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Abstract: The traditional pottery industry was an important activity in Catalonia (NE Spain) up to the
20th century. However, nowadays only few workshops persist in small villages were the activity is
promoted as a touristic attraction. The preservation and promotion of traditional pottery in Catalonia
is part of an ongoing strategy of tourism diversification that is revitalizing the sector. The production
of authenticable local pottery handicrafts aims at attracting cultivated and high-purchasing power
tourists. The present paper inspects several approaches to set up a scientific protocol based on the
chemical composition of both raw materials and pottery. These could be used to develop a seal
of quality and provenance to regulate the sector. Six Catalan villages with a renowned tradition
of local pottery production have been selected. The chemical composition of their clays and the
corresponding fired products has been obtained by Energy dispersive X-ray fluorescence (EDXRF).
Using the obtained geochemical dataset, a number of unsupervised and supervised machine learning
methods have been applied to test their applicability to define geochemical fingerprints that could
allow inter-site discrimination. The unsupervised approach fails to distinguish samples from different
provenances. These methods are only roughly able to divide the different provenances in two large
groups defined by their different SiO2 and CaCO3 concentrations. In contrast, almost all the tested
supervised methods allow inter-site discrimination with accuracy levels above 80%, and accuracies
above 85% were obtained using a meta-model combining all the predictive supervised methods.
The obtained results can be taken as encouraging and demonstrative of the potential of the supervised
approach as a way to define geochemical fingerprints to track or attest the provenance of samples.

Keywords: pottery industry; local products; clay; provenance; predictive modeling; supervised
methods; geochemistry; XRF

1. Introduction

Spain is one of the leading countries in the EU within the ceramic sector, concentrating about
half the total European production of wall and floor tiles (in particular within the Castelló region) and
with a significant production of sanitary ware, bricks, roof tiles, and refractory materials. All these
products are manufactured using rather uniformed extrusion processes. In contrast, handcrafted
pottery produced using more or less traditional methods is becoming a receding activity. The traditional
pottery industry was an important activity in many places within Catalonia (NE Spain), in the past
and also in recent times. More than 70 different localities had a specific local production during the
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20th century [1]. However, in most production centers the activity has stopped, or it has diminished
drastically. The few locations were traditional pottery production persists are mainly small villages
were the activity is promoted as a touristic attraction.

Tourism is a key economic sector for Spain (it accounts for 10–15% of the GDP). More than
70 million people are visiting the country every year, and Catalonia is among the main destinations.
The preservation and promotion of traditional pottery in Catalonia is part of a strategy of
tourism diversification undertaken by municipalities in cooperation with other higher governmental
actors. The production of authenticable local pottery handicrafts aims at attracting cultivated and
high-purchasing power tourists that could counterbalance the expectable recession of mass tourism
due to market saturation.

In this context, the production of traditional pottery should no longer be an uncontrollable activity.
The authenticity of the production methods and, equally important, of the traditionally used raw
materials (local clays) are crucial to provide an honest and genuine product offer. Similar approaches
have demonstrated to be very effective to protect and certify products, particularly in the food and
beverage sectors [2,3].

As far as we know, traditional pottery production in Catalonia is nowadays restricted to less
than 100 workshops and potters in around 10 villages. Most of these villages produce pottery as a
touristic attraction and events like ceramic festivals (including pottery workshops and demonstrations)
are regularly organized (often annually or biannually). However, in these festivals, and also in local
shops, the ceramic products that are presented for sale are not always produced locally (but imported
from other places), sometimes they are not strictly produced following traditional methods (but using
semi-industrial methods) or they are produced using imported clays instead of the local raw materials.
Some local potters use stamps to characterize their productions, but besides certifying the ceramist,
it would be very useful to develop a methodology that could certify the use of the local raw materials
of every local production. In this way, quality production with certified local souvenirs (such as
hand-crafted tableware and other clay-modelling art) would be possible.

Multi-element chemical analyses have a long tradition of use for the characterization of clays
and pottery (e.g., [4–6]). However, the choice of the analytical method, the right set of elements to be
analyzed or the multivariate method to process the obtained data are under discussion [7]. In this paper,
we present a number of statistical approaches to characterize geochemically the local raw materials
along with the corresponding ceramics from six Catalan villages. The goal is challenging as the six
sites concentrate in a small area and some of them share essentially the same geological context.

The six selected villages are rural towns with local pottery being used as a touristic attraction.
The traditional activity is particularly supported by their town councils but also by provincial and
regional governments. The villages are Esparreguera, La Bisbal, Quart, Breda, Verdú and Sant Julià de
Vilatorta (Figure 1), and in all of them but one (Sant Julià) there are still active workshops and all of
them but one (Esparreguera) belong to the Spanish ‘Asociación de Ciudades de la Cerámica (AeCC)’.
Extensive information on the past and present productions can be found in [1].
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Figure 1. The selected traditional pottery centers (red dots) located around Barcelona (black dot).

• Esparreguera is the closest village to Barcelona (~35 km north-west of it) and the biggest one of
the six selected, with a population of ~22,000 people. There is still one potter working in this area
and from 2018 there is a museum in the village devoted to pottery. Many types of pieces were
produced with the exception of cookware.

• La Bisbal d’Empordà (~100 km north-east of Barcelona, near the Costa Brava) has a population of
about 11,000 people. The village is advertised as one of the leading pottery centers in Catalonia
with many shopping areas focusing on pottery sales and a museum that promotes the local
cultural heritage connected with pottery and ceramics [8]. There are 35 active pottery companies
and small workshops. Besides the pottery market, clays from La Bisbal are exploited by four
companies that sell it mainly within Spain. The town has been declared “craft area of interest”
by the Catalan government and the EU registered trade mark “Ceràmica de la Bisbal” acts as a
protected designation of origin [9]. However, the trademark only attests local producers but not
the use of local clays.

