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Abstract: We present a new algorithm for 3D shape reconstruction from stereo image pairs that
uses mirror symmetry as a biologically inspired prior. 3D reconstruction requires some form of prior
because it is an ill-posed inverse problem. Psychophysical research shows that mirror-symmetry is
a key prior for 3D shape perception in humans, suggesting that a general purpose solution to this
problem will have many applications. An approach is developed for finding objects that fit a given
shape definition. The algorithm is developed for shapes with two orthogonal planes of symmetry,
thus allowing for straightforward recovery of occluded portions of the objects. Two simulations were
run to test: (1) the accuracy of 3D recovery, and (2) the ability of the algorithm to find the object in
the presence of noise. We then tested the algorithm on the Children’s Furniture Corpus, a corpus of
stereo image pairs of mirror symmetric furniture objects. Runtimes and 3D reconstruction errors are
reported and failure modes described.
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1. Introduction

The central importance of symmetry is well established in diverse fields such as physics, chemistry,
mathematics, and art; however, it has received comparatively little attention in computer vision.
Early computer vision researchers were interested in 3D recovery (for examples, see: [1–4]), and, as will
be discussed later in this paper, symmetry is a powerful regularity that allows for 3D reconstruction.
However, perhaps owing to the difficulty of the problem, interest in 3D recovery has been supplanted
by machine learning approaches that almost always rely on purely 2D image features. (In the case of
deep learning, instead of merely learning from 2D features, the 2D features themselves are learned
from the training data [5].) Despite this trend in computer vision, it is widely recognized that human
vision does perform 3D recovery [6], and, to this day, 3D recovery continues to be an important topic
in computer vision.

Camera image formation is the forward problem of vision, and it is well-posed and well
understood. Indeed, we know how to produce realistic looking images from 3D models [7]. However,
there are an infinity of possible 3D models that can produce any given camera image, and that
makes the inverse problem, 3D recovery from camera images, ill-posed [8]. In a classic 1985 paper,
Poggio et al. [9] introduced the notion of computational vision, which uses regularization to solve
early vision problems, such as 3D recovery. In essence, this means that all solutions to 3D recovery
must involve a priori assumptions that constrain the possible recoveries. If we adopt a computational
model of human cognition [10], as was done by David Marr [4], then the existence of innate a priori
constraints also applies to human vision [11,12]. Considering that humans have definite ideas about
the 3D shapes of objects that they perceive—Shepard and Metzler [13] proved as much with their
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classic experiment on the mental rotation of objects—it makes sense to investigate and understand
what priors the human vision system uses in 3D shape perception.

Recent advances in human perception have shown that symmetry, and mirror symmetry in
particular, is the most important prior in 3D shape perception [12,14,15]. Li et al. [16] argued further that
an object’s shape is defined by its symmetries. That is, an object has as much shape as it has symmetry
or regularity. We consider it natural, therefore, to investigate mirror symmetry as an informative prior
for 3D shape recovery in the spirit of Poggio et al.’s paradigm of computational vision.

In this paper, we present a new algorithm for performing 3D recovery for mirror symmetric
objects from a pair of stereo images. There has been a small amount of persistent interest in using
mirror symmetry to perform 3D recovery; however, almost no attempts use both mirror symmetry
and two-view geometry at the same time. However, there is psychophysical evidence that the human
visual system does precisely this: using both mirror symmetry and two-view geometry to aid 3D
shape perception [17]. The advantage of combining mirror symmetry with two-view geometry is
that each problem disambiguates the other, making it simpler to solve both simultaneously. (This is
developed in Sections 3.2 and 3.3). For the sake of computational efficiency, we added the additional
constraint that objects stand on a flat surface, or floor. This is easily arranged when capturing images
in controlled conditions; however, most real world objects do stand on a flat surface [12], and there is
psychophysical evidence that the human vision system takes advantage of this prior [18].

2. Related Works

As early as 1978, Marr and Nishihara [19] emphasized the importance of 3D representations in
computer vision. In particular, Marr and Nishihara advocated for symmetric parts based on Binford’s
generalized cones [20]. However, this work did not address the mathematical problem of recovering
3D symmetric shapes from camera images. Kanade, 1981, did provide details for 3D reconstruction [3],
but only for skew-symmetry (i.e., orthographic projections of planar symmetric figures). It was not
until 1990 that Gordon first published details for 3D reconstruction from the perspective images of
mirror symmetric objects [21], although Gordon credits the Oxford University engineer Guy Scott with
the idea of calculating depth information from symmetry.

Since then, the field has grown immensely richer. A key observation was that mirror symmetry is
a variant of two-view geometry [22]. That is, the image of a symmetric object allows for computing
a second view of the same object. This is true except for degenerate cases and can be generalized to
other types of symmetry. For example, the left and right side of the face are roughly identical, and thus
the image of a face can be thought of as two aligned views of a single half. This provides a variety of
mathematical invariants that form a theoretical basis for identifying symmetry, and for performing 3D
reconstruction [23–25]—a field which could perhaps be called structure from symmetry [26].

The key practical problem in solving structure from symmetry is identifying which pairs of
image points “go together”. Returning to the example of the face, a point on the tip of the left ear
goes with a specific point on the tip of the right ear: no other point will do. Registering these points
in the 2D camera image is called the symmetry correspondence problem, and once done, the positions
of the 2D points can be corrected at the subpixel level [27]. However, a general solution to the
symmetry correspondence problem is currently beyond the state of the art. Few invariants exist for the
general case problem, and any pair of imaged 2D curves is consistent with some 3D mirror symmetric
interpretation [28].

It is natural to try to restrict the problem (following in the footsteps of Kanade) to orthographic
images of planar symmetric figures, such as symmetric designs on walls and patterns on carpets.
In this case, correspondences can be found using local 2D features that are robust, or invariant, to local
affine distortions [29–32].

Despite challenges, solving symmetry correspondence for more general symmetric figures has
been a topic of ongoing interest. One approach noted that mirror symmetry extends to the surface
normals of a shape, providing a useful invariant for performing dense reconstruction using shape from
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shading [33]. Dense reconstruction has also been performed on mirror symmetric scenes by matching
texture patches under smoothness constraints [34]. For scenes characterized by translational symmetry,
dense reconstruction was performed using a graph-cut, with an energy function that incorporates
symmetrical repetition [35].

More typically, researchers solve symmetry correspondences on edge maps by trying to register
pairs of smooth contours. One early approach identified polygons in the 2D image that obey invariants
for some form of 3D symmetry. These polygons are then registered with each other, allowing for 3D
reconstruction [36]. Alternatively, it is possible to match line features directly in a loop that validates the
match geometry for some form of 3D symmetry [37]. Instead of matching line features, one can attempt
to trace pairs of contours, matching key features along the way, such as turning angle. Two studies
follow this approach, using sets of human generated contours as input [38,39]. Öztireli et al. [40]
extracted feature points and contours from rasterized images; however, human intervention is required
to select points in order to facilitate curve matching. Sinha et al. [41] put forward an interesting
dynamic programming approach that simultaneously extracts and matches contours; however, it can
only work when the viewing angle of the 3D mirror symmetric object is restricted.

The algorithm presented in this paper solves symmetry correspondences on rasterized edge
maps, and without human intervention, by using the two-view geometry of stereo image pairs to
disambiguate possible correspondences. It is possible to perform 3D reconstruction from pairs of stereo
images alone [22]; however, the results are usually noisy due to image pixelation. This paper presents
an alternative point of view for using symmetry and two-view geometry together: symmetry can
be used to improve the quality of 3D reconstructions, in effect performing subpixel accurate
correspondence. This approach was pursued to clean up the 3D point clouds generated from the
application of structure from motion [42,43].

Symmetry, however, does more than just provide subpixel correction, or accurate 3D
reconstruction. Symmetry is a global property, and thus it can be used to perform figure/ground
organization: localizing individual objects in a scene, and separating them from the background.
In previous work, we investigated using mirror symmetry with two-view geometry to perform
figure/ground organization [44]. However, as far back as 1997, Zabrodsky and Weinshall [45] observed
that mirror symmetry and two-view geometry can be used together. They developed a graph based
method for matching corresponding points, and tested it mainly on synthetic images. However,
they also ran two tests using, respectively, three and five camera views of a 3D symmetric object
and reported the average 3D reconstruction error on sparse sets of manually selected interest points.
This can be taken as part of the inspiration for the algorithm presented in this paper.

3. Proposed Algorithm

We present an algorithm that performs 3D reconstruction of mirror symmetric objects from a
pair of stereo images, where the symmetry is evident in the contours of the object. In many ways,
the algorithm is a successor to the algorithm presented in [44]; however, it has been repurposed to
perform 3D object reconstruction. Comparisons with [44] are detailed in Sections 4.3.1 and 4.3.3.
While it is possible that this algorithm may have practical uses, it is a proof of concept for a family of
methods that perform 3D object recovery using symmetries. The specific types of objects recovered
depend on how the object’s shape is defined. For this proof of concept, we use Definition 1 for the
shape of an object.

