 ppm),
Rb (18.4–20.1 ppm), Zn (8.71–9.37 ppm), Pb (29.5–31.8 ppm), Nb (32.6–52.7 ppm), Ta (7.46–9.25 ppm),
Zr (28.1–30.1 ppm), Hf (6.91–7.22 ppm), and Th (14.9–15.2 ppm). The contents of other trace elements
in the Type I are similar to those in the Type II and III (Figure 5).

The different-colored fluorites of the Type II show various trace element contents (Figure 5),
such as Mg (5.69–24.7 ppm), Fe (49.0–88.8 ppm), and Ti (1.80–18.8 ppm), but they are irregular. Overall,
the Type II fluorites show low contents of LILEs (Rb, 0.12–1.05 ppm; Cs, 0.00–0.71 ppm; except for Sr,
105–159 ppm) and HFSEs (Zr, 0.12–0.89 ppm; Hf, <0.03 ppm; Nb, 0.01–0.19 ppm; Ta, <0.01 ppm, Th,
0.02–0.14 ppm and U, 0.04–0.32 ppm).

The Type III fluorites have similar trace element characteristics to the Type II except for lower
contents of Sr (76.6–80.5 ppm) (Figure 5).
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Figure 5. Trace element variation diagrams for fluorites from the Shihuiyao deposit, showing the
compositional difference between different types of fluorite.

4.2. REE and Y

The REE and Y data of fluorites and albitized granite are shown in Table 1, and their
chondrite-normalized REE patterns are shown in Figure 6.

The albitized granite contains 16 ppm of REE and 1.5 ppm of Y. The chondrite-normalized REE
pattern of the granite is characterized by a tetrad effect (Figure 6a), with a strong negative Eu anomaly
(Eu/Eu* = 0.16) and (La/Yb)N value of 0.49.

The Type I fluorites have the highest REE and Y contents of 594–621 and 161–166 ppm, respectively.
The REE patterns display tetrad effects, enrichment in HREE, and negative Eu anomaly (Eu/Eu* = 0.07),
with a low (La/Yb)N value of 0.03–0.04 (Figure 6b). In addition, the Type I fluorites have a low Y/Ho
value of 8.61–8.76 (Figure 7).

The different-colored fluorites of Type II show a large variation in REE contents, ranging from 2.1
to 74.6 ppm. The II-G fluorites have the highest REE contents of 74.2–74.6 ppm, followed by 6.4 ppm
for II-M fluorites, 5.8–6.0 ppm for the II-D fluorites, 4.9–5.3 ppm for the II-P fluorites, and 2.8 ppm
for II-W fluorites. The Y concentrations for the different-colored fluorites are 57.4–58.4 ppm for the
II-G fluorites, 5.1–5.3 ppm for the II-D fluorites, 3.0 ppm for the II-M fluorites, 2.8 ppm for the II-P
fluorites, and 2.1–2.2 ppm for the II-W fluorites. They also show different chondrite-normalized REE
patterns (Figure 6c). The II-D fluorites show negative Eu anomalies (Eu/Eu* = 0.61–0.64), slightly tetrad
effects, and low (La/Yb)N values of 0.31–0.33 (Figure 6c), while the II-M fluorites show similar Eu/Eu*
(0.58–0.60) and slightly tetrad effects but higher (La/Yb)N values (1.08) (Figure 6c). The II-G fluorites also
show slightly tetrad effects, with Eu/Eu* and (La/Yb)N values of 0.55–0.58 and 0.54–0.55, respectively
(Figure 6c). The II-W fluorites show negligible Eu anomalies (Eu/Eu* = 0.96–0.98), negative Ce
anomalies (average Ce/Ce* = 0.73), and the highest (La/Yb)N values of 3.23–3.40 (Figure 6c). The II-P
fluorites show positive Eu anomalies (Eu/Eu* = 1.31–1.39), with (La/Yb)N values of 0.25–0.36 (Figure 6c).
The Type II fluorites show similar Y/Ho ratios except for the II-W fluorites (52.6–54.2), ranging from
22.2 to 29.8 (Figure 7).
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the Type III fluorites are 41.3–43.4 (Figure 7).
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Table 1. Trace and rare earth elements data (in ppm) of fluorites and granite from the Shihuiyao deposit.

