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Abstract: In this paper, a novel approach combining fuzzy data envelopment analysis (DEA) and
the analytical hierarchical process (AHP) is proposed to rank units with multiple fuzzy criteria.
The hybrid fuzzy DEA/AHP approach derives the AHP pairwise comparisons by fuzzy DEA and
utilizes AHP to fully rank units. It shows that the proposed approach generates a logical ranking of
units that has perfect compatibility with fuzzy DEA ranking and there is no any form of subjective
analysis engaged within the methodology. A study on the facility layout design in manufacturing
systems is provided to illustrate the superiority of the proposed approach and show the compatibility
between the proposed approach and fuzzy DEA ranking.
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1. Introduction

Ranking organizational units is a subject of tremendous interest in multi-criteria decision-making
(MCDM) which has been developed rapidly for dealing with complex decision-making problems.
Of the MCDM approaches, the analytic hierarchy process (AHP) [1] is particularly suitable for
modeling qualitative criteria and has found extensive applications in selection, evaluation, planning
and development, decision-making, and so on [2,3]. AHP utilizes pairwise comparisons between
criteria and between units, assessed subjectively by the decision maker, to rank the units overall [4].
In spite of completely ranking units in AHP, the process of making pairwise comparison matrix is
based on experts’ choices, and it causes error and inconsistency in the resulting matrix [5].

The relationship between MCDM and data envelopment analysis (DEA) was highlighted by
many researchers [4,6,7]. It has been recognized for more than a decade that the MCDM and DEA
formulations coincide if inputs and outputs can be viewed as criteria for performance evaluation, with
minimization of inputs and/or maximization of outputs as associated objectives [8,9]. DEA is a linear
programming methodology to measure the efficiency of all decision-making units (DMUs). Since
the pioneering work by Charnes et al. [10], DEA has developed in many directions and in numerous
applications [11]. All the basic models in DEA divide DMUs into two groups: efficient DMUs and
inefficient DMUs, and lack of discrimination of efficient units is a serious problem. There have been
attempts to fully rank units in the context of DEA during the last decade. As highlighted by Friedman
and Sinuany-Stern [12], each ranking method in the context of DEA has its limitations. Some are based
on subjective data and others are limited to part of the units, yet none provides an ultimately good
model for fully ranking units in the DEA context [4].
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Another attempt to fully rank DMUs in DEA utilizes AHP. Shang and Sueyoshi [13] used
the subjective AHP results in DEA for selection of a flexible manufacturing system. However,
this approach has the limitations of both methods, the subjectivity of AHP and the Pareto solutions
of DEA. Sinuany-Stern et al. [4] proposed a combined method of AHP and DEA for ranking units.
The AHP pairwise comparisons are generated by running pairwise DEA. Thus, there is no subjective
evaluation [4]. This method was a new idea in ranking but has lots of problems. The most principal
problem is that its ranking is incompatible with the traditional model in DEA when there are multiple
inputs and outputs, and this incompatibility causes some efficient units to be ranked lower than
inefficient units. To cover the incompatibility in [4], newly developed AHP/DEA approaches were
studied by some researchers [5,14]. Table 1 summaries the integrated AHP/DEA approaches proposed
in literature.

Table 1. Literature on the integrated AHP/DEA approaches.

Overview Advantage Disadvantage

Shang and Sueyoshi [13] This work attempts to fully rank DMUs in
DEA utlilizing AHP.

It includes the subjectivity of
AHP and the Pareto
solutions of DEA.

Sinuany-Stern et al. [4]
The AHP pairwise comparisons are
generated by running pairwise DEA. Thus,
there is no subjective evaluation.

Its ranking is incompatible
with traditional model in
DEA when there are
multiple inputs and outputs.

Alirezaee and Sani [14] This approach overcomes the draw-backs
of the AHP/DEA method developed in [4].

The integrated AHP/DEA
models can not reflect the
vagueness of human thought
while ranking units with
multiple fuzzy criteria.

Rakhshan et al. [5]
The proposed approach generates the
ranking of units which is compatible with
traditional DEA ranking.

It has the limitation on
dealing with human
thoughts with uncertainty in
the real-world applications.