Definition 1. An object’s shape is a set of 3D points that are mirror symmetric about two orthogonal planes
of symmetry.

This definition covers a variety of manufactured objects, including some pieces of furniture.
One advantage of this definition is that the two planes of symmetry can be used to reconstruct the
backs of objects. This is made clear in Sections 3.6 and 4.3.2. The reasons for restricting the algorithm
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to objects with definite edges, and the formulation of the 3D recovery as an optimization problem
is developed in the rest of this section.

3.1. Notation

We use lowercase and uppercase bold symbols for points in R2 and R3, respectively. Therefore,
for example, x ∈ R2, and X ∈ R3. Furthermore, we add a superscript asterisk for points in the
respective projective spaces. Thus, x∗ ∈ P2 and X∗ ∈ P3. The exception is unit vectors in R3, which are
written ñ (lowercase because they have only two degrees of freedom). Subscripts refer to a particular
camera, if relevant. For example, x∗1 , and x∗2 refer to point x∗ in camera 1 and camera 2. The function
E(x∗) is used to convert homogeneous coordinates into equivalent Cartesian points. Thus, ‖E(x∗)‖
refers to the L2 norm of the Cartesian equivalent to the homogeneous coordinate x∗.

In this paper, we use a pinhole camera model and only consider calibrated cameras. We use K for
the intrinsic camera matrix, and P = K [R | t] for the camera matrix. R and t are the extrinsic camera
parameters: R a rotation matrix, and t = −RC, where C is the coordinates of the camera center. Again,
we use subscripts if a particular camera is indicated. Thus, x∗1 = P1X∗ gives the projection of point
X∗ in camera 1. All intrinsic parameters are assumed to be known, as is the relative rotation and
translation between the camera pair, and thus we use a calibrated stereo system.

Sometimes, we need to refer to the reprojection error of an image point relative to some estimate of
a 3D point. For example, point X∗ may be imaged in camera 1 as point x∗, but with some errors. In this
case, the reprojection error is expressed as: d(x∗, P1X∗) = ‖E(x∗)− E(P1X∗)‖. For those unfamiliar
with homogeneous coordinates, camera matrices, and projective spaces, please refer to Hartley and
Zisserman [22].

3.2. 3D Mirror Symmetry and Projective Geometry

An object is mirror symmetric in 3D if the object is invariant (unchanged) when reflected through
a single plane of symmetry, π =

[
ñ> d

]>. Thus, Equation (1) holds true for any point on the
object S:

∀U ∈ S, ∃V ∈ S s.t. V = U − 2(ñ>U + d)ñ. (1)

In this formulation of the plane equation, π =
[

ñ> d
]>, the point plane distance is given

by ñ>U + d, and ñ (a unit vector) gives the normal to the symmetry plane, which will henceforth be
referred to as the direction of symmetry. A mirror symmetric object is shown in Figure 1.

Object Definition 1 refers to two orthogonal planes of symmetry. In this case, Equation (1) is true
for each plane of symmetry, and furthermore, the planes of symmetry are orthogonal to each other.
Planes π1 and π2 are orthogonal to each other if, and only if, the respective directions of symmetry
are orthogonal to each other.

We use a pinhole camera model for a calibrated camera with intrinsic matrix K, and with neither
radial nor skew distortion. Let P be the camera matrix, and let U∗ and V∗ be mirror symmetric
points obeying the relationship given in Equation (1) (i.e., when expressed as Cartesian points in R3).
Thus u∗ = PU∗ and v∗ = PV∗ are the points imaged by the camera.

The 3D line joining U and V has direction ñ. Imagine starting at point U and traveling toward
and through point V and continuing an infinite distance: to a point on π∞, the plane at infinity in P3.
This creates a new point N∗ =

[
ñ> 0

]>, which has no Cartesian equivalent in R3. Then n∗ = PN∗

is the vanishing point associated with the plane of symmetry. It is a rule of projective geometry that
points on lines in P3 are imaged to points on lines in P2 (see [22]), and because U∗, V∗, and N∗ are
all co-linear, then so are u∗, v∗, and n∗. We call u∗ and v∗ corresponding points, since they are related
to each other by the mirror symmetry of U∗ and V∗. All corresponding points for the image of a
mirror-symmetric object are co-linear with the vanishing point.
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Figure 1. The figure is mirror symmetric about the plane π =
[

ñ> d
]>

. This means that every
point U is related to some point V = U − 2(ñ>U + d)ñ—for example, the wing-tips, as shown above.
The line joining U to V is parallel to the direction of symmetry, ñ, the normal of the symmetry plane.

This brings us to the mathematical relationship for reconstructing 3D points U and V up to
scale from their imaged points u and v, given that the vanishing point, n, is known. First, write
U = ‖U‖ũ +C, and V = ‖V‖ṽ +C, where C is the camera center, and ũ and ṽ are unit vectors. Let KR
be the left-most 3× 3 block of the camera matrix P = K [R | t]. This makes ũ = (KR)−1u∗/‖(KR)−1u∗‖,
and ṽ = (KR)−1v∗/‖(KR)−1v∗‖. Let ñ = (KR)−1n∗/‖(KR)−1n∗‖ be the direction vector in R3

derived from the vanishing point. Note that ñ is the direction of symmetry set by the symmetry
plane normal. Now, consider the angles between ñ, and ũ and ṽ. Specifically, let θ = cos−1(ũ>ñ) and
φ = cos−1(ṽ>ñ). The angles θ and φ are illustrated in Figure 2.

Referring again to Figure 2, the line joining U and V is, by definition, parallel to the line extending
from the camera center, C, down the direction of symmetry ñ. Let U

′
be the point on the ray through ñ

such that CU
′
U makes a right angle triangle, and let λ = ‖U −U

′‖ be the distance between U and
U
′
. Then, by construction, sinθ = λ/‖U‖. Similarly, if V

′
is the point on the ray through ñ such that

CV
′
V makes a right angle triangle, then sinφ = λ/‖V‖. The relationship λ = ‖U −U

′‖ = ‖V − V
′‖

holds because the four points {U, V , U
′
, V
′} form a rectangle. This gives Equation (2), which relates

the length ‖V‖ relative to ‖U‖, with the angle formed by their direction vectors with the direction of
symmetry. This relationship is shown in Figure 2:

sinθ

sinφ
=
‖V‖
‖U‖ . (2)

To solve for U and V , note that their midpoint lies on the symmetry plane π =
[

ñ> d
]>.

That is: 1
2 (U + V)>ñ + d = 0. Thus, (U + V)>ñ =

(
‖U‖ũ + C + sin θ

sin φ‖U‖ṽ + C
)>

ñ = −2d, giving
Equation (3):

‖U‖ = −2(d + C>ñ)
ũ>ñ + sin θ

sin φ ṽ>ñ
. (3)
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Figure 2. Diagram that shows the relationship expressed in Equation (2). Specifically because the
points {U, V , U

′
, V

′} form a rectangle, the length λ = ‖U −U
′‖ = ‖V − V

′‖. Then, we have the ratio
sin θ/ sin φ = ‖V‖/‖U‖. The diagram is patterned after [44]. An interactive 3D version of this diagram
is available in the supplementary materials.

Substitute from Equation (3) into Equation (2) to calculate the length ‖V‖. Note that this formula
requires a calibrated camera with a finite focal length because, otherwise, the angles θ and φ cannot
be determined. Furthermore, the image points u and v must be distinct. There is a degenerate case
when the plane of symmetry goes through the camera center, in which case both the numerator and
denominator of Equation (3) become zero. (i.e., d + C>ñ = 0, and the denominator can be rearranged
to show that tan θ + tan φ = 0.) Except for this degenerate case, a set of 3D mirror symmetric points
can be recovered up to scale from a vanishing point, and a set of corresponding points in the image.
The scale of the recovered object is set by d, the distance between the symmetry plane and the origin.
For further discussion, see [44]. See [21,28,46] for alternative formulations.

3.3. Solving the Symmetry Correspondence Problem with Two-View Geometry

Solving the symmetry correspondence problem is all that is required to solve for the 3D shape
of a mirror symmetric object. However, as described in Section 2, there is no known robust and
general purpose method for solving symmetry correspondence, and it remains a topic of ongoing
research. Indeed, so long as they are co-linear with the vanishing point, one can select arbitrary pairs
of corresponding points and reconstruct a 3D object [12]. This applies in the continuous case as well,
and any pair of 2D curves is consistent with some pair of 3D mirror symmetric curves [28]. One key
issue is that a degenerate viewing angle can hide details in the images of one or both of the 3D curves,
as is shown in Figure 3.