Type
Granite Type I Type II Type III

A-G I-P II-D II-M II-G II-P II-W III P

No. 1 1 2 3 1 2 3 1 2 1 2 3 1 2 1 2 3 1 2

Li 133 4.82 4.02 4.17 17.4 16.7 18.4 12.3 11.3 0.04 0.03 0.03 0.63 0.78 0.27 0.25 0.24 0.16 0.26
Be 5.06 0.33 0.18 0.19 0.29 0.30 0.29 0.23 0.18 0.38 0.38 0.38 0.12 0.10 0.63 0.60 0.70 0.14 0.16
Mg 0.01 17.1 19.5 15.2 23.10 21.70 24.70 15.50 15.90 5.69 6.10 6.34 13.90 16.10 12.20 14.60 11.20 10.20 15.40
Sc 7.80 2.99 3.20 3.20 0.09 0.10 0.10 0.08 0.09 0.30 0.31 0.30 0.15 0.12 0.32 0.31 0.30 0.19 0.21
Ti <0.005 4.42 4.65 4.45 5.63 5.51 6.16 4.86 6.49 2.08 1.80 2.17 13.5 18.8 3.03 3.90 2.98 3.73 4.59
V <1.00 0.81 0.24 0.23 0.48 0.42 0.48 0.32 0.41 0.05 0.12 0.04 0.36 0.50 0.09 0.12 0.10 0.18 0.23
Cr 7.00 0.08 0.10 0.07 0.31 0.34 0.38 0.27 0.39 0.03 0.02 0.03 0.41 0.56 0.05 0.07 0.06 0.04 0.08
Mn 351 74.5 73.8 77.7 1.47 2.38 1.18 2.40 2.57 4.67 4.44 4.53 1.43 0.82 3.11 3.21 3.14 1.18 1.33
Fe 0.40 217 208 197 71.3 71.2 73.8 86.5 88.8 52.6 49.9 54.2 56.2 57.1 49.0 57.3 59.8 69.0 81.9
Co 0.20 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.02 0.02 0.01 0.01 0.01 0.14 0.05
Ni 0.60 0.32 0.30 0.25 0.06 0.04 0.02 0.11 0.13 0.11 0.05
Cu 14.6 0.49 0.50 0.47 0.10 0.09 0.11 0.12 0.14 0.12 0.10 0.12 0.08 0.07 0.26 0.25 0.23 0.09 0.09
Zn 275 8.90 8.71 9.37 1.05 1.07 1.10 1.78 1.94 0.96 0.86 1.03 0.79 0.63 0.48 0.39 0.33 0.90 0.86
Ga 67.1 4.00 4.28 4.20 0.24 0.22 0.23 0.20 0.22 0.99 0.93 0.97 0.09 0.09 0.08 0.09 0.08 0.11 0.10
Rb 1570 20.1 18.6 18.4 0.87 1.05 0.80 0.54 0.57 0.13 0.12 0.14 0.20 0.24 0.25 0.34 0.28 1.06 0.71
Sr 6.80 139 136 131 129 128 131 127 129 140 141 141 152 159 105 109 107 76.6 80.5
Y 1.50 162.0 166 161 5.3 5.1 5.3 3.0 3.0 57.4 57.5 58.4 2.8 2.8 2.1 2.2 2.2 13.7 12.5
Zr 40.0 30.1 28.1 29.4 0.74 0.74 0.75 0.31 0.31 0.26 0.12 0.12 0.77 0.89 0.17 0.18 0.16 0.82 0.95
Nb 22.9 32.6 38.3 52.7 0.05 0.06 0.04 0.08 0.07 0.01 0.01 0.01 0.16 0.19 0.11 0.12 0.11 0.01 0.02
Mo 0.40 1.94 1.15 2.5 0.54 0.09 1.13 0.06 1.05 1.33 1.07 0.36 0.07 0.74 0.19 0.19 0.29 0.08 0.09
Sn 32.0 11.6 3.62 21.2 2.52 0.87 4.71 0.63 6.21 8.99 5.70 1.05 0.46 3.11 2.67 1.36 1.58 0.61 0.78
Sb 0.07 2.09 3.61 11.2 1.10 0.38 0.50 0.71 2.52 4.80 2.90 0.56 0.39 2.06 3.19 1.39 1.49 0.67 0.36
Cs 22.4 0.47 0.44 0.44 0.70 0.70 0.71 0.44 0.45 0.00 0.00 0.00 0.04 0.05 0.03 0.04 0.04 0.06 0.08
Ba 24.5 3.41 3.23 3.18 6.29 7.26 6.57 4.37 4.52 6.77 6.62 6.51 0.67 0.32 0.50 0.59 0.53 1.54 1.55
La 1.60 8.67 9.83 9.99 0.39 0.38 0.38 0.79 0.79 6.90 6.95 6.97 0.47 0.35 0.54 0.54 0.54 0.46 0.46
Ce 6.50 49.3 54.8 56.1 0.87 0.85 0.80 1.93 1.94 15.7 15.6 15.7 0.99 0.88 0.79 0.80 0.80 0.97 0.97
Pr 0.81 9.25 10.2 10.3 0.13 0.12 0.13 0.27 0.27 2.37 2.36 2.35 0.17 0.14 0.12 0.12 0.12 0.15 0.14
Nd 1.90 30.1 33 32.8 0.52 0.50 0.52 0.92 0.92 10.0 10.1 10.1 0.68 0.59 0.48 0.48 0.49 0.74 0.69
Sm 0.69 27.5 28.8 28.8 0.29 0.28 0.28 0.31 0.31 4.11 4.06 4.05 0.26 0.25 0.13 0.13 0.13 0.35 0.33
Eu 0.03 0.59 0.61 0.59 0.07 0.07 0.08 0.06 0.06 0.83 0.81 0.81 0.11 0.12 0.05 0.05 0.05 0.56 0.59
Gd 0.40 24.9 26 25.1 0.48 0.47 0.48 0.32 0.31 5.00 4.98 5.02 0.26 0.26 0.16 0.16 0.17 0.72 0.64
Tb 0.11 13 13.4 13 0.15 0.14 0.15 0.08 0.08 1.36 1.33 1.33 0.07 0.08 0.03 0.03 0.03 0.18 0.15
Dy 0.81 105 110 105 1.15 1.10 1.12 0.60 0.58 9.96 9.92 9.98 0.60 0.60 0.19 0.19 0.19 1.41 1.19
Ho 0.17 18.5 19.1 18.7 0.24 0.23 0.23 0.12 0.12 1.96 1.94 1.96 0.12 0.12 0.04 0.04 0.04 0.33 0.29
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Table 1. Cont.