• Quart is another of the selected villages (~80 km north-east of Barcelona), it is a smaller rural town
(~3600 people) only ~15 km east of La Bisbal with the granitic Gavarres mountain ranges between
both. A refurbished old brickyard hosts, from 2011, the local pottery museum. The ceramics
tradition in Quart can be traced back to the 14th century [10]. The production is known by both
red and black colored products. At present there are five active pottery producers in the village.

• Breda (~50 km north-east of Barcelona) is another small rural town (~3700 people) with active
pottery workshops. However, the local clays have been currently replaced by imported clays.
Comparatively, the pottery industry in Breda has been historically one of the most important
in Catalonia. Pottery constituted practically half the total registered industries during late 18th
century and early 19th century. However, nowadays there are only seven active workshops and
small pottery industries in the village. From 2003 an old workshop hosts a cultural center devoted
to the local history of pottery production.

• Verdú is even a smaller village (only about 1000 inhabitants) located ~90 km west of Barcelona,
with six active pottery workshops, its pottery industry goes back to Roman times and it is well
documented since the 13th century [1]. The typical pottery from Verdú is black colored (fired in
reducing conditions) and the main produced item is the earthenware pitcher.

• Sant Julià de Vilatorta (~60 km north of Barcelona and 3000 inhabitants) in another of the
selected villages. It has a long tradition on glazed pottery, in the early 20th century there were
32 active workshops but unfortunately nowadays there is no one and there is not available precise
information on the extraction points of local clays. There are ongoing local initiatives to revive the
pottery tradition of Sant Julià including ceramics festivals and a project to create a pottery school.
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The aim of the work is finding a common geochemical fingerprint that could group together both
clays and pottery from a given town and that could allow discrimination from similarly defined clusters
for the other towns. The mineralogical changes that occur during the clay-to-pottery transformation
prevent the use of other commonly used techniques for characterization of clays such as XRD or
FTIR and Raman spectroscopies. Such techniques are sometimes indeed useful to characterize clays
(e.g., [11,12]) or firing conditions in ceramic materials (e.g., [13]) but they cannot be used to group
together clays and the corresponding ceramics. Therefore, chemical analysis is required, although some
problems can also arise using elemental analysis. For instance, the concentration of some elements
can decrease during the pottery production due to the formation of volatile compounds by thermal
decomposition [14]. Other elements can have a high variance within a considered cluster (including
both clays and ceramics) and some strong correlations between elements can provoke problems for
statistics-based methods of analyses [15].

In the field of archaeological sciences, and specifically in provenance studies of pottery, data is often
obtained by X-ray fluorescence analysis (XRF) or other elemental analysis techniques. The processing of
the large chemical datasets that are obtained is usually addressed by application of statistical methods
that predict groups or relations between samples [16,17]. The classical approach is to use unsupervised
methods such as principal component analysis (PCA), hierarchical cluster analysis (HCA), k-means,
or factor analysis (FA). Extensive literature can be found on the application of such techniques to
address pottery provenance issues (e.g., [18–20]). In this paper, we show that these methods are not
very useful to meet our objective and we explore the possibilities of a number of supervised methods
(k-nearest neighbors analysis (kkNN), random forest (RF), generalized linear models (Glmnet) and
linear discriminant analysis (LDA)) that work much better for our purpose.

2. Materials and Methods

2.1. Sampled Areas and Materials

For this study, 80 samples of clays outcropping in the vicinity of the selected villages were taken
into account (Table 1). All of them are geological Cenozoic formations, the exact extraction points of
clay were determined through existing bibliography [21,22] and oral sources. When original extraction
points were no longer available, sampling was performed on nearby equivalent geological outcrops
(Figure 2). The sampled materials for every village were:

• Esparreguera: red clays (six samples) from decimetric layers inserted in proximal alluvial fan
deposits belonging to the northern margin of the Vallès-Penedès basin (Miocene epoch, Vallesian
age (11.2–8.9 Ma)). Additionally, four samples of the fault flour outcropping at the edge of the
basin margin, in the main normal Vallès-Penedès fault, were also sampled as this material was
traditionally added to the red clays [1].

• La Bisbal: ochre and red clays deposited in an alluvial plain environment (also Miocene epoch,
Vallesian age) connected to the Gavarres massif. (17 samples)

• Quart: red clay levels within arkosic sandstones (possibly Pliocene) that belong to a system of
alluvial fans linked to the Gavarres massif. (11 samples)

• Breda: red, black and white clays from relatively thin levels within sandstones (early Pliocene,
~5 Ma) deposited in an alluvial fan environment with predominance of igneous and metamorphic
clasts from Variscan granitoids and the uplifted palaeozoic basement. (11 samples).

• Verdú: grey and red clayey and calcareous marls from an environment of distal alluvial fans and
lacustrine limestones (Oligocene epoch, Chattian/Rupelian age (~28 Ma)) (23 samples).

• Sant Julià: red clays from relatively thin levels within sandstones and conglomerates (Eocene epoch,
possibly Lutetian, ~45 Ma) deposited in an alluvial fan proximal environment. Initially 18 samples
were obtained but 10 resulted to bear a high CaCO3 content (>25 wt.%) inconsistent with the
Ca content of the corresponding ceramics and therefore they were discarded. These 10 samples
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possibly belong to a nearby formation of calcareous red marls. Therefore, eight samples were
retained from Sant Julià.

Table 1. Summary of the retrieved and analyzed samples.