If we consider 3D mirror symmetry and two-view geometry together, the situation is simplified.
For a two-view camera system, a single point in 3D is imaged in two different cameras. That is,
point X∗ is imaged in camera 1 as x∗1 = P1X∗ and in camera 2 as x∗2 = P2X∗. This pair of points, x∗1 and
x∗2 , is also known as a corresponding pair, but for the binocular correspondence problem. (for complete
coverage, see: [22].)
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Figure 3. These four images are generated from the same pair of 3D mirror symmetric curves but seen
from different vantage points. On the far left, the viewing angle is such that the curve images do not
suggest 3D symmetry. Nonetheless, the relationship is there, and it becomes clear as the view is rotated,
especially in the two right-most images. These images were published in [28].

Consider shape S as a set of points in R3. Each camera gives a unique image of the points
in S, and thus a prospective pair of 3D symmetric curves are imaged uniquely in each camera.
This observation underlies Equation (4), which states that when the points X ∈ S are projected using
camera matrix Pi, the reprojection error (defined in Section 3.1) to a point in the relevant binary edge
map EdgeMapi is less than some threshold ε. (A binary edge map is a binary image where each pixel
indicates the presence or absence of an edge.). For two-view geometry, we have i ∈ {1, 2}:

∀X∗ ∈ S ∃x∗i ∈ EdgeMapi, s.t. d(x∗i , PiX∗) < ε. (4)

Taken together, Equations (1) and (4) specify a 3D mirror symmetric shape that is consistent with
evidence in two (or perhaps more) camera images. Only two visible edge points are required for each
image. Figure 4 illustrates what is gained by combining mirror symmetry with two-view geometry.
Let U and V be 3D points that are mirror symmetric about a symmetry plane π with direction of
symmetry ñ. Let u1 and u2 be the images of U in cameras 1 and 2, and likewise, let v1 and v2 by the
images of V in cameras 1 and 2. The points u1 and v1 are symmetric corresponding points, and must
be co-linear with n1, the image of ñ on the plane at infinity (as described in Section 3.2). Likewise,
u2 and v2 are co-linear with n2 in the second camera image. Note also that u1 and u2 correspond in
the binocular sense, and so do v1 and v2. Each individual point participates in two different epipolar
geometries, and thus the entire system is over-constrained, with the locations of each of the four
points constrained by both the direction of symmetry, ñ, and Fundamental matrix [22], which constrains
the locations of binocularly corresponding points according to the relative rotation and translation
between the two cameras.

Thus, Equations (1) and (4) together specify 3D points that are consistent with this
over-constrained geometry and provide an avenue to solve both the binocular and the symmetry
correspondence problem at the same time. In effect, the symmetry correspondence problem
disambiguates the binocular correspondence problem, and vice versa. This restricts the algorithm to
those objects whose mirror symmetry is evident in the binary edge maps of both images. When one or
both projected points are missing (for example, they are occluded, or not picked up by edge detection),
then that pair of 3D points are omitted in shape S.

The proposed algorithm requires an efficient method for validating if a given shape S satisfies the
image evidence. We first calculate binary edge maps for each image using the Canny operator with an
adaptive filter [47]. The edge points are loaded into an R-tree [48], thus creating a spatial index for the
edge points in each image. Then, for each point X∗ ∈ S, the spatial index is used to query the closest
point to E(PiX∗) in camera i. The reprojection error is given by the L2 distance between the queried
point and the projected point, and this error must be less than ε. This procedure has average time
complexity O(mnk), where m is the number of cameras, n = |S| is the number of 3D points in shape S,
and k is the expected time complexity for looking up single points from the spatial index.
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Image 1 Image 2

n1 n2

v1 v2

u1 u2

Figure 4. Points u1 and u2 are the images of some point U ∈ R3, and points v1 and v2 are the images
of some point V ∈ R3. Let ñ be the direction vector between U and V , and N∗ the intersection of
ñ with the plane at infinity (see Section 3.2). Let n1 and n1 be the images of N∗ in camera 1 and 2.
Then, as described in Section 3.2, u1, v1, and n1 are co-linear, and likewise u2, v2, and n2 are co-linear.
Furthermore, u1 and u2 are co-linear with the binocular epipole, a point in P2 calculated from the
relative rotation and translation between the two cameras. See [22] for a full treatment. Likewise, v1

and v2 are also co-linear with the binocular epipole. This creates an over-constrained system, where the
image points u1, v1, u2, and v2 are restricted by the direction vector between the two 3D points that
generated them (i.e., U and V ), and the relative rotation and translation between the two cameras.

3.4. Using a Floor Prior

Most objects stand on a floor, or flat surface, and there is psychophysical evidence that the human
visual system uses some sort of floor prior [12,18]. Using a floor prior is similar to the “Manhattan
World” assumption [49], where a scene is assumed to have three global vanishing points related to an
orthogonal basis in R3. In this case, the normal to the floor plane corresponds to the “up direction”
in a Manhattan World. However, the floor prior by itself is more flexible, admitting objects with
a single plane of symmetry (thus two vanishing points in total), or perhaps other symmetries.
Furthermore, floor plane estimation is robust and stable under two-view geometry when many
floor points are visible—a typical scenario when a particular application allows for the control of
camera viewing angles.

We assume that objects stand (or lie) on the floor, and that their symmetry planes are orthogonal
to the floor plane. This restricts the object’s direction of symmetry to the one-dimensional subspace
orthogonal to the floor plane normal. The projection of this subspace is called the horizon line, and is the
intersection of the image plane with the plane parallel to the floor that also contains the camera center.

The floor prior is found using a procedure developed by Li et al. [46]. First, a disparity map is
calculated using OpenCV’s StereoBM algorithm [50], which matches patches of texture between a pair
of rectified stereo gray-scale images. Triangulation [22] is then applied to the disparity map to generate
a 3D point cloud. Finally, Random sample consensus (RANSAC [51]) is used to find the equation of the
plane that contains the most 3D points within a specified error threshold. This method works well
when the floor is visible and is robust to the noise typical of 3D reconstructions from stereo image pairs.

3.5. Finding Symmetry Planes

As pointed out in Section 3.2, finding vanishing points is equivalent to finding the direction of
symmetry for a symmetry plane. The proposed algorithm extends existing feature based approaches
to vanishing point detection by taking advantage of both 3D symmetry and two-view geometry.
Equation (3) shows that the vanishing point alone would be enough to recover the 3D object up
to scale; however, scale is important in two-view geometry and is required for Equation (4). Thus,
we must estimate both the direction of symmetry and d, the distance between the symmetry plane and
the origin.
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We use the Harris operator [52] with parameters set to over detect corner features. Corner features
are then registered with each other across both input images using the disparity map previously
calculated when finding the floor prior. Let η =

[
g̃> dη

]> be the equation for the floor, where g̃
is suggestive of the direction of gravity. Let x∗i be an image point in camera i. Equation (5) is the
ray-plane intersection that denotes the point on the floor plane that images to x∗i . This situation is
illustrated in Figure 5:

F(x∗i , i) = Ci −
g̃>Ci + dη

g̃>(KR)−1
i x∗i

(KR)−1
i x∗i . (5)

If we assume that u∗i and v∗i are a corresponding pair of points, then the direction of symmetry,
ñ, can be estimated in camera i by finding the unit vector between F(u∗i , i) and F(v∗i , i). Equation (6)
gives the estimate for ñ by averaging across both cameras:

ñ =
1
2

2

∑
i=1

F(u∗i , i)− F(v∗i , i)
‖F(u∗i , i)− F(v∗i , i)‖. (6)

Ci

u∗
i

v∗i
F (u∗

i , i)

F (v∗i , i)

Figure 5. Method for estimating the direction of symmetry ñ from assumed corresponding points u∗i
and v∗i . Equation (5) is used to find F(u∗i , i), and F(v∗i , i), the points on the floor plane that image to u∗i
and v∗i . The vector F(u∗i , i)− F(v∗i , i) is an estimate for the direction of symmetry, but for a single pair
of points in a single camera. Equation (6) estimates ñ by averaging the normalized estimates across
all cameras.

To estimate d, note that if U and V are symmetric about π, then the midpoint M = 1
2 (U + V)

must lie on the symmetry plane. That is, M>ñ = d. To find M, we first select an arbitrary d, say d
′
= 1.