Type
Granite Type I Type II Type III

A-G I-P II-D II-M II-G II-P II-W III P

No. 1 1 2 3 1 2 3 1 2 1 2 3 1 2 1 2 3 1 2

Er 0.64 70.5 72.6 70.5 0.74 0.71 0.73 0.36 0.36 6.27 6.14 6.13 0.43 0.44 0.12 0.12 0.12 1.12 0.95
Tm 0.19 19.8 20.7 19.8 0.13 0.13 0.13 0.07 0.07 1.18 1.19 1.19 0.10 0.10 0.02 0.02 0.02 0.21 0.18
Yb 2.20 191 196 192 0.83 0.79 0.82 0.49 0.49 8.67 8.57 8.54 0.89 0.95 0.11 0.11 0.11 1.61 1.44
Lu 0.38 25.4 26.3 25.4 0.12 0.12 0.12 0.08 0.08 1.25 1.25 1.24 0.15 0.16 0.02 0.02 0.02 0.28 0.26
Hf 12.1 7.22 6.91 7.1 0.03 0.02 0.02 0.01 0.01 0.03 0.03 0.03 0.02 0.02 0.01 0.01 0.01 0.03 0.03
Ta 29.0 7.5 7.46 9.25 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.00
Pb 94.8 30.7 31.8 29.5 0.51 0.52 0.54 1.17 1.18 0.29 0.28 0.27 0.14 0.07 0.43 0.41 0.40 0.26 0.32
Th 12.3 15.2 15.2 14.9 0.07 0.06 0.07 0.08 0.08 0.14 0.14 0.14 0.06 0.05 0.02 0.02 0.02 0.22 0.17
U 2.44 1.39 1.27 1.32 0.32 0.31 0.32 0.11 0.11 0.08 0.08 0.08 0.17 0.16 0.04 0.05 0.05 0.20 0.21
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4.3. Fluorite Sr Isotopic Compositions

The Sr isotopic compositions of fluorites are listed in Table 2. As shown in Figure 8, the (87Sr/86Sr)i

ratios of different types of fluorites are rather variable. The Type I fluorites have relatively high
(87Sr/86Sr)i ratios of 0.710861. For the Type II fluorites, the II-W fluorites have slightly high (87Sr/86Sr)i

ratios of 0.710378–0.710380, and the other colored fluorites have similar (87Sr/86Sr)i ratios, ranging from
0.710168 to 0.710197 (average 0.710182). The Type III fluorites have lower (87Sr/86Sr)i ratios of 0.709018.
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Table 2. Sr isotopic compositions of fluorites from the Shihuiyao deposit.