Village Clays Pottery Shards Ceramic Briquettes Total Samples

Esparreguera 10 18 5 * 33
Bisbal 17 15 4 36
Quart 11 19 3 33
Breda 11 18 4 33
Verdú 23 9 5 37

Sant Julià 8 22 6 36
208

* 2 briquettes were produced using samples of fault flour.

Figure 2. Geographical maps (top) and geological maps (bottom) of the sampling sites (red dots)
around the studied pottery centers; scale is the same for all the maps. The concentric ring in the
northern sampled site in Esparreguera indicates the sampled fault flour site.

Sampling of clays was performed by removing organic and soils layers and focusing on clays thin
layers (avoiding coarser sized layers). However, most clay samples contain actually silt and very fine
sand fractions. Nevertheless, the clay samples were neither sieved nor levigated because silt and sand
fractions were also present on many pottery samples.
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Besides the clay samples from the six selected areas, 101 samples of pottery likely produced
by firing clays from the sampled formations were taken into account (Table 1). The pottery shards
were obtained through local museums, active pottery workshops, local historians and retired potters.
The selection criterion was the high probability that the pottery was really produced using local clays.
For the Breda pottery samples, the presence of ceramic stamps even allowed the identification of the
local potter and the production period (19–20th century) [23]. Pottery samples from Sant Julià are
dated in the 17th century, and those from Esparreguera, Quart, and Bisbal are also from the 19–20th
century like Breda. Finally, 27 extra newly produced pottery samples were added to samples from
each locality (3–6 per studied site). These were prepared in form of small ceramic briquettes from
local clays, firing them in a gasoil kiln during 10 h (including the heating ramp) reaching a maximum
temperature of ~1000 ◦C for 2 h.

2.2. Mineralogical Analyses

A basic mineralogical and petrographic characterization was performed on several representative
specimens of both clay and pottery samples from all the studied villages. Specimens were prepared
as thin sections to be viewed using a petrographic microscope; other specimens were prepared from
clay-suspension drops as well as ceramic powder that were deposited on aluminum discs to obtain
X-ray diffraction (XRD) patterns. A Panalytical X’Pert powder diffractometer with θ-θ geometry, Cu
anode X-ray tube and a PIXcel1D detector has been used. Additionally, determination of the calcium
carbonate content in clay specimens was determined by a volumetric method by adding hydrochloric
acid and measuring the CO2 released.

Petrographic results reveal that pottery productions from a given studied town can appear very
different in terms of amount and size of the non-plastic inclusions (see Figure 3b). Perhaps the only
clear trend is the predominance of fine-grained pastes for productions from Verdú. For pastes bearing
large inclusions, quartz is dominant basically on all studied sites and therefore textural distinction
between sites is not possible (Figure 3a). The XRD patterns of clays from the different sites share
common features, exhibiting a mixture of characteristic peaks of mica-type and kaolinite-type minerals
(Figure 3c). Only occasionally did calcite and/or quartz appear in the analyzed clay-fractions. In contrast
XRD patterns of pottery shards can exhibit quite different signals, even for shards from a given town
(Figure 3c), possibly this is the result of different firing conditions. Calcimetries revealed the presence
of calcite in most clay specimens from Verdú, La Bisbal and Esparreguera.
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Figure 3. (a) Petrographic thin sections of three pottery samples, textural features of SJ22 (Sant Julià) and
Br15 (Breda) appear quite similar. (b) Petrographic cross sections for two pottery samples from Quart
exhibiting very different gran size. (c) XRD patters from several clay (Q04, Br08 and Br07) and pottery
(V28 and V31) samples with indication of the main phases: Ms: muscovite-type, Kln: kaolinite-type,
Qtz: quartz, Cal: calcite, Gh: ghelenite, Di: diopside.

2.3. EDXRF Analysis

Besides basic mineralogical and petrographic characterization, the main analytical tool used has
been Energy Dispersive X-ray fluorescence to obtain the required elemental data. That is the data that
has been used to apply different statistical methods to identify a distinct geochemical fingerprint for
each studied rural town (including their clays and pottery). Common sample preparation for geological
materials and earthen objects has been undertaken consisting in the conversion of solid powdered
samples into flat surface pellet specimens. Clays were first oven dried at 60 ◦C until constant weight.
Glaze from glazed pottery shards was completely removed by scraping it using a drill. The shards were
also oven dried as the clays and afterwards they were ground using a laboratory mill (Pulverissette™,
Fritsch GmbH, Idar-Oberstein, Germany) to pass a 125 µm mesh.

Clay and pottery powders for analysis were prepared as pressed powder pellets following the
methodology reported in [24] and using a methyl-methacrylate resin as a binding agent. 5 g of sample
were mixed and homogenized with 0.8 g of binder (Elvacite™ commercial resin). The resulting powder
was poured into a pressing die (40 mm in diameter) and pressed at a pressure of 20 T. The resulting
pellet of tablet was then ready for analysis.

A commercially available benchtop EDXRF spectrometer (S2 Ranger, Bruker/AXS, GmbH,
Karlsruhe, Germany) was used in the present study. This instrument is equipped with a Pd target
X-ray tube (50 W power max.) and a XFLASH™ LE Silicon Drift Detector (SDD), ultra-thin beryllium
window (0.3 µm thickness) with a resolution lower than 129 eV at Mn-Kα line for a count rate of
100,000 counts-per-second (cps). In this LE configuration of SDD detectors, the intensities for Na
K-alpha and Mg K-alpha are, respectively, close to around four times higher than the intensity recorded
by conventional SDD detectors. The instrument is also equipped with nine primary filters that can be
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used in front of the tube before X-ray beam reaches the sample surface in order to improve measuring
conditions for the elements of interest and it can operate under vacuum conditions.