Then, using Equations (2) and (3), we recover U i and V i to scale, but for each camera image. Then,
m̂i = 1

2 (KR)−1
i (U i + V i) is the back projection from camera center Ci that images to point m∗i in

camera image i. That is, m∗i = Pi(m̂i + Ci). We then use triangulation [22] in Equation (7) to estimate d
by first finding M:

d = triangulate(P1(m̂1 + C1), P2(m̂2 + C2))
>ñ. (7)

Symmetry planes are recovered for all pairs of detected corners; however, many solutions can
be discarded immediately. The equations above are over-determined, and while every solution is
guaranteed to be orthogonal to the floor, the resulting reprojection error may be large for 3D points
recovered using Equations (2) and (3). Thus, we only keep those solutions that have reprojection errors
for all corner features less than a threshold ε, as specified in Equation (8):

Π = {π : (U i, V i) = ξ(π, Pi, u∗i , v∗i ), d(u∗i , PiU i), d(v∗i , PiV i) < ε, i ∈ {1, 2}} , (8)
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where u∗i , v∗i is every pair of corner features registered across both images by the disparity map
calculated in Section 3.4, π is the resulting symmetry plane found by solving Equations (6) and (7),
and (U i, V i) = ξ(π, Pi, u∗i , v∗i ) gives the two solutions for Equations (2) and (3) in camera image i.
This operation has worst time complexity O(n2) in the number of corner features detected, since we
are testing all unique sets of two corner features chosen from the set of all detected corner features.

3.6. Two Orthogonal Symmetry Planes

To find orthogonal symmetry planes, we consider all pairs of hypotheses in Π specified in
Equation (8). The worst case time complexity is O(n4), since, in theory, we could be testing all unique
sets of four corner features from the set of all detected corner features. In practice, however, most pairs
of corners are already discarded by using Equation (8) when generating the set Π. We specify the
reprojection error of a pair of planes as the maximum reprojection error of one of the points in one of
the cameras that was involved in generating one of the symmetry plane hypotheses. This is specified
by Equation (9), where u∗ij and v∗ij are the pair of image points that originally generated symmetry
plane hypothesis j in image i, and U ij and V ij are calculated using symmetry plane hypothesis j in
image i:

error(π1, π2) = max
(

d(u∗ij, PiU ij), d(v∗ij, PiV ij)
)

i, j ∈ {1, 2}. (9)

Every pair of symmetry plane hypotheses in Π is considered, and Nelder–Mead [53] is applied to
minimize the error specified in Equation (9) after forcing the symmetry planes to be orthogonal. The set
Π
′

is then the set of all the hypothesis pairs whose optimized error is less than some threshold ε.
Note that using two planes of symmetry allows for reconstructing the backs of objects, which are

normally occluded in the camera images. Because all the points in object S obey Equation (1) for every
symmetry plane, then every point X ∈ S can be reflected in one or both symmetry planes, relating it to
three other points in S. This means that points on the visible front of the object are related to occluded
points on the back of the object, and thus that back of the object can be recovered. This is not possible
when objects have only a single plane of symmetry; however, even in this case, the backs of objects can
be recovered using additional assumptions, such as planarity [12].

This observation requires that we modify Equation (4) so that we do not attempt to try to find
image evidence for points that we expect to be occluded. To do this, we take each set of four points
that are related through the two symmetry planes, and we remove the point that is furthest from the
camera center. We then combine these sets of three points to make S

′ ⊂ S, and apply Equation (4) to
the points in S

′
.

3.7. Recovering Objects with Short Curves

A 3D shape, defined by Definition 1, can be recovered for every symmetry-plane-pair in Π
′
,

by using Equations (2) and (3) on all pairs of edge points in a single image. According to Equation (4),
the recovered 3D points must project to an edge point within a set threshold, ε, for all camera images.
In a method similar to RANSAC [51], the final recovered 3D shape is simply that with the largest
number of 3D points that are consistent with Equation (4).

In theory, this has worst case time complexity O(n2) in the number of edge points, since we could
be considering all unique sets of two edge points from the set of all detected edge points. However,
as outlined in Section 3.2, the images of symmetric points must be co-linear with the vanishing point
derived from the relevant symmetry plane. Therefore, the proposed algorithm sorts all edge points
by the angle subtended with the vanishing point, and then a local search is performed about each
point to find co-linear points that solve for 3D points that obey the threshold specified in Equation (4).
The expected time complexity is O(n log n + nm), where O(n log n) is the time complexity for sorting
edge points, and nm is the expected number of comparisons made across all m camera images in the
local search for co-linear points.
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In practice, incidental arrangements of edge points lead to some false positive 3D points that are
not filtered out by applying Equation (4). Almost all of these incidental points can be removed by
considering short continuous runs of edge points, which we call contours. Instead of finding “best” or
“meaningful” contours—an expensive operation that may introduce instabilities—we split the runs of
edge points at approximately equally spaced intervals. We then select several points on each contour,
and solve for the 3D points as before; however, in addition to filtering the results by Equation (4),
we also add the additional constraint that the corresponding edge points must lie within a set distance
along some contour. Not only does this procedure reduce the number of false positive points in the
recovered shape, it also dramatically improves the speed of the computation by reducing the number
of edge points being considered with each recovery.

3.8. Overview of Algorithm

Figure 6 gives a flow chart, and dependency graph, for the algorithm. Many steps can be executed
in parallel, and individual steps can also make good use of parallelism. In particular, estimating
the floor (Section 3.4), finding symmetry hypotheses (Sections 3.5 and 3.6), and calculating solutions
(Section 3.7) can each have their time complexities divided by the available parallelism.

Figure 6. Flow chart of proposed 3D recovery algorithm.

Table 1 lists the algorithm parameters, which are chosen with reference to the properties
of the relevant equations. Increasing the reprojection thresholds results in more false positives
in the recovered 3D shape. The algorithm is robust to changes in the other parameters,
including contour length.

Table 1. Algorithm parameters. For details on the random sample consensus algorithm (RANSAC),
see: [51].

Parameter Reference Value

RANSAC iterations for floor estimation Section 3.4 500 iterations
RANSAC threshold for floor estimation Section 3.4 0.1 m
Harris block size Section 3.5 3
Harris k Section 3.5 0.01
Object point reprojection threshold Equation (4) ε = 1.5 pixels
Symmetry plane reprojection threshold Equation (8) and Section 3.6 ε = 1.5 pixels
Contour length Section 3.7 15 pixels
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4. Results

We have presented an algorithm for performing 3D object recovery for mirror symmetric objects
from pairs of images. We ran two simulations to test aspects of this algorithm. In simulation 1,
Section 4.1, we compared Triangulation [22]—the standard 3D recovery algorithm for two-view
geometry—to the formula derived in Section 3.2, which performs 3D recovery using mirror symmetry.
In simulation 2, Section 4.2, we generated synthetic images of random mirror symmetric shapes with
one versus two planes of symmetry, and with random noise features, in order to examine how well
the algorithm solves the correspondence problem. In Section 4.3, we present results for the algorithm
on a corpus of real image pairs. Since the algorithm is a repurposed refinement of previous work on
figure/ground organization [44], we compare the new algorithm to this previous work.

4.1. Simulation 1

The algorithm presented in this paper addresses, in part, two different problems:
the correspondence problem and the 3D recovery problem. The correspondence problem involves
selecting sets of corresponding image points that share some geometric property. For example,
consider Figure 4. The points u1 and u2 are corresponding points for the binocular correspondence
problem, and u1 and v1 are corresponding points for the symmetry correspondence problem.
Furthermore, all four points, u1, v1, u2, and v2, are corresponding points for both the symmetry
and binocular correspondence problems together. Solving a given correspondence problem involves
identifying a set of image points.

The 3D recovery problem involves calculating points in 3D from sets of corresponding points and
is usually performed with a mathematical formula. By contrast, solving a correspondence problem
usually involves some type of search. Triangulation [22] is the standard method for performing 3D
recovery from a pair of binocular corresponding points. In Section 3.2, we developed an equation for
3D recovery from a pair of corresponding points for the symmetry correspondence problem. The reader
may guess that this 3D recovery should be more accurate, on average, than any 3D reconstruction
performed on corresponding points for the binocular correspondence problem, including Triangulation,
because the latter is inherently sensitive to noise [22].

The supplementary materials include animations of a figure recovered from real image pairs
(described fully in Section 4.3), using either Triangulation, or Equations (2) and (3) from Section 3.2.
In all cases, the correspondence problem was solved using the symmetry based algorithm presented
in this paper; only the last step—3D recovery—is different. The 3D figure recovered using
Triangulation features peculiar “planar” clustering, which is caused by pixelation in the camera images.
The recovered 3D points jump from plane to plane as the difference between the corresponding
points changes by one pixel. This is a well known problem and can only be ameliorated by subpixel
correction before Triangulation is performed. The animation files show qualitatively that recovery
based on symmetry is unquestionably better than Triangulation. The pixel-related artifacts of binocular
recovery are almost never symmetrical with respect to the common symmetry plane of the object,
and so, these artifacts are corrected by adding the symmetry constraint. However, as we show below,
Triangulation is more sensitive to noise even when controlling for pixelation.