Type Type I Type II Type III

I-P II-D II-M II-G II-P II-W III-P

No. 1 1 1 1 1 1 2 1

Rba (ppm) 20.1 0.87 0.54 0.12 0.20 0.25 0.34 1.06
Sra (ppm) 139 129 127 141 152 105 109 76.6
87Rb/86Sr 0.4188 0.0195 0.0124 0.0025 0.0039 0.0069 0.0090 0.0401

87Sr/86Sr ± 2σ 0.711708 ± 6 0.710237 ± 6 0.710212 ± 7 0.710181 ± 5 0.710175 ± 6 0.710392 ± 7 0.710398 ± 7 0.709099 ± 5
(87Sr/86Sr)i

b 0.710861 0.710197 0.710187 0.710176 0.710168 0.710378 0.710380 0.709018
a Contents determined by ICP-MS (values from Table 1). b Recalculation of (87Sr/86Sr)i to 145 Ma [17] using λ87Rb = 1.393 × 10−11 year−1 [29].
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5. Discussion

5.1. Origin of Fluorite Formation

5.1.1. Type I Fluorites

The total REE concentration in hydrothermal fluids is controlled by pH and the bulk chemical
composition of the hydrothermal fluid [30]. Generally, REE concentrations increase with decreasing
pH. In acidic solutions with low concentrations of complexing ligands, the LREE (light rare earth
element) are enriched with respect to the HREE (heavy rare earth element), which are preferentially
adsorbed onto the surface [31]. In alkaline fluids with mono- and bicarbonate species and/or halogens
as complexing ligands, the HREE-enriched patterns displayed as HREE are more strongly complexed
than LREE [31–34]. From this point of view, the fluids where the Type I fluorites precipitated were
alkaline and HREE-enriched. According to Möller [35], an enrichment of HREE in fluorites would
indicate a Ca2+/F ratio < 1 in parent fluids. This means that the fluids originated from an F-rich
source or the mobilization of pre-existing fluorite mineralization in deeper parts of the crust [36].
This interpretation may apply to the Type I fluorites. Similar to the albitized granite, the Type I fluorites
have relatively high Rb and HFSEs contents (Figure 5) and display strong negative Eu anomalies and
tetrad effects (Figure 6a,b). Moreover, the greisen pockets are texturally isolated bodies occurring within
the albitized granite, with no evidence that they are connected with each other. Hence, in summary,
we suggest that the Type I fluorites from the greisen are related to the immiscible aqueous F-rich fluids
formed in the late stage of the granite crystallization, which is similar to many greisen pockets observed
elsewhere [37–39]. All the components of the Type I fluorites are derived from albitized granites.

5.1.2. Type II Fluorites

The Type II fluorites show various REE patterns (Figure 6c) and La/Ho ratios (Figure 7). There are
two hypotheses to explain these phenomena: (1) mineral paragenesis; (2) fluid-rock interaction.

Mineral paragenesis may significantly affect the REE patterns of fluorite, as the REE can also enter
other minerals. The minerals accompanied by fluorites are chalcedony and some calcites. Chalcedony
cannot compete with fluorite for the uptake of the REE, and carbonates generally precipitated later
than fluorites in the Shihuiyao mineralization. Thus, their crystallization has no effect on the REE
contents of the fluorites. As a whole, the mineral paragenesis did not control the REE patterns of the
Type II fluorites.