The software used to control the equipment, to build calibrations, and to perform spectral data
treatment was SPECTRA.EDX package (Bruker AXS, GmbH, Karlsruhe, Germany). This software
can perform the full line profile fitting, deconvolutions when lines overlap, intensity corrections for
inter-elemental effects and qualitative, semiquantitative or full-quantitative routines.

All the samples were analyzed to obtain a spectrum for the identification of all the elements present
in samples. Quantification was made by the assisted fundamental parameters approach included in
the above-mentioned software using certified BAS BCS-315 and ECRM 776-1 firebricks as reference
materials. Analysis was made in a vacuum atmosphere allowing better detection of low Z elements
and using different conditions of voltage to properly excite low, medium and high atomic number
elements existing at the samples. Current was automatically adjusted to obtain a fixed counting rate of
100,000 cps. Total measuring time was set at 400 s as a trade-off between an acceptable repeatability of
measurements and total analysis time.

The net intensity of each analytical line was calculated by subtracting the theoretical background
adjusted by a polynomial function to the obtained experimental spectra.

2.4. Data Processing

Data processing was performed using available scripts from RStudio (the integrated development
environment for R software). In rough outlines, all the samples (both clays and baked clays) display
similar assemblies of elements. From the obtained data, only those elements present (above their
detection limit) have been taken into account. Besides that, Ca, S and Pb values have been disregarded,
the first (Ca) because it shows a very strong inverse correlation with Si values, S because it shows a very
high dispersion with many samples exhibiting values below the corresponding detection limit and Pb
due to evidence of contamination from glazes in glazed pottery, even after glaze removal. The list
of elements that have been taken into account to test several statistical machine learning approaches
to classify geochemically the samples from each village have been: Al, Si, Fe, Na, Mg, Cl, K, Ti, Cr,
Mn, Ni, Cu, Zn, Rb, Sr, Y, Zr, and Nb. Both unsupervised and supervised modeling of data has been
applied to the datasets containing values for this list of elements.

Unsupervised learning is a way of organizing data that helps to find previously unknown patterns
in datasets without pre-existing class labels. In contrast, supervised machine-learning relies on prior
knowledge of the class labels. Some unsupervised methods, and particularly principal component
analysis (PCA), are widely used in archaeometry to facilitate the identification of compositional groups
and determining the chemical basis of group separation and extensive literature can be found on
the subject. In contrast the use of supervised methods is quite scarce. However, some incursions
within the supervised methods domain had also been done previously, from the pioneering works
of [17,25] to much more recent papers [26–28] that focus particularly on the artificial neural network
(ANN) approach.

In the processing of the obtained data some unsupervised models have been tested and, as it
will be shown, all of them fail to produce data groups with good correlation with the real classes.
The widely used hierarchical cluster analysis (HCA), k-means and PCA will be used to illustrate
the low performance of such models. The HCA algorithm produces a tree diagram (dendrogram)
according to a given metric and linkage criterion (e.g., [29,30]), the k-means algorithm identifies k
clusters from a given dataset, every cluster is identified with a centroid and the corresponding data,
the algorithm basically tries to keep inter-cluster data as similar as possible, while the centroids are as
different as possible [31]. PCA logic is based on the concepts of linear correlation and variance. PCA is
a dimensionality reduction technique, starting with the features (i.e., the chemical values) describing a
set of objects (i.e., our samples), the target defines other variables that are linearly uncorrelated with
each other. The output is a new set of variables defined as linear combinations of the initial features.
The new variables are ranked on the basis of their relevance. The number of the new variables is less
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than or equal to the initial number of features and it is possible to select the most relevant features.
Then, it is possible to define a smaller set of features, reducing the problem dimension, see page
169 in [32].

Taking into account that the provenance of the analyzed samples is known (i.e., the class labels
are known for each object) supervised models can also be used to process the data. Starting from the
whole experimental dataset, it is possible to constitute a training dataset [26]. The labelled geochemical
data is then used to build models that proxy for class characteristics. After optimization of the model
parameters, the model is finally tested with new objects. The best performing predictive model can be
selected looking at their ability to predict class memberships for these new objects. In this study, an 80%
portion of the total dataset was used to train the models and the remaining data was used for model
testing. The dataset was divided randomly using a specific seed in such a way that all the models
tested in this study use the same train and test sets. The performance of the different tested models
was evaluated using the widely employed confusion or error matrix [33], where each row represents
the distribution of samples from an actual class among the predicted classes organized in columns
(or vice versa). As the predicted and actual classes are presented in the same order, the successful
predictions (usually called hits or true positives) concentrate along the main diagonal of the matrix,
whilst unsuccessful predictions lie outside the diagonal. Additionally, an overall value of accuracy was
computed as the ratio between hits and the total number of objects (i.e., samples). An overall accuracy
value of 1 would indicate 100% of success and therefore no errors.

Predictive modeling of the training set was conducted using five machine learning algorithms
and finally a combination of all them. These algorithms were called from packages within the freely
available Caret R library:

1. Weighted k-nearest neighbors (kkNN) [34], its basic idea is that a new object will be classified
according to the class that have their k-nearest neighbors. The R package used was class.

2. Random forest (RF) [35,36], this algorithm is based on the concept of decision tree (a series of
yes/no questions asked to the data that in the end lead to a predicted class). The RF model deals
with many decision trees (i.e., a forest) using random sampling to build the trees and random
subsets of features when splitting nodes of the trees. The R package used was randomForest.

3. Artificial neural network (ANN) [37], a mathematical mimic of human learning where individual
processing elements are organized in layers. The input layer receives the weighted values of the
features of an object to produce new values through so called activation functions; these values
will be also weighted and transferred to new layers until reaching the output which is made of as
many elements as classes. The obtained values are used to assign a class to the object. The R
package used was nnet.