Due to the vagueness involved in the real-world decision-making problems, different fuzzy
modeling approaches are introduced to deal with human thoughts with uncertainty in various
fields [15–18]. The integrated fuzzy AHP and DEA methodologies are developed to reflect
human thoughts with uncertainty for performance evaluation and assessment of units in a fuzzy
environment [19–21]. These approaches employ fuzzy AHP to reflect the vagueness of human thought
for allocating the relative importance of criteria and using DEA to measure the relative efficiency
of DMUs, which leads to weak discrimination of efficient units. Inspired by the recent research,
this work considers combining fuzzy DEA and AHP for fully ranking units with multiple fuzzy
criteria. The proposed approach takes the best of both fuzzy DEA and AHP methods by avoiding
the pitfalls of each. The AHP pairwise comparisons are derived mathematically from the results
of the average of efficiencies by running fuzzy DEA models, and DMUs are fully ranked by AHP.
It shows that the proposed approach presents a logical ranking of DMUs that is compatible with
the efficient/inefficient classification derived from fuzzy DEA. The rest of the paper is organized as
follows. In Section 2, a hybrid fuzzy DEA/AHP approach for fully ranking DMUs with multiple
fuzzy criteria is presented. An algorithm of the proposed approach and its validation are provided in
Section 3. A study on the facility layout design application is included to illustrate the superiority of
the proposed approach in Section 4. The paper is concluded in Section 5.
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2. The Methodology

The hybrid fuzzy DEA/AHP approach consists of two stages for ranking DMUs with multiple
fuzzy criteria. In the first stage of the ranking method, fuzzy DEA is employed to construct the
pairwise comparisons of AHP based on results of the average of efficiencies. In the second stage of the
ranking method, a single level AHP is utilized to fully rank units according to the pairwise evaluation
matrix generated in the first stage. Section 2.1 presents the construction of pairwise comparisons of
AHP by fuzzy DEA and Section 2.2 presents the ranking by AHP.

2.1. Construction of Pairwise Comparisons of AHP

In the proposed approach, the AHP pairwise comparisons are derived from the results of average
of efficiencies, which is the average of any DMUs before and after removing other DMUs [14].
To obtain the efficiency of DMUs, the input-orientated fuzzy CCR model named after Charnes, Cooper,
and Rhodes [10] is employed. Suppose there are m inputs, s outputs and n DMUs being evaluated.
Denote x̃i,j as the i-th fuzzy input and ỹr,j as the r-th fuzzy output of the j-th DMU. The input-oriented
CCR model with multiple fuzzy criteria for measuring the efficiency of DMUp can be formulated as:

FEp = min θp

s.t.
n

∑
j=1

λj x̃i,j ≤ θp x̃i,p, ∀ i = 1, 2, · · · , m,

n

∑
j=1

λjỹr,j ≥ ỹr,p, ∀ r = 1, 2, · · · , s

λj ≥ 0, ∀ j = 1, 2, · · · , n,

(1)

where λ = (λ1, λ2, · · · , λn)T is a column vector of a linear combination of n DMUs and θp is the
efficiency score of DMUp. The interpretation of the input-oriented fuzzy CCR model can be found
in many references [22]. In the input-oriented fuzzy CCR model, an efficiency score is generated
for a DMU by minimizing inputs with fixed outputs and for each observed DMUp an imaginary
composite unit is constructed that outperforms DMUp. In addition, λj represents the proportion
to which DMUj, j = 1, 2, · · · , n, is used to construct the composite unit for DMUp. In problem (1),
the composite unit produces inputs that are at most equal to a proportion θp of the inputs of DMUp

with 0 < θp ≤ 1 and consumes at least the same levels of outputs as DMUp [23]. If θp < 1, DMUp is
not efficient and the parameter θp indicates the extent by which DMUp has to decrease its inputs to
become efficient. Moreover, it could be easily checked that problem (1) has a feasible solution when
θp = 1, λj = 0 for j 6= p, and λp = 1.

Since the input and output variables in problem (1) are not known precisely, problem (1) cannot
be solved by a standard linear programming solver. The decision maker may define the risk-free and
impossible bounds for each fuzzy input and output variables for transforming the fuzzy optimization
problem (1) to a traditional linear program. Risk-free bounds are interpreted as the conservative values
that are most realistically found, whereas the impossible bounds are associated with the values that are
the least realistic. For each fuzzy input and output variable, the change from its risk-free to impossible
bounds is represented by its membership function. It is assumed that membership functions of each
fuzzy input and output variable are monotonically linear, and are equal to zero, if the input or output
bounds are impossible, and are equal to one if they are risk free. Suppose that xL

i,j and xU
i,j represent the

impossible and risk-free bounds of the i-th fuzzy input of the j-th DMU, respectively. A possible linear
membership function associated with the i-th fuzzy input for the j-th DMU is given by:

µx̃i,j(x) =
xL

i,j − x

xL
i,j − xU

i,j
, where xL

i,j ≤ x ≤ xU
i,j, i = 1, 2, · · · , m, j = 1, 2, · · · , n. (2)
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Suppose also that yL
r,j and yU

r,j represent the risk-free and impossible bounds of the r-th fuzzy
output of the j-th DMU, respectively. A possible linear membership function associated with the r-th
fuzzy output for the j-th DMU is given by:

µỹr,j(y) =
y− yU

r,j

yL
r,j − yU

r,j
, where yL

r,j ≤ y ≤ yU
r,j, r = 1, 2, · · · , s, j = 1, 2, · · · , n. (3)

According to (2) and (3), x̃i,j and ỹr,j can be replaced by the new variables µx̃i,j and µỹr,j ,
which locate the levels of inputs and outputs within the impossible and risk-free bounds, as follows:

x̃i,j = xL
i,j + µx̃i,j(xU

i,j − xL
i,j), i = 1, 2, · · · , m, j = 1, 2, · · · , n with 0 ≤ µx̃i,j ≤ 1,

ỹr,j = yU
r,j + µỹr,j(y

L
r,j − yU

r,j), r = 1, 2, · · · , s, j = 1, 2, · · · , n with 0 ≤ µỹr,j ≤ 1.

With these transformations, we have:

FEp = min θp

s.t.
n

∑
j=1

λj(xL
i,j + (xU

i,j − xL
i,j)µx̃i,j) ≤ θp(xL

i,j + (xU
i,j − xL

i,j)µx̃i,j), ∀ i = 1, 2, · · · , m,

n

∑
j=1

λj(yU
r,j + µỹr,j(y

L
r,j − yU

r,j)) ≥ yU
r,p + µỹr,p(y

L
r,p − yU

r,p), ∀ r = 1, 2, · · · , s,

λj ≥ 0, ∀ j = 1, 2, · · · , n.

(4)

According to [24], the fuzzy decision of (4) can be reached with the membership degree:

µ = min
i = 1, 2, · · · , m
j = 1, 2, · · · , n
r = 1, 2, · · · , s

{µx̃i,j , µỹr,j}.

For a specific µ ∈ [0, 1], problem (4) is rewritten as the linear programming problem:

FEp = min θp

s.t.
n

∑
j=1

λj(xL
i,j + (xU

i,j − xL
i,j)µ) ≤ θp(xL

i,j + (xU
i,j − xL

i,j)µ), ∀ i = 1, 2, · · · , m,

n

∑
j=1

λj(yU
r,j + µ(yL

r,j − yU
r,j)) ≥ yU

r,p + µ(yL
r,p − yU

r,p), ∀ r = 1, 2, · · · , s

λj ≥ 0, ∀ j = 1, 2, · · · , n.

(5)

The efficiency of DMUp, p = 1, 2, · · · , n, can then be obtained by solving the linear programming
problem (5).

Moreover, define FEp
k , p = 1, 2, · · · , n, k = 1, 2, · · · , n, the efficiency of DMUp after removing the

k-th DMU from the observation set of DMUs, which can be described by the fuzzy DEA model:

FEp
k = min θp

s.t.
n

∑
j=1
j 6=k

λj x̃i,j ≤ θp x̃i,p, ∀ i = 1, 2, · · · , m,

n

∑
j=1
j 6=k

λjỹr,j ≥ ỹr,p, r = 1, 2, · · · , s,

λj ≥ 0, ∀ j = 1, 2, · · · , n.

(6)



Symmetry 2017, 9, 273 5 of 14

As similar to the discussion on solving problem (1), for µ ∈ [0, 1], the efficiency of DMUp after
removing the k-th DMU defined in (6) can be obtained by solving the linear programming problem:

FEp
k = min θp

s.t.
n

∑
j=1
j 6=k

λj(xL
i,j + (xU

i,j − xL
i,j)µ) ≤ θp(xL

i,j + (xU
i,j − xL

i,j)µ), ∀ i = 1, 2, · · · , m,

n

∑
j=1
j 6=k

λj(yU
r,j + µ(yL

r,j − yU
r,j)) ≥ yU

r,p + µ(yL
r,p − yU

r,p), ∀ r = 1, 2, · · · , s,

λj ≥ 0, ∀ j = 1, 2, · · · , n,

(7)

where xL
i,j and xU

i,j represent the impossible and risk-free bounds of the i-th fuzzy input of the j-th
DMU, respectively, and yL

r,j and yU
r,j represent the risk-free and impossible bounds of the r-th fuzzy

output of the j-th DMU, respectively. For each p = 1, 2, · · · , n, we solve problem (7) and obtain the
efficiency of unit after removing the k-th DMU, k = 1, 2, · · · , n. Table 2 lists the results.