Therefore, various REE patterns and La/Ho ratios of the Type II fluorites are due to the interaction
between fluids and wall rocks (marine limestones), which is in agreement with field evidence that
skarn is the host rock of the Type II fluorites. Bau and Dulski [27] proposed that the Y/Ho ratios will
increase during the migration of F-rich fluids. Hence, in the Type II fluorites, the subtype II-D, II-M,
II-G, and II-P fluorites should crystallize later than the Type I fluorites, followed by the subtype II-W
fluorites (Figure 7). Similar to the Type I fluorites, the II-D, II-M and II-G fluorites show negative Eu
anomalies and slightly tetrad effects (Figure 6c), and the II-P fluorites also display slight tetrad effects
(Figure 6c). Hence, these fluorites may form by the mixing of magmatic and limestone components in
the early hydrothermal stage, and then, the II-W fluorites may form in the late-hydrothermal stage.
The granite-derived fluids provide F for the Type II fluorites, while the limestone components are the
main Ca source. The REE, especially HREE, which are more strongly complexed than LREE [32–34],
were removed by early crystalline fluorites; thus, the II-W fluorites display HREE-depletion patterns.

5.1.3. Type III fluorites

The Y/Ho ratios of the Type III fluorites are lower than the type II-W fluorites but higher than the
other colored fluorites of Type II (Figure 7), suggesting that the formation of the Type III fluorites may
be between the II-W fluorites and other Type II fluorites.
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Considering the interaction between fluids and the host rocks, according to Schwinn and
Markle [31], REE patterns of fluorite similar to those of the host rock may mean that the host rock is the
source of REE. The REE contents of aluminosilicate rocks may be several orders of magnitude higher
than those of marine limestones [40], and the chondrite-normalized REE patterns generally exhibit
LREE-enrichment and negative Eu anomalies [41–45]. In contrast, the Type III fluorites show quite
different REE patterns (Figure 6d). This would suggest that the host rock, i.e., silty mudstones, is not
the source of the REE of the Type III fluorites. Therefore, the contributions from silty mudstones in the
fluids where the Type III fluorites precipitated may be negligible.

The trace elements contents (except for Sr) of the Type III fluorites are similar to the Type II
(Figure 5). Thus, we suggest that the Type III fluorites likely have the same origin as the Type II, i.e.,
mixing of granite-derived fluids and limestones (see the discussion above). Fluorine comes from
granite-derived fluids, while Ca comes from limestones. The early crystallization of albite in veins
would remove LREE and some Sr, further leading to the LREE depletion and low Sr contents of the
Type III fluorites.

5.2. Fluid Condition

Generally, the Eu3+/Eu2+ redox potential of hydrothermal fluids depends strongly on temperature
and slightly on pH, and it is almost unaffected by pressure [46]. Thermochemical reduction of Eu3+

to Eu2+ can occur at high temperature (>200 °C); therefore, hydrothermal fluorite will show the Eu
anomaly of the fluid only when it crystallizes below 200 °C [31]. At T > 200 °C, the size of Eu2+

prevents its substitution for Ca2+ in the fluorite structure, and the mineral exhibits a negative Eu
anomaly, whereas the fluorite deposited by such a fluid will show no or a slightly positive Eu anomaly
at T < 200 °C [47,48]. In view of this, the decrease of temperature during fluid migration may be
responsible for the various Eu anomalies of the Type II fluorites (except for the II-W).

Oxygen fugacity may also affect the presence of the Eu anomaly. In an oxidizing environment,
Eu2+ is oxidized to Eu3+, which more readily enters the fluorite lattice. Hence, during fluid migration,
the increase of fluid oxygen fugacity may lead to the transition of Eu from negative to positive anomalies
in the Type II fluorites (except for the II-W). In such an environment, Ce3+ is also oxidized to Ce4+,
which becomes immobile, or very mobile if it is strongly complexed [49]. The later fluid would become
Ce depleted; thus, the II-W fluorites that formed in the late-hydrothermal stage show negative Ce
anomalies (average Ce/Ce* = 0.73) (Figure 6c).

The Type III fluorites show more pronounced positive Eu anomalies (Figure 6d). The host rocks
provided negligible contributions (see the discussion above), and temperature reduction is not enough
to cause these anomalies. Hence, we suggest that as well as the decrease of temperature, a more
oxidizing environment may account for the formation of the Type III fluorites.

5.3. Source of Sr

The Type I fluorites are related to the immiscible F-rich fluids formed in the late stage of the granite
crystallization (see the discussion above); therefore, it is suggested that the Sr isotopic compositions
((87Sr/86Sr)i = 0.710861) of the Type I fluorites can represent those of the granite-derived fluids.