In this simulation, we compare 3D recovery using Triangulation, versus using
Equations (2) and (3) for pairs of points, as opposed to whole objects. We generated one random pair
of 3D points at a time. The points were uniformly distributed over a 4× 4× 4 m3 box centered 3 m
directly in front of the simulated camera. A single pair of points is obviously mirror symmetrical with
respect to the plane that bisects them. This plane was computed and used for the recovery based
on Equations (2) and (3). These two 3D points were projected, as continuous variables, to a pair of
simulated images using a calibrated stereo camera with a 12-cm baseline, a 66-deg horizontal field
of view. After the two image points (in R2) were calculated, a variable amount of Gaussian white
noise was added. The standard deviation of the Gaussian white noise was specified in pixels, which is
relative to the assumed 800 × 600 image format. The simulated image points were never rounded
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(to the nearest pixel) so that the simulation is a valid approximation for other image resolutions.
Thus, the noise in our experiment simulates other natural processes, other than pixelation, that affect
image formation. Either Triangulation or Symmetry (Equations (2) and (3)) were used to perform 3D
recovery from a pair of image points. Figure 7 shows the error in recovery (in meters) as a function of
the standard deviation of the added Gaussian white noise (in pixels). Each data point in the graph is
the average error from 1 million replications. In each replication, one pair of random 3D points was
generated and recovered. Note that the use of the true symmetry plane in this simulation when a
single pair of points was recovered represents the fact that the estimated symmetry plane of an object
consisting of hundreds of points is very stable precisely because many pairs of points are used to
estimate that plane. This is the unique advantage of incorporating a spatially global constraint.

Figure 7. Top curve: error in 3D recovery using Triangulation [22] as a function of image noise.
Bottom curve: error in 3D recovery using symmetry (Equations (2) and (3)) as a function of image noise.

Figure 7 clearly shows that 3D recovery using Triangulation is more sensitive to noise, which could
come from image pixelation, or other aspects of camera system, such as uncorrected lens distortion.
Recovery using Equations (2) and (3) was more than an order of magnitude more accurate at all levels
of noise, except zero noise, when recovery was identical for both methods.

4.2. Simulation 2

In this simulation, we used random synthetic figures to assess how well the present algorithm
solves the correspondence problem for shapes with one or two planes of symmetry, and in the presence
of noise. We followed [17] to generate random synthetic shapes with a single plane of symmetry.
These shapes are bilaterally symmetric, have planar surfaces, a flat base, and are made out of three
rectangular boxes joined to each other. The same procedure was used for shapes with two planes of
symmetry; however, the shape was flatted across the top, with the height chosen to keep the total
volume unchanged. The shapes averaged 35× 47× 34 cm3. Please refer to [17] for precise details on
how these shapes are generated.

To generate random noise, we sampled 3D points uniformly in a 2× 2× 2 m3 box centered at
a point 2.5 m in front of the camera center. Each 3D point became the point of intersection for two
3D lines, each 10-cm long, and sitting on a plane with a random orientation. The orientation of the
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plane was generated by sampling from a uniform distribution for the orientation vector’s inclination
and azimuth.

The random shape and noise features were then projected to a pair of 800 × 600 simulated images
using a calibrated stereo camera with a 12-cm baseline, and a 66-deg horizontal field of view. A random
shape with two planes of symmetry and 250 noise features is shown in Figure 8a,b. The crossed noise
features were specifically chosen to generate lots of corner detections, since these are used to find
symmetry planes, as described in Section 3.5. Furthermore, the lines were made long enough so that
most of the projected lines would not be easily filtered out when finding correspondences, as described
in Section 3.7.

The proposed algorithm then attempted 3D recovery on the composited image pairs. The image
pairs contained no texture information with which to estimate the floor plane, so the orientation of the
floor—a plane orthogonal to the shapes one or two symmetry planes—was given to the algorithm.
Correct correspondence (true positives), incorrect correspondences (false positives), and missed
correspondences (false negatives) were then counted, and used to generate a precision and recall score
for each image pair. Figure 8c,d shows the recovered 3D shape as seen from the two camera views.

(a) (b) (c) (d)

Figure 8. Input shape with two planes of symmetry, and random noise. (a,b) show the right and left
camera image, respectively. The shape was recovered by the proposed algorithm, and (c,d) show the
recovered 3D shape as seen by the left and right camera, respectively. An animation of the recovered
shape is included in the supplementary materials.

Figure 9a shows precision and recall scores as a function of the percentage of noise features in
the images, for shapes with one or two planes of symmetry. Ten random scenes were generated for
each level of noise, and in each condition. (i.e., one or two planes of symmetry.) The percentage
noise is calculated as 1 minus the number of visible corners in the synthetic shape (a maximum of 16)
divided by the number noise features (each cross is a single noise feature). This data was generated
using ε = 1.5, the default “object point reprojection threshold” listed in Table 1, which is the ε used in
Equation (4). We expected that as this threshold was loosened, recall would rise, and precision would
fall. This is indeed the case, as shown in Figure 9b, which gives the same results but for ε = 5.

We conclude that the method for solving the correspondence problem is robust to incidental
noise. Furthermore, adding a second plane of symmetry does improve the robustness of the algorithm:
precision is better, and recall does not suffer, or is better as in Figure 9b.

4.3. Experiment

To assess the algorithm on real images, we needed a corpus of stereo image pairs of objects,
with two orthogonal planes of symmetry, standing on a clearly visible floor. The authors of [46] kindly
made available the Children’s Furniture Corpus, which is now available in the supplementary materials.
This corpus consists of eighty-nine 800 × 600 grayscale image pairs of 11 exemplars, nine of which
have two orthogonal planes of symmetry, and two with single planes of symmetry. Images were
captured under typical indoor lighting conditions using a Point Grey Bumblebee2 R© stereo camera
(Point Grey, Richmond, BC, Canada), with a 12-cm baseline, and a 66-deg horizontal field of view.
Each exemplar averaged 1.87 m from the camera, sitting in the middle of the frame on flat blue carpet,
and was captured from roughly equally spaced orientations.
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(a) (b)

Figure 9. Precision and recall scores as a function of the percentage of noise features in the input
images, for randomly generated shapes with one or two symmetry planes (vanishing points). (a) shows
precision and recall for the algorithm’s default parameters, listed in Table 1. We see that recall is
similar for both types of shapes; however, precision is better for shapes with two symmetry planes.
Furthermore, precision is more robust to noise for shapes with two symmetry planes; (b) shows
precision and recall when ε = 5. This is the ε in Equation (4). Loosening this threshold increases
recall at the cost of lowered precision. Both precision and recall are better for two symmetry planes,
indicating that the extra symmetry plane improves the algorithms performance due to the additional
constraints that it provides.

The physical exemplars (pieces of furniture) were measured by hand with a tape measure,
and Autodesk R© Maya R© (Maya 2016, Autodesk Inc., San Rafael, CA, USA) was used to create 3D
models. Custom made software was then used to annotate each corpus image. Annotations consisted
of extrinsic and intrinsic camera parameters, and the hand made Autodesk R© Maya R© model file
(a triangle mesh) along with rotation, translation, and scale parameters. This is sufficient to place the
mesh in 3D space, and project it to each camera image.

To measure the accuracy of the 3D recovery of shape S, we summed the average minimum
distances between each point X ∈ S and some point on triangle ∆ in the hand-made 3D ground truth
mesh, Ξ, with the average of the minimum distance between each vertex V ∈ Ξ and some point X ∈ S.
This is specified by Equation (10):

error(S, Ξ) =

(
1
|S| ∑

X∈S
arg min

∆∈Ξ
d(X, ∆)

)
+

(
1
|Ξ| ∑

V∈Ξ
arg min

X∈S
d(V, S)

)
. (10)

Recovery was then performed on four 16 core Intel R© Xeon R© E7-8800v3 processors
(Intel, Santa Clara, CA, USA), running Ubuntu R© 14.04 (Canonical, London, UK). The algorithm
produced output for all but two pairs of input images. Failure modes are discussed in Section 4.3.2.
The average runtime was 2.41 s, and the average error, according to Equation (10), was 2.79 cm,
or just over 1 inch. This error is the approximate thickness of the furniture surfaces, and, in part,
contains errors in the hand made models. The results are summarized in Table 2, which shows the
average speed and error for each exemplar. Table 3 shows sample 3D reconstructions.

4.3.1. Baseline for Comparison

This study is unique in that it reports the error in 3D object recovery over a corpus of images,
when using projective geometry, and a mirror symmetry prior. To the authors knowledge, there is
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no comparable study, with either qualitative results being presented [25,30,34,37,41,54], errors only
being reported on a few keypoints for only one or two images [45,55,56], or the approach is otherwise
incomparable [29,31–33,35,42,43], or too restricted to be able to produce 3D recoveries from raster
images such as those found in the Children’s Furniture Corpus [3,21,26,38–40,57]. The authors suggest
that more quantitative studies on corpora of camera images are needed, and have made the Children’s
Furniture Corpus available in the supplementary materials of this paper.