Table 2. Efficiency of units after removing the k-th DMU.

DMUs 1 2 3 · · · n

Remove 1 ∗ FE2
1 FE3

1 · · · FEn
1

Remove 2 FE1
2 ∗ FE3

2 · · · FEn
2

... · · · · · · · · · · · · · · ·
Remove n FE1

n FE2
n FE3

n · · · ∗
“ ∗ ” denotes that FEk

k , k = 1, 2, · · · , n, does not exist.

Using the results in Table 2, for each pair of DMU i and j, the priority of DMU i to DMU j is
defined as [14]:

aij =

n

∑
s=1

s 6=i,j

FEi
s + FEi

n

∑
s=1

s 6=i,j

FEj
s + FEj

, i, j = 1, 2, · · · , n; aii = 1; aji =
1
aij

, (8)

where FEi
s and FEj

s are the efficiencies of the i-th and j-th DMU after removing the s-th DMU,
respectively; FEi and FEj are efficiencies of the i-th and j-th DMU obtained by solving problem (5),
respectively. It should be noticed that the priority of the i-th DMU to the j-th DMU, aij, defined in (8) is
the ratio of two averages. The first one is the average of efficiencies of the i-th DMU after removing the
s-th DMU (s = 1, 2, · · · , n; k 6= i, j) and the efficiency of the i-th DMU. The second average is a similar
average of efficiencies of the j-th DMU after removing the s-th DMU (s = 1, 2, · · · , n; k 6= i, j) and the
efficiency of the j-th DMU.

The pairwise comparison matrix A = (aij) generated by (8) is utilized to fully rank DMUs in the
second stage of the proposed method via a single level AHP.

2.2. Ranking with AHP

The AHP is a method developed for subjective evaluation of a set of alternatives based on multiple
criteria. It provides a structured framework for setting priorities on each level of the hierarchy using
pairwise comparisons that are subjective created by decision makers. Let A be a pairwise comparison
matrix of AHP:
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A = (aij)n×n =

 a11 · · · a1n
...

. . .
...

an1 · · · ann

 ,

where aij denotes pairwise comparison between criteria/units, aii = 1 and aij =
1
aji

for every i, j =

1, 2, · · · , n. If aij = aik · akj for i, j, k = 1, 2, · · · , n in a pairwise comparison matrix of A = (aij)n×n, then
A = (aij)n×n is completely compatible; otherwise, it is said to be incompatible [5].

Theorem 1. [25] Suppose that A = (aij)n×n is a pairwise comparison matrix, if A = (aij)n×n is compatible,
then its maximal eigenvalue λmax = n. Otherwise λmax > n.

According to Theorem 1, a pairwise comparison matrix, for which its maximum eigenvalue is
closer to the matrix dimension, has less incompatibility [5].

With the pairwise comparison matrix A constructed in the first stage of the proposed, a single
hierarchical level AHP is run to determine the weight vector w = (w1, · · · , wn)T by the following
characteristic equation:

Aw = λmaxw, (9)

where λmax is the maximal eigenvalue of A. Such a method for determining the weight vector of
a pairwise comparison matrix is referred to as the principal right eigenvector method [1]. The j-th
component of w reflects the relative importance given to the j-th DMU. The DMU that has higher
corresponding value of wj has higher ranking. We assign the rank 1 to the DMU with the maximal
value of wj.

3. An Algorithm and the Validation of the Hybrid Fuzzy DEA/AHP Method

Based on the discussion in the previous section, an algorithm of the ranking method by the hybrid
fuzzy DEA/AHP can be organized as below (Algorithm 1).

Algorithm 1: The hybrid fuzzy DEA/AHP ranking method

Step 1. Construct the pairwise comparison matrix by fuzzy DEA.

Step 1.1 Decision makers provide the risk-free and impossible bounds for each fuzzy
criterion and assign the value of µ ∈ [0, 1].