The (87Sr/86Sr)i ratios (0.710168–0.710380) of the Type II fluorites are lower than the (87Sr/86Sr)i ratio
of the granite-derived fluids (0.710861) but higher than the 87Sr/86Sr ratios of the Late Permian-Early
Triassic seawater (0.7070–0.7082) [28] (Figure 8). It could be explained by precipitation from a fluid
with a mixed Sr-source, including the granite-derived fluids and limestones, which is in agreement
with the origin of the Type II fluorites (see the discussion above).

Compared to the Type II fluorites, the Type III fluorites show a lower (87Sr/86Sr)i ratio (0.709018)
(Figure 8). Based on the petrography, two hypotheses are suggested here to explain this phenomenon:
(1) the contribution of the silty mudstones and (2) mixing of a larger proportion of limestones than the
Type II fluorites. As discussed above, we suggested that there were neglected contributions from silty
mudstones in the fluid where the Type III fluorites precipitated. Moreover, the aluminosilicate rocks
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generally have much higher 87Sr/86Sr ratios than marine limestones [46,50], suggesting that the silty
mudstones are unlikely the Sr source of the Type III fluorites. Thus, a binary mixed process between an
F-rich end member with a high 87Sr/86Sr ratio (i.e., F-rich fluid exsolved from granite) and a second end
member containing a lower Sr isotope ratio (i.e., marine limestones) is also suitable to explain the Sr
source of the Type III fluorites. However, the proportion of limestones in the mixture forming the Type
III fluorites is much higher than that of the Type II, so as to produce such low Sr isotopic compositions.

5.4. Implication for the Nb-Ta Mineralization

Generally, Nb and Ta are difficult to enter the fluid phase during the magmatic-hydrothermal evolution
because of the low fluid/melt partition coefficients (DNb

fluid-melt = 0–0.1; DTa
fluid-melt = 0.002–0.08) [51,52].

However, some studies reported that the solubility of Nb and Ta in the fluid can increase with the increase
of F contents [53–56].

In the Shihuiyao mining area, the greisen pockets where the Type I fluorites precipitated were
formed by the immiscible F-rich fluids exsolved in the late-magmatic stage (see the discussion above).
During fluids exsolution, Nb and Ta would form strong complexes with F and migrate into the fluid.
When the volatiles and Nb-Ta were enriched to a certain extent, mica and Type I fluorite began to
crystallize, resulting in a significant decrease in F in the fluid, which led to the crystallization of Nb-Ta
minerals [57–60]. This metallogenic model can also prove why Nb-Ta mineralization is closely related
to the greisenization of granite [18].

During the magmatic stage, most of the Nb and Ta were removed with the precipitation of Nb-Ta
minerals (mainly columbite-group minerals). As a result, the fluids that evolved in the subsequent
lower-temperature hydrothermal stage had no or little Nb and Ta. Thus, Nb-Ta mineralization
did not occur in the skarn zone or veins in the silty mudstone where the Type II and III fluorites
formed, respectively.

6. Conclusions

(1) In the Shihuiyao Nb-Ta-Rb rare metal mining area, three types of fluorites are found occurring
in greisen pockets of the albitized granite (Type I), the skarn zone between the albitized granite and
wall rocks (Type II), and fluorite-bearing veins in silty mudstones (Type III).

(2) The Type I fluorites are related to the immiscible F-rich fluids exsolved in the late-magmatic
stage. The Type II and III fluorites formed from the early- or late-hydrothermal fluids, which have a
mixed signature of the granite-derived fluids and limestones.

(3) As fluid cooling and oxygen fugacity increased, the Type II fluorites display various Eu and Ce
anomalies, and the Type III fluorites that formed in a more oxidizing environment show the strongest
positive Eu anomalies.

(4) The Type I fluorites have a Sr source derived from granite, whereas the Type II and III fluorites
have the same binary mixed Sr sources, i.e., the granite-derived fluids and marine limestones. However,
the proportion of limestone components in the Type III fluorites is much higher than that of Type II.

(5) Nb and Ta get into the F-rich fluids by F-Nb (Ta) complexes and precipitate in the form
of columbite-group minerals after the Type I fluorites precipitate. As a result, there is no Nb-Ta
mineralization in the subsequent hydrothermal stage when the Type II and III fluorites crystallize.
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