Michaux et al. [44] utilizes a similar method for disambiguating the symmetry and binocular
correspondence problems, described in Section 3.3, and also uses a floor prior. Although this work
aims to localize multiple objects in a scene at once, it can be adapted to perform 3D object recovery.
The algorithm in this paper is an elaboration of [44], and thus we chose [44] as a baseline for comparison.
The nature of those elaborations, and their effect on the speed and accuracy of 3D recovery, is discussed
in Section 4.3.3.

Table 2. Experimental results were collected for the Children’s Furniture Corpus, and a modified version
of Michaux et al. [44] was used as a baseline for comparison. The second column denotes the number
of image pairs for the given exemplar. Errors were calculated using Equation (10) and are reported in
centimeters, along with a 95% confidence interval. Runtimes are reported in seconds, also with a 95%
confidence interval. The algorithm failed to generate results for two image pairs of the Rubbish Bin,
as discussed in Section 4.3.2.

Exemplar # Proposed Method Michaux et al. [44]

Curved Stand 8 1.90± 1.69 cm 3.42± 1.49 cm
1.97± 0.41 s 8.96± 4.28 s

Short Stand 7 2.16± 0.27 cm 4.94± 4.44 cm
1.56± 1.47 s 3.52± 1.65 s

Bookshelf 8 2.13± 2.59 cm 2.81± 2.86 cm
2.30± 0.50 s 9.75± 3.25 s

Short Dense Stand 5 3.04± 1.17 cm 6.21± 2.67 cm
2.89± 3.90 s 4.14± 4.08 s

Mid Dense Stand 6 3.38± 2.48 cm 4.74± 3.06 cm
3.37± 4.14 s 8.25± 6.71 s

Tall Dense Stand 7 3.46± 5.76 cm 5.20± 1.64 cm
5.69± 7.34 s 18.17± 17.46 s

Short Table 8 2.96± 3.19 cm 5.39± 5.36 cm
1.45± 1.09 s 4.03± 1.53 s

Long Table 7 2.61± 4.08 cm 5.52± 7.61 cm
1.51± 1.25 s 5.68± 2.40 s

Rubbish Bin 6 2.54± 1.64 cm 9.67± 8.43 cm
0.89± 1.85 s 6.40± 5.56 s

Total/Average 63 2.66± 3.50 cm 5.13± 5.65 cm
2.41± 4.00 s 7.86± 10.71 s
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Table 3. 3D reconstructions. The left two columns show the pair of the input images. The right two
columns show 3D reconstructions, where the view has been rotated. The displayed objects are, from top
to bottom: Curved Stand, Short Stand, Bookshelf, Short Dense Stand, Mid Dense Stand, and Long
Table. Animation files are available in the supplementary materials. The recovered objects have two
symmetry planes, and are thus naturally divided into four quadrants.

Input (Left Image) Input (Right Image) 120-deg Rotation 240-deg Rotation

4.3.2. Discussion

The algorithm produced 3D reconstructions for all input image pairs, except for two image pairs
of the Rubbish Bin. 3D reconstructions were, in general, excellent, with most recovered 3D points
close to edges or surfaces on the annotated ground truth 3D meshes. The backs of objects were
recovered, even though they were occluded, because the occluded points were related to points on
the front of the object by reflections through one or both symmetry planes, as described in Section 3.6.
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This contributes to the structure of the objects being clearly visible and identifiable to human viewers,
who, presumably also recover the backs of the objects. Despite these successes, several failure modes
were identified, as were opportunities for improvement.

Reducing the object point reprojection threshold, ε (see Table 1), resulted in significantly
cleaner looking objects; however, recoveries were also sparser without affecting errors calculated
by Equation (10). This is caused by the algorithm finding all the correspondences for edge points that
are less than ε. Most edge points participate in multiple correspondence pairs, including erroneous
correspondences that are “close enough”, according to Equation (4). Solving this problem is not as
simple as limiting edge points to single correspondences, since pixelated images require multiple
correspondences for single edge points. This happens when the pair of mirror-symmetric curves are
not equidistant to the camera, and thus image to 2D contours of different lengths. The pixels on the
shorter contour must then participate in multiple correspondences in order to recover all of the points
on the longer contour. This particular problem deserves consideration, and is important for generating
more accurate and aesthetically pleasing 3D recoveries; however, it does not affect the basic structure
of the recovery.

3D reconstruction depends on corner detection producing the required two pairs of corners that
characterize the symmetry planes of the object, as shown in Figure 10a. Furthermore, these corners
must appear in both images, and be registered with each other successfully. If no such set of four
corners is found, then the algorithm fails. This happened for two images pairs of the Rubbish bin,
one shown in Figure 10b. Corner detection worked well for the other corpus images; however, it does
represent a potential algorithmic instability.

(a) (b) (c)

Figure 10. The importance of corner detection. (a) 3D recovery fails unless at least two pairs of corner
features appear that reveal the required symmetry planes. In this edge map of an image of the Bookshelf,
detected corners are marked in red, and a sufficient set of four corners is marked by yellow circles;
(b) degenerate view of the Rubbish Bin. Recovery fails because the back of the object is not visible,
and corner detection cannot be used to determine one of the planes of symmetry; and (c) runtime suffers
when corner detection produces many corner pairs that generate symmetry hypotheses orthogonal to
the floor, as is the case in this image of the Tall Dense Stand. These hypotheses are not filtered out by
Equation (8), and runtime tends towards O(n4) in the number of detected corners. Runtime for this
image was 11.48 s.

As described in Section 3.6, the worst case runtime is O(n4) in the number of detected corners.
(The worst runtime was 11.48 s, for an image pair of the Tall Dense Stand shown in Figure 10c.)
The algorithm can be modified to use any method for detecting symmetry planes, and there are many
fast methods for finding vanishing points that can be used to calculate directions of symmetry for
prospective symmetry planes.
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Some 3D recoveries were poor even when symmetry planes were detected correctly. This was due
to instabilities caused by degenerate cases inherent in the geometrical foundations of the algorithm.
Consider the image of the Bookshelf shown in Figure 11a. The image itself is almost mirror symmetric in
2D, indicating that the symmetry plane contains (or runs close to) the center of perspective projection.
As discussed in Section 3.2, this degenerate case prevents recovering 3D depth information from
symmetry. As such, 3D recovery must rely on two-view geometry, which, in general, is noisy
due to pixelation in the image [22]. However, two-view geometry also has a degenerate case.
The Bumblebee2 R© camera (Point Grey, Richmond, BC, Canada) produces pairs of rectified images [22],
which confounds solving binocular correspondence for points on horizontal lines. This means that
Equation (4) is not particularly useful in disambiguating symmetry correspondences. Nonetheless,
the algorithm produced recognizable output even in this pathological case, as shown in Figure 11b,c.

(a) (b) (c)

Figure 11. Degenerate views. (a) 3D recovery is poor even though symmetry planes can be estimated via
corner detection. The image of the object is almost symmetrical in 2D, which means that the symmetry
plane contains (or runs close to) the camera center. This makes 3D recovery numerically unstable,
as described in Section 3.2. Furthermore, many of the lines are almost horizontal, a degenerate case
when solving binocular correspondence for two-view geometry with rectified cameras [22], which is
the case here. (b,c) show 3D recoveries with the view rotated by 120-deg and 240-deg. An animation
file is available in the supplementary materials.

4.3.3. Comparison to Baseline

As shown in Table 2, the proposed method is both faster and more accurate than the baseline for
comparison, [44]. The reasons for this lie in the differences between the two algorithms. We believe
that the main reason for the more consistent and accurate results of the proposed algorithm lies in how
vanishing points were detected. Firstly, Equation (9) uses the L∞ norm, while [44] utilizes an equation
similar to Equation (8), but based on the L2 norm. Our analysis found that the L∞ was much better
suited to filtering out erroneous correspondences and should always be preferred to the L2 norm.

Secondly, the baseline utilizes Equation (4) over the entire edge map of both input images,
while the proposed algorithm also utilizes short pieces of curves. Using short pieces of curves proved
to be an important innovation, because, as noted in Section 3.7, many incidental arrangements of edge
points will still satisfy Equation (4). By utilizing short curves, we ensure that Equation (4) applies
to contiguous sets of points—a powerful restriction. Our analysis showed that it was sufficient to
work on the end points of the curve segments, and simply ensure that they are connected. This vastly
improved the stability and performance of the algorithm.

Thirdly, the baseline identifies symmetry planes using RANSAC, while the proposed algorithm,
searched across sets of four automatically detected corner features, and uses a closed form expression to
make initial estimates of symmetry planes (Equations (5)–(7)). This means that the proposed algorithm
depends on corner detection, as described in Section 4.3.2; however, we found that, in general,
the symmetry plane detection was much better than the baseline.