4. Linear discriminant analysis (LDA) [38,39], similarly to the PCA logic, delineates a new set of
variables defined as linear combinations of the initial features reducing the dimensionality of
the problem, but instead of looking for the maximum variance, LDA maximizes the separability
among classes (the distance between their means) and simultaneously minimizes the internal
scatter within each class. The R package used was lda.

5. Generalized linear models (Glmnet) [40,41]. These are generalization models of a linear
relationship between the output variable (class) and a set of input variables (features) where
the distribution of the output variable can be non-normal and non-continuous and the function
linking input and output variables can be more complex than a simple identity function.
Specifically, the Glmnet algorithm incorporates regularization (i.e., reduction of variance) by
the lasso and elastic-net methods to avoid overfitting (i.e., noise fitting). The R package used
was Glmnet.

6. Stack of models. With the aim of improving the accuracy of the predictions, information from
multiple models (i.e., a stack of models, see [42]) was used to generate a new model using a random
forest approach to the predictions from different models. The R package used was randomForest.
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All these models, including the stack of models, were optimized during the training step. This was
done following a homogeneous approach for all the models and included a first phase of traincontrol
using the repeatedcv method:
fit_control<-
trainControl(method="repeatedcv",number=10,repeats=2,savePredictions="final",classProbs=TRUE)
preproc=c("center","scale")

Then, in a second phase, the best optimizable parameters to improve the attained accuracy were
automatically spotted with code lines as in the following example:
BASE.lrm<-
train(target~.,Dataset[train,],method="glmnet",metric="Accuracy",preProc=preproc,trControl=fit_control)

3. Results

3.1. EDXRF Analysis

The full set of chemical analyses can be downloaded from the Supplementary Material Section
(Table S1). Table 2 shows a summary of the normalized chemical analyses with the major and minor
element means (values are in weight percent of corresponding oxides) as well as those of the trace elements
(values are in native element parts-per-million) for every studied locality. The associated standard deviation
values give an indication of the internal variance within each group of data. Apart from Si and Ca values,
for the remaining major elements, mean concentration values appear very similar in all the studied villages.
Regarding the mean values for the minor elements, it is worth noting that almost all of them (Rb and
Zr are the exceptions) show very high coefficients of variation (often above 40%) indicating a very high
dispersion of values within each locality. Some major elements such as Na, S, Cl and occasionally also Ca
also show very high variation coefficients. This highlights the difficulty to extract relevant data from the
analyses, and therefore the use of statistical methods is indispensable.

Table 2. Arithmetic means (m) and standard deviations (σ) of the chemical composition for the samples
(clay, pottery and briquettes samples merged) from every investigated location.

Compound Village

Esparreguera La Bisbal Quart Breda Verdú Sant Julià

m σ m σ m σ m σ m σ m σ

SiO2 (%) 56.4 5.1 57.4 8.2 67.6 4.3 69.9 2.6 48.2 6.2 66.5 3.7
Al2O3 (%) 11.5 1.9 11.5 1.9 13.1 1.2 12.5 0.9 9.9 1.4 12.3 1.1
Fe2O3 (%) 8.6 1.7 8.1 1.5 8.6 1.9 8.3 1.5 9.2 1.7 8.5 1.7
MgO (%) 4.1 1.9 1.8 0.4 1.2 0.4 1.4 0.3 3.5 0.7 1.7 0.3
CaO (%) 11.9 7.2 14.6 10.9 2.0 3.2 0.8 0.2 22.6 9.8 3.1 4.2

Na2O (%) 0.5 0.2 0.4 0.2 0.5 0.2 0.5 0.2 0.5 0.1 0.6 0.2
K2O (%) 4.2 0.8 4.2 0.6 4.7 0.2 4.5 0.5 4.1 0.9 5.1 0.5
TiO2 (%) 1.3 0.2 1.4 0.2 1.5 0.3 1.5 0.2 1.2 0.1 1.2 0.2
SO3 (%) 0.5 0.7 0.1 0.2 0.1 0.2 0.0 0.0 0.1 0.1 0.1 0.1
Cl (%) 0.3 0.6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.4

Mn (ppm) 386 55 372 171 335 71 259 58 352 39 314 54
Cr (ppm) 283 138 232 138 223 107 242 75 252 96 273 123
Ni (ppm) 53 53 46 51 44 29 36 24 33 37 52 45
Cu (ppm) 89 50 69 50 66 49 51 33 85 42 80 61
Zn (ppm) 189 87 164 67 157 74 168 108 200 64 161 95
Rb (ppm) 271 63 278 45 373 37 303 35 272 56 331 36
Sr (ppm) 233 84 320 188 133 74 122 26 479 125 183 53
Y2 (ppm) 30 14 39 19 54 18 45 12 29 13 37 17
Zr (ppm) 520 99 572 195 546 151 701 129 349 151 526 78
Nb (ppm) 20 10 22 19 34 13 24 11 17 10 23 9
Pb (ppm) 810 1431 369 566 145 136 719 678 67 38 877 1055
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3.2. Unsupervised Modeling