Step 1.2 Solve problem (5) and obtain the efficiency of DMUp, FEp, p = 1, 2, · · · , n.
Step 1.3 Solve problem (7) and obtain the efficiency of DMUp after removing the

k-th DMU, FEp
k , k = 1, 2, · · · , n, p = 1, 2, · · · , n.

Step 1.4 Construct the pairwise comparison matrix A = (aij)n×n by Equation (8) using
the results obtained in Steps 1.2 and 1.3.

Step 2. Rank units by AHP

Step 2.1 Solve Equation (9) based on the pairwise comparison matrix A = (aij)n×n

generated in Step 1 and obtain the weight vector w = (w1, · · · , wn)T .
Step 2.2 Assign the rank 1 to the DMU with the maximal value of wj and stop.

(The DMU which has higher corresponded value of wj has higher ranking.)

The flow chart with the steps of the proposed algorithm is presented in Figure 1.
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Figure 1. The flow chart with the steps of the proposed algorithm.

To show that there is perfect compatibility between the rank derived from the proposed method
and efficient/inefficient classification derived from fuzzy DEA, we have the following result.

Theorem 2. If DMUi is efficient and DMUj is inefficient according to the results obtained by the fuzzy
DEA model (1), and wi and wj are corresponding weights obtained by the hybrid fuzzy DEA/AHP method,
then wi > wj.

Proof. To show that the weights wi > wj with DMUi are efficient and DMUj is inefficient, we have
to prove that aik ≥ ajk, k = 1, 2, · · · , n, in the pairwise comparison matrix and for at least one
k, k = 1, 2, · · · , n, it is a restrict inequality [26].

For µ ∈ [0, 1], problems (5) and (7) can be regarded as traditional input-oriented CCR models with
xL

i,j + (xU
i,j − xL

i,j)µ as the i-th input and yU
r,j + µ(yL

r,j − yU
r,j) as the r-th fuzzy output of the j-th DMU.

Denote FEi, i = 1, 2, · · · , n, the efficiency of the i-th DMU obtained by solving the problem (5)
and FEi

s the efficiency of the i-th DMU after removing the s-th DMU obtained by solving
problem (7). Since an efficient DMU is efficient after removing other DMUs, for every efficient DMUi,
FEi

s = FEi, s = 1, 2, · · · , n, and s 6= i [14]. Therefore, for an efficient DMUi and an inefficient DMUj,
we have:

n

∑
s=1

s 6=j,k

FEj
s + FEj ≤

n

∑
s=1

s 6=i,k

FEi
s + FEi. (10)

Moreover, since an efficient frontier does not change after eliminating an inefficient DMUj, for an
efficient DMUi and an inefficient DMUj, we have:
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FEk
j = FEk ≤ FEk

i ,

where k 6= j. It implies that:

1
n

∑
s=1

s 6=i,k

FEk
s + FEk

= 1
(FEk

1+···+FEk
j +···+FEk

n)+FEk ≥

1
(FEk

1+···+FEk
i +···+FEk

n)+FEk = 1
n

∑
s=1

s 6=j,k

FEk
s + FEk

.
(11)

Combining (10) and (11), we have:

aik =

n

∑
s=1

s 6=i,k

FEi
s + FEi

n

∑
s=1

s 6=i,k

FEk
s + FEk

≥

n

∑
s=1

s 6=j,k

FEj
s + FEj

n

∑
s=1

s 6=j,k

FEk
s + FEk

= ajk, k = 1, 2, · · · , n. (12)

Moreover, since DMUi is efficient and DMUj is inefficient,

n

∑
s=1

s 6=i,j

FEi
s + FEi >

n

∑
s=1

s 6=i,j

FEj
s + FEj.

Consequently, we have:

aij =

n

∑
s=1

s 6=i,j

FEi
s + FEi

n

∑
s=1

s 6=i,j

FEj
s + FEj

> 1 =

n

∑
s=1

s 6=i,j

FEj
s + FEj

n

∑
s=1

s 6=i,j

FEj
s + FEj

= ajj. (13)

Equations (12) and (13) imply that wi > wj.
According to Theorem 2, the proposed fuzzy DEA/AHP method ranks the efficient DMUs in a

better position than the inefficient DMUs. Therefore, there is perfect compatibility between the rank
derived from the proposed ranking method and efficient/inefficient classification derived from