Finally, the most obvious difference is that the baseline uses a shape definition based on just
a single plane of symmetry, as opposed to two planes of symmetry. The choice of two planes of
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symmetry provides additional constraints on recovered points, as specified by Equation (9), and also
provides a simple mechanism for recovering occluded surfaces. This results in more accurate estimates
of the vanishing points (more points are involved when optimizing Equation (9)), as well as more
complete figures. However, note that the backs of most exemplars are not completely occluded in the
corpus images, and when [44] performed well, it was almost as accurate as the proposed algorithm,
even though it utilized just one plane of symmetry. The exception was the Rubbish Bin, an object
whose rear facing contours are always occluded. In this case, the baseline’s performance compared
least favorably to the proposed algorithm. In brief, the refined method presented in this paper is faster
and more robust than the baseline.

5. Conclusions

The results suggest that mirror symmetry—a biologically motivated prior—is useful in performing
3D recovery from pairs of stereo images. However, the algorithm was designed and tested on a specific
class of symmetrical objects, namely, those with two orthogonal planes of symmetry. Although this
presented potential performance issues, discussed in Section 3.6, it also allowed for straightforward
recovery of the backs of objects. The formulation relied on the 3D mirror symmetry of the objects
being evident in edge maps of input image pairs. Practically speaking, this limits the application of
the algorithm to objects with clearly visible contours—a typical restriction for solving the symmetry
correspondence problem.

The failure modes discussed in Section 4.3.2 suggest that the algorithm could benefit from
numerous small improvements, such as better or faster vanishing point detection. Furthermore,
the algorithm has good precision (it rarely recovers false points); however, recall is limited (it tends to
miss parts of objects). It is reasonable, therefore, to use the algorithms output as a starting point for
completing the entire figure, perhaps using a smoothness constraint to do contour completion.

Larger improvements are also possible. First, there is no reason why the algorithm cannot be
reformulated for an object definition for shapes with single planes of symmetry, while still recovering
the backs of objects. This involves adding extra constraints to the object; however, these constraints
may be useful in other ways. For example, as pointed out in [12], combining mirror symmetry
with planarity is sufficient to recover occluded surfaces under common conditions. Many objects
have planar surfaces, and psychophysical evidence suggests that humans use a planarity prior when
recovering the shape of mirror symmetric curves [58].

Relaxing the use of the floor prior raises interesting questions as well. The algorithm can be
modified to do this by simply letting Π (from Equation (8)) be generated from all pairs of corner
features, and Π

′
from all pairs of symmetry hypotheses in Π. Although the runtime would suffer,

the algorithm would still recover 3D shapes, including objects floating through the air. One caveat is
that part of the accuracy of the symmetry hypotheses in Π (and thus Π

′
) comes from the floor prior.

This is because direct 3D recovery from stereo image pairs tends to be noisy, and the direction of
symmetry would have to be calculated from those noisy recoveries. One way around this is to use
pairs of hypotheses (from Π

′
) as the initialization point for some optimization procedure that modifies

the symmetry plane parameters in order to maximize the number of recovered 3D points that obey
Equation (4). This could potentially mean orders of magnitude more evaluations of Equation (4).
These computational problems would be alleviated by finding better methods for estimating the
vanishing points of objects, or perhaps other innovations with how Equation (4) is handled.

Another interesting problem is to consider solving the symmetry correspondence problem for
single uncalibrated images. Solving this problem will have many immediate applications because the
Internet is full of uncalibrated images of symmetric objects. The focal length of an uncalibrated image
can be estimated from two orthogonal directions, if we assume that the principal point is the center
of the image [59]—usually close enough if the image has not been cropped. Therefore, in theory,
camera calibration could be performed from images of symmetrical objects. This may be related to
how the human vision system calibrates itself [60].
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The authors believe that advances in computer vision lie in a deep understanding of the priors
used by the human visual system. There is a straightforward logical argument for why this is so: if we
assume a computational model of human cognition, then the powerful capabilities of the human vision
system are founded in the innate priors that it uses. We have used two-view geometry as a crutch
to explore possible ways for solving symmetry correspondence and pointed out several small and
large problems that remain to be solved. A robust and general purpose solution for the symmetry
correspondence problem would significantly advance the state of the art and also have immediate
applications.

Supplementary Materials: The following are available online at www.mdpi.com/2073-8994/9/5/64/s1:
The Children’s Furniture Corpus. Animation files for reconstructions shown in Table 3, and Figures 8 and 11
can be found at https://osf.io/qdzz6/. This url also contains an animation of the curved stand with 3D recovery
performed using Triangulation, as described in Section 4.1. An interactive 3D version of Figure 2 is available at
http://www.pageofswords.net/symmetry-equation/.

Acknowledgments: This research was supported by the National Eye Institute of the National Institutes of Health
under award number 1R01EY024666-01. The content of this paper is solely the responsibility of the authors and
does not necessarily represent the official views of the National Institutes of Health.

Author Contributions: Aaron Michaux designed and implemented the proposed algorithm, and co-wrote the
paper. Vikrant Kumar handcrafted the 3D models, annotated the data set, and assisted in writing. Zygmunt Pizlo,
Vijai Jayadevan and Edward Delp participated in theoretical discussions that laid the basis for the paper’s
algorithm, reviewed the math, and co-wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Horn, B. Understanding image intensities. Artif. Intell. 1977, 8, 201–231.
2. Witkin, A. Recovering surface shape and orientation from texture. Artif. Intell. 1981, 17, 17–45.
3. Kanade, T. Recovery of the three-dimensional shape of an object from a single view. Artif. Intell.

1981, 17, 409–460.
4. Marr, D. Vision: A Computational Investigation into the Human Representation and Processing of Visual Information;

Henry Holt and Co., Inc.: New York, NY, USA, 1982.
5. Hinton, G. Learning multiple layers of representation. Trends Cogn. Sci. 2007, 11, 428–434.
6. Dickinson, S. Challenge of image abstraction. In Object Categorization: Computer and Human Vision Perspectives;

Cambridge University Press: New York, NY, USA, 2009.
7. Chalmers, A.; Reinhard, E.; Davis, T. Practical Parallel Rendering; CRC Press: Boca Raton, FL, USA, 2002.
8. Tikhonov, A.N.; Arsenin, V.Y. Solutions of Ill-Posed Problems; Winston: Washington, DC, USA, 1977.
9. Poggio, T.; Torre, V.; Koch, C. Computational vision and regularization theory. Nature 1985, 317, 314–319.
10. Pinker, S. How the Mind Works; W. W. Norton & Company: New York, NY, USA, 1997.
11. Tsotsos, J.K. A Computational Perspective on Visual Attention; MIT Press: Cambridge, MA, USA, 2011.
12. Pizlo, Z.; Li, Y.; Sawada, T.; Steinman, R. Making a Machine That Sees Like Us; Oxford University Press: Oxford,

UK, 2014.
13. Shepard, S.; Metzler, D. Mental rotation: Effects of dimensionality of objects and type of task. J. Exp. Psychol.

Hum. Percept. Perform. 1988, 14, 3–11.
14. Vetter, T.; Poggio, T.; Bülthoff, H. The importance of symmetry and virtual views in three-dimensional object

recognition. Curr. Biol. 1994, 4, 18–23.
15. Sawada, T.; Li, Y.; Pizlo, Z. Shape Perception. In The Oxford Handbook of Computational and Mathematical

Psychology; Oxford University Press: Oxford, UK, 2015; p. 255.
16. Li, Y.; Sawada, T.; Shi, Y.; Steinman, R.; Pizlo, Z. Symmetry Is the sine qua non of Shape. In Shape Perception

in Human and Computer Vision; Springer: London, UK, 2013; pp. 21–40.
17. Li, Y.; Sawada, T.; Shi, Y.; Kwon, T.; Pizlo, Z. A Bayesian model of binocular perception of 3D mirror

symmetrical polyhedra. J. Vis. 2011, 11, 11.
18. Palmer, E.; Michaux, A.; Pizlo, Z. Using virtual environments to evaluate assumptions of the human visual

system. In Proceedings of the 2016 IEEE Virtual Reality (VR), Greenville, SC, USA, 19–23 March 2016;
pp. 257–258.

www.mdpi.com/2073-8994/9/5/64/s1
https://osf.io/qdzz6/
http://www.pageofswords.net/symmetry-equation/


Symmetry 2017, 9, 64 22 of 23

19. Marr, D.; Nishihara, H. Representation and Recognition of the Spatial Organization of Three-Dimensional
Shapes. Proc. R. Soc. Lond. B Biol. Sci. 1978, 200, 269–294.