HCA and k-means are both unsuccessful to group the different samples in their corresponding
locations. Firstly, HCA could be an unsuitable classification method because the expectable clustering
structure for the studied sites should not be particularly hierarchical but flat. In any case, the resulting
HCA dendrogram can be cut at a certain level to produce a set of six clusters. These should contain
a rather homogeneous number of samples (33 to 37) distributed according to the real distribution
of samples per village (as appears in Table 1). However, the distribution of samples per cluster is
clearly heterogeneous (Table 3). Two clusters (X1 and X3) contain more than 70% of the samples.
Grosso modo X3 contains most of the samples from three real clusters (Breda, Sant Julià and Quart) and
X1 contains most of the samples from Verdú and around half those from Esparreguera. The samples
from the remaining real cluster (La Bisbal) appear scattered in the six predicted clusters. A slightly
more balanced distribution of samples per class is obtained using the k-means model but still is
far from being close to an acceptable result. The k-means model has been set to obtain six clusters
(Table 4). This time three predicted clusters are big, amounting around 75% of the samples and the
other three only contain the remaining 25%. Again, the predicted clusters do not contain samples
from a preponderate location. For instance, the X3 cluster groups together most of the samples from
Breda, half those from Quart and a third of those from Sant Julià, or X6 contains most of the samples
from Verdú, half those from Esparreguera and a third of those from La Bisbal. Samples from La Bisbal,
and this time also from Sant Julià, appear scattered within the six predicted clusters. It is worth of
note that some similarities can be found between the predicted clusters using HCA and k-means,
for instance many samples from Breda, Sant Julià and Quart tend to group in a single cluster and
something similar occurs with those from Verdú and Esparreguera.

Table 3. HCA cluster prediction (cutting the dendrogram to produce six clusters).

Predicted Class Actual Class Samples within the
Predicted Class

Esparreguera Bisbal Quart Breda Verdú Sant Julià

X1 18 11 1 0 26 0 56
X2 7 9 1 0 1 3 21
X3 7 9 25 25 0 29 95
X4 0 2 6 8 0 4 20
X5 0 2 0 0 6 0 8
X6 1 3 0 0 4 0 8

Table 4. K-means cluster prediction (setting six clusters).

Predicted Class Actual Class Samples within the
Predicted Class

Esparreguera Bisbal Quart Breda Verdú Sant Julià

X1 8 10 1 0 1 2 22
X2 0 1 5 6 0 4 16
X3 0 1 17 24 0 12 54
X4 0 3 0 0 10 0 13
X5 7 9 9 3 0 18 46
X6 18 12 1 0 26 0 57

The results from PCA also fail to discriminate most of the clusters. Despite being a multivariate
technique, the obtained result privileges mainly a single variable. From the new set of variables,
PC1 alone can explain ~94% of the variance and PC2 nearly the 4%, therefore all the other new variables
only hold the remaining 2% of variance. Besides that, looking at the definition of the two main principal
components (Table 5 and inset in Figure 4) it is apparent that PC1 is basically the SiO2 content and
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PC2 a combination of the Fe2O3 and Al2O3 content. Figure 4 depicts the corresponding biplot where
samples have been colored according to their known provenance. PC2 is actually a non-discriminant
variable because samples from all the studied localities show a similar range of variability along the
PC2 axis. Regarding PC1 (i.e., SiO2), this single variable allows a net distinction between samples
from Breda (high SiO2 content) and Verdú (low SiO2 content). Most of the samples from la Bisbal
and Esparreguera are also relatively low in SiO2, and therefore they lie scattered basically in the same
area along with the samples from Verdú. On the other hand, most of the samples from Sant Julià and
Quart are comparatively richer in SiO2 and they align with the samples from Breda, defining actually a
straight line in the biplot (and therefore reveal a correlation between PC1 and PC2 for the samples
from these three villages).

Table 5. PCA coefficients for the two main principal components.

PC1 (93.69%) PC2 (3.94%)

SiO2 −0.9863 −0.0511
Al2O3 −0.1321 0.5063
Fe2O3 0.0145 0.8187
MgO 0.0883 0.1522
Na2O −0.0027 −0.0083
K2O −0.0398 0.2118
TiO2 −0.0082 0.0512

Cl 0.0036 −0.0017
MnO 0.0004 0.0014
Cr2O3 −0.0001 0.0037
NiO −0.0001 0.0006
CuO 0.0001 0.0002
ZnO 0.0001 0.0020
Rb2O −0.0004 0.0018
SrO 0.0017 −0.0001

Y2O3 −0.0001 0.0002
ZrO2 −0.0014 −0.0023

Nb2O5 −0.0001 0.0003

Figure 4. PCA biplot of factor scores for the first two principal components for all the processed
samples. Inset: PCA biplot of the most relevant variables.
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3.3. Supervised Modeling

Using the training dataset (a random 80% portion of the total dataset) every model was optimized
to attain the maximum accuracy; this implied the automatic selection of different parameters for
each model:

1. Weighted k-nearest neighbors (kkNN). Optimization was done by defining the values of three
parameters of the model: Kmax = 5, distance = 2 and kernel = optimal; these parameters determine
the way to define the neighbors and their distance to a given object.

2. Random forest (RF). The method rf gives the possibility to modulate three different parameters;
mtry, splitrule and min.node.size. After optimization they were fixed as mtry = 19,
splitrule = extratrees and min.node.size = 1. Mtry is the number of variables randomly sampled
as candidates at each tree split.

3. Artificial neural network (ANN). After optimization the best architecture for the ANN classifier
was found to be made of a single hidden layer of 5 units using a weight decay value of 0.1 (this is
a multiplier factor for the weighted factors to avoid overfitting).

4. Linear discriminant analysis (LDA). No parameters were modulated for this
straightforward model.

5. Generalized linear models (Glmnet). Only two parameters were optimized, α = 1 and λ=0.00488.
The first implies that the lasso regularization was used and λ is the regularization penalty.

LDA is the only model without optimization of parameters during the training step.
However, training of this model results in the definition of the new relevant variables as linear
combination of the initial features (similarly to the unsupervised PCA model) that maximize the
separation between clustered classes. Figure 5 is the corresponding 3D plot (for the three main
discriminants) of the trained dataset and it becomes apparent that the clouds representing every class
have little or no overlap. It is worth to note that, unlike PCA, the new variables are no longer essentially
defined with a single compositional feature (see in Table 6, for instance that the main contributors to
LD1 are SiO2, MgO and K2O whilst PC1 was essentially SiO2 alone). Besides that, variance is not
concentrated in a single variable. Therefore, the LDA model really uses a multidimensional space to
separate the different clusters and to take advantage of all the available data. In contrast, PCA was
so strongly biased to SiO2 that basically only one dimension was used to separate the samples and
yet unsuccessfully.
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Table 6. LDA coefficients for the four main linear discriminants.

Compound Linear Discriminants

LD1 LD2 LD3 LD4

SiO2 −1.190 1.210 0.467 −0.635
Al2O3 −0.363 −0.595 0.352 0.940
Fe2O3 0.299 0.329 −0.302 −0.038
MgO 0.764 0.678 1.216 −0.081
Na2O 0.139 0.141 0.056 −0.404
K2O 0.648 0.776 −1.216 −0.391
TiO2 0.300 −0.202 0.262 0.202

Cl −0.295 0.113 0.127 0.079
MnO 0.071 −0.160 0.338 0.315
Cr2O3 0.115 0.511 −0.138 −0.273
NiO −0.111 −0.666 −0.413 0.524
CuO 0.035 0.030 0.375 −0.611
ZnO −0.073 0.283 0.006 −0.109
Rb2O −0.549 −1.052 1.075 −0.529
SrO 0.064 −0.415 −0.898 −0.138

Y2O3 −0.398 −0.394 −0.110 −0.407
ZrO2 0.295 0.412 −0.811 0.718

Nb2O5 −0.139 0.138 0.030 0.197

After the training step, each parametrized model was tested using the remaining 20% of the
total dataset not used during the training step (precisely named test dataset). Table 7 contains the
corresponding confusion matrices.
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Table 7. Confusion matrix and accuracy for each supervised model (kkNN, RF, ANN, LDA and Glmnet).

kkNN-Based Provenance Classification
Actual class Predicted class

Esparreguera Bisbal Quart Breda Verdú Sant Julià

Esparreguera 5 0 0 0 1 1
Bisbal 1 7 0 0 1 0
Quart 0 0 2 2 0 0
Breda 0 0 1 5 0 0
Verdú 0 0 0 0 8 0

Sant Julià 0 0 0 0 0 8
Accuracy 83.3%

RF-based provenance classification
Actual class Predicted class

Esparreguera Bisbal Quart Breda Verdú Sant Julià

Esparreguera 4 0 0 0 2 1
Bisbal 0 9 0 0 0 0
Quart 0 0 4 0 0 0
Breda 0 0 1 5 0 0
Verdú 0 0 0 0 8 0

Sant Julià 0 1 0 0 0 7
Accuracy 88.1%

ANN-based provenance classification
Actual class Predicted class

Esparreguera Bisbal Quart Breda Verdú Sant Julià

Esparreguera 6 0 0 0 1 0
Bisbal 0 6 1 1 1 0
Quart 0 0 4 0 0 0
Breda 1 1 0 4 0 0
Verdú 1 1 0 0 6 0

Sant Julià 0 0 0 0 0 8
Accuracy 81.0%

LDA-based provenance classification
Actual class Predicted class

Esparreguera Bisbal Quart Breda Verdú Sant Julià

Esparreguera 3 0 0 0 2 2
Bisbal 0 7 0 1 0 1
Quart 0 0 4 0 0 0
Breda 0 0 0 6 0 0
Verdú 0 1 0 0 7 0

Sant Julià 0 0 0 0 0 8
Accuracy 83.3%

Glmnet-based provenance classification
Actual class Predicted class

Esparreguera Bisbal Quart Breda Verdú Sant Julià

Esparreguera 5 0 0 0 2 0
Bisbal 0 7 1 1 0 0
Quart 0 1 3 0 0 0
Breda 0 1 0 5 0 0
Verdú 0 1 0 0 7 0

Sant Julià 0 0 0 0 0 8
Accuracy 83.3%
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All the models exhibit a high rate of successful class prediction for the 42 samples from the
test dataset, with accuracies > 80% and RF attains the highest (88.1%). Esparreguera and La Bisbal
are the classes that seem harder to predict successfully, in contrast Sant Julià is a class particularly
well predicted by all the testes models. However, through the analysis of a correlation matrix, it can
be seen that, besides these trends, there are not clear correlations between the results from each
model. For instance, the LDA model is not very good at predicting the provenance of samples from
Esparreguera (only three out of seven are well predicted) and in contrast both ANN is much more
efficient at it (six out of seven). However, the LDA model is the best at predicting the provenance of
samples from Breda. The lack of clear correlations between the models augurs well for the chances
to increase the obtained accuracy using a combined approach (stack of models). Table 8 shows the
corresponding confusion matrix for the stack of models.

Table 8. Confusion matrix and accuracy for the stack of models.

Actual Class Predicted Class

Esparreguera Bisbal Quart Breda Verdú Sant Julià

Esparreguera 4 0 0 0 0 0
Bisbal 0 9 0 0 0 1
Quart 0 0 4 1 0 0
Breda 0 0 0 5 0 0
Verdú 2 0 0 0 8 0

Sant Julià 1 0 0 0 0 7
Accuracy 88.1%

The stack is a meta-model or a combination of all models. Instead of using a single classification
model based on experimental features (the chemical composition of samples), the stack approach uses
the predictions of the different classifiers as features. However, using this combined approach the
accuracy reaches 88.1%, a value already obtained using the RF approach.