20. Binford, T. Visual perception by computer. In Proceedings of the IEEE Conference on Systems and Control,
Miami, FL, USA, 15–17 December 1971; Volume 261, p. 262.

21. Gordon, G. Shape from symmetry. In Proceedings of the Intelligent Robots and Computer Vision VIII:
Algorithms and Techniques, Philadelphia, PA, USA, 1 March 1990; Volume 1192, pp. 297–308.

22. Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision; Cambridge University Press:
Cambridge, UK, 2003.

23. Rothwell, C.; Forsyth, D.; Zisserman, A.; Mundy, J. Extracting projective structure from single perspective
views of 3D point sets. In Proceedings of the Fourth IEEE International Conference on Computer Vision,
Berlin, Germany, 11–14 May 1993; pp. 573–582.

24. Carlsson, S. European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 1998;
pp. 249–263.

25. Van Gool, L.; Moons, T.; Proesmans, M. Mirror and Point Symmetry under Perspective Skewing.
In Proceedings of the Computer Vision and Pattern Recognition, San Francisco, CA, USA, 18–20 June
1998; pp. 285–292.

26. Hong, W.; Yang, A.; Huang, K.; Ma, Y. On symmetry and multiple-view geometry: Structure, pose,
and calibration from a single image. Int. J. Comput. Vis. 2004, 60, 241–265.

27. Penne, R. Mirror symmetry in perspective. In International Conference on Advanced Concepts for Intelligent
Vision Systems; Springer: Berlin/Heidelberg, German, 2005; pp. 634–642.

28. Sawada, T.; Li, Y.; Pizlo, Z. Any pair of 2D curves is consistent with a 3D symmetric interpretation. Symmetry
2011, 3, 365–388.

29. Cham, T.; Cipolla, R. Symmetry detection through local skewed symmetries. Image Vis. Comput.
1995, 13, 439–450.

30. Cham, T.; Cipolla, R. Geometric saliency of curve correspondences and grouping of symmetric contours.
In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 1996; pp. 385–398.

31. Cornelius, H.; Loy, G. Detecting bilateral symmetry in perspective. In Proceedings of the IEEE Computer
Vision and Pattern Recognition Workshop, New York, NY, USA, 17–22 June 2006; p. 191.

32. Cornelius, H.; Perd’och, M.; Matas, J.; Loy, G. Efficient symmetry detection using local affine frames.
In Scandinavian Conference on Image Analysis; Springer: Berlin/Heidelberg, Germany, 2007; pp. 152–161.

33. Shimshoni, I.; Moses, Y.; Lindenbaum, M. Shape reconstruction of 3D bilaterally symmetric surfaces. Int. J.
Comput. Vis. 2000, 39, 97–110.

34. Köser, K.; Zach, C.; Pollefeys, M. Dense 3D reconstruction of symmetric scenes from a single image. In Joint
Pattern Recognition Symposium; Springer: Berlin/Heidelberg, Germany, 2011; pp. 266–275.

35. Wu, C.; Frahm, J.; Pollefeys, M. Repetition-based dense single-view reconstruction. In Proceedings of the
IEEE Computer Vision and Pattern Recognition, Colorado Springs, CO, USA, 20–25 June 2011; pp. 3113–3120.

36. Yang, A.; Huang, K.; Rao, S.; Hong, W.; Ma, Y. Symmetry-based 3D reconstruction from perspective images.
Comput. Vis. Image Underst. 2005, 99, 210–240.

37. Bokeloh, M.; Berner, A.; Wand, M.; Seidel, H.; Schilling, A. Symmetry detection using feature lines.
Comput. Graph. Forum 2009, 28, 697–706.

38. Cordier, F.; Seo, H.; Park, J.; Noh, J. Sketching of mirror-symmetric shapes. IEEE Trans. Vis. Comput. Graph.
2011, 17, 1650–1662.

39. Cordier, F.; Seo, H.; Melkemi, M.; Sapidis, N. Inferring mirror symmetric 3D shapes from sketches.
Comput.-Aided Des. 2013, 45, 301–311.

40. Öztireli, A.; Uyumaz, U.; Popa, T.; Sheffer, A.; Gross, M. 3D modeling with a symmetric sketch.
In Proceedings of the Eighth Eurographics Symposium on Sketch-Based Interfaces and Modeling, Vancouver,
BC, Canada, 5–7 August 2011; pp. 23–30.

41. Sinha, S.; Ramnath, K.; Szeliski, R. Detecting and Reconstructing 3D Mirror Symmetric Objects. In European
Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2012; pp. 586–600.

42. Gao, Y.; Yuille, A. Symmetric bon-rigid structure from motion for category-specific object structure estimation.
In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2016; pp. 408–424.



Symmetry 2017, 9, 64 23 of 23

43. Cohen, A.; Zach, C.; Sinha, S.; Pollefeys, M. Discovering and exploiting 3D symmetries in structure from
motion. In Proceedings of the IEEE Computer Vision and Pattern Recognition, Providence, RI, USA,
16–21 June 2012; pp. 1514–1521.

44. Michaux, A.; Jayadevan, V.; Delp, E.; Pizlo, Z. Figure-ground organization based on three-dimensional
symmetry. J. Electron. Imaging 2016, 25, 061606.

45. Zabrodsky, H.; Weinshall, D. Using bilateral symmetry to improve 3D reconstruction from image sequences.
Comput. Vis. Image Underst. 1997, 67, 48–57.

46. Li, Y.; Sawada, T.; Latecki, L.; Steinman, R.; Pizlo, Z. A tutorial explaining a machine vision
model that emulates human performance when it recovers natural 3D scenes from 2D images.
J. Math. Psychol. 2012, 56, 217–231.

47. Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, 6, 679–698.
48. Beckmann, N.; Kriegel, H.; Schneider, R.; Seeger, B. The R*-tree: An efficient and robust access method for

points and rectangles. ACM Sigmod Rec. 1990, 19, 322–331.
49. Coughlan, J.; Yuille, A. Manhattan world: Orientation and outlier detection by bayesian inference.

Neural Comput. 2003, 15, 1063–1088.
50. Bradski, G. The OpenCV Library. Avaiable online: http://www.drdobbs.com/open-source/

the-opencv-library/184404319 (accessed on 16 January 2017).
51. Fischler, M.; Bolles, R. Random sample consensus: a paradigm for model fitting with applications to image

analysis and automated cartography. Commun. ACM 1981, 24, 381–395.
52. Harris, C.; Stephens, M. A combined corner and edge detector. In Proceedings of the Fourth Alvey Vision

Conference, Manchester, UK, 31 August–2 September 1988; pp. 147–151.
53. Olsson, D.; Nelson, L. The Nelder–Mead simplex procedure for function minimization. Technometrics

1975, 17, 45–51.
54. François, A.; Medioni, G.; Waupotitsch, R. Reconstructing mirror symmetric scenes from a single view

using 2-view stereo geometry. In Proceedings of the IEEE International Conference on Pattern Recognition,
Quebec, QC, Canada, 11–15 August 2002; Volume 4, pp. 12–16.

55. Fawcett, R.; Zisserman, A.; Brady, M. Extracting structure from an affine view of a 3D point set with one or
two bilateral symmetries. Image Vis. Comput. 1994, 12, 615–622.

56. Mitsumoto, H.; Tamura, S.; Okazaki, K.; Kajimi, N.; Fukui, Y. 3D reconstruction using mirror images based
on a plane symmetry recovering method. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 941–946.

57. Huynh, D. Affine reconstruction from monocular vision in the presence of a symmetry plane. In Proceedings
of the Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, 20–27 September 1999;
Volume 1, pp. 476–482.

58. Sawada, T.; Li, Y.; Pizlo, Z. Detecting 3D mirror symmetry in a 2D camera image for 3D shape recovery.
Proc. IEEE 2014, 102, 1588–1606.

59. Li, B.; Peng, K.; Ying, X.; Zha, H. Simultaneous vanishing point detection and camera calibration from
single images. In International Symposium on Visual Computing; Springer: Berlin/Heidelberg, Germany, 2010;
pp. 151–160.

60. Pirenne, M. Optics, Painting & Photography; JSTOR; Cambridge University Press: Cambridge, UK, 1970.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.drdobbs.com/open-source/the-opencv-library/184404319
http://www.drdobbs.com/open-source/the-opencv-library/184404319
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Proposed Algorithm
	Notation
	3D Mirror Symmetry and Projective Geometry
	Solving the Symmetry Correspondence Problem with Two-View Geometry
	Using a Floor Prior
	Finding Symmetry Planes
	Two Orthogonal Symmetry Planes
	Recovering Objects with Short Curves
	Overview of Algorithm

	Results
	Simulation 1
	Simulation 2
	Experiment
	Baseline for Comparison
	Discussion
	Comparison to Baseline


	Conclusions