4. Discussion

Unsupervised methods are widely used in provenance studies of pottery and particularly PCA is
routinely applied [43] to define geochemical and/or petrographic groups within sampled materials
from archaeological workshops and consumption centers. However, the presented results show that
these methods would have failed to detect and distinguish a mixed ensemble containing pottery from
the six studied production centers. The geographical proximity, inherent chemical variability and a
similar geological context could explain the difficulty to distinguish geochemically the different sites.

The presented results for the three unsupervised methods (HCA, k-means and PCA) agree on
detecting roughly two different classes: on the one hand samples with a relative high Si content
(mainly those from Breda, Quart and Sant Julià) and on the other hand those with a comparatively
lower Si content (predominantly samples from Verdú, Esparreguera and La Bisbal). The preponderant
role of SiO2 has been clearly illustrated by the PCA results, as the main composed variable (PC1)
is basically defined as SiO2 and it bears almost all the variance (94%). The higher SiO2 content
reflects a higher mineralogical abundance of quartz in the clays from Breda, Quart and Sant Julià,
possibly correlated with a coarser grain size. The chemical analyses reveal an inverse correlation
between Si and Ca, and indeed mineralogically there is a higher calcite content in the clays from
Verdú, Esparreguera, and La Bisbal (and higher Ca-bearing minerals within the corresponding pottery).
However, these are just general trends that cannot be used alone to identify productions from a given
locality. Unsupervised methods do not produce distinguishable clusters that could be correlated with
the actual provenance of the clay and pottery samples; the results only indicate roughly two different
classes. When the number of classes is fixed to be six the different classes appear to be quantitatively
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highly imbalanced and formed by a mixture of samples from different sites. Therefore, these methods
cannot be used to define a geochemical fingerprint to track or certify the provenance of the samples.

In contrast, the tested supervised methods, through a machine learning approach, have been
able to develop predictive models of provenance with accuracies above 80%, sometimes has high as
88.1%. Such level of accuracy can be considered very high, actually accuracies around 75% have been
considered enough to rate a predictive model on soil prediction as successful [26]. This potentially
opens the possibility for developing a tool that could predict the class of unknown samples, with an
about 90% of accuracy, that could be used to certify the provenance of pottery productions with that
level of probability.

Nevertheless, it should be noted that the accuracy predictions are performed using the test dataset,
which has been defined as the 20% of the total dataset. As the full dataset contains the chemical
analysis of 208 samples, there are only 42 samples within the test dataset. Taking into account that
the samples come from six different localities it turns out that the capacity of the models to predict
provenance is computed using only a very few test samples per site (for instance in the case of La Bisbal
9 test samples were used, and for Quart, only four). It is known that the success of machine learning
methods depends on the amount and quality of available data [44] and a minimum total dataset
size of 100 samples has been hypothesized as the lower limit to apply machine learning methods in
materials research [45]. The presented results have been derived with a dataset of 208 (just above
double the hypothesized minimum size), therefore an enlarged dataset would be required to increase
the confidence on the obtained accuracy. However, a significant increase of the experimental dataset is
time and cost consuming, the obtained results can be taken as encouraging and demonstrative of the
potential of the supervised approach as a way to define geochemical fingerprints to track or certify the
provenance of samples.

With the currently available dataset it is possible to further analyze the significance of the obtained
results by repeatedly performing the full training and test process using different splits of training and
test data. In the previous section it has been always used a particular split obtained using always the
same random seed. Ten different seeds have been used to generate ten different splits that have been
applied to every supervised model (and also to the stack of all the models), the obtained accuracies
are not always exactly the same and therefore it is possible to analyze the distribution of the obtained
accuracies for every tested method, and the results are shown in Figure 6.

Figure 6. Boxplot with the accuracy variation for each model using different splits.

The obtained distributions of accuracy are relatively narrow. kkNN is the model that produces
statistically lower accuracies, in some occasions even below 70%. Three models (ANN, LDA and
Glmnet) yield accuracies with interquartile ranges between 78% and 85%. Finally, the best performing
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models are RF and the stacked meta model, both exhibiting a distribution of accuracies that expand
above 90%. However, the distribution of the stack of models is narrower and keeping its median value
at 88.1%. Therefore, the results using different splits confirm that the ‘stack of models’ approach is the
best classification approach.

5. Conclusions

Supervised machine learning methods have proven to be useful to extract geochemical fingerprints
(for both clays and pottery from a given site) and these allow inter-site discrimination with accuracy
levels of 80% and above.

Unsupervised methods are classically used in archaeometry to enable the identification of compositional
pottery groups to distinguish between local products from a given workshop and different exports.
Nevertheless, these methods have failed to distinguish the raw materials and pottery products from the
six studied villages. The presented results should warn archaeometrists against the careless use of such
methods, particularly if the distinction between closely related provenances is envisaged.

In the modern context of revitalization of the traditional pottery production in Catalonia,
the presented approach based on supervised machine learning methods could be the useful to
develop effectively a scientific protocol to control this industry. The protocol has the potential to make
feasible the introduction of seals of quality and provenance to regulate the sector. Periodic chemical
analyses (lead and cadmium) on ceramic products are already performed for articles intended to
come into contact with foodstuffs to meet the European and Spanish regulations. A similar approach
including an exhaustive compositional characterization could be implemented for those potters that
would like to certify the use of local raw materials.

The geographical closeness and similar geological context for the six studied localities highlight
the robustness of the presented approach that could easily be exported to other pottery centers and
similar problematics.

Supplementary Materials: The following is available online at http://www.mdpi.com/2075-163X/10/1/8/s1,
Table S1: Full set of chemical analyses (clays, pottery and briquettes) for the six studied localities.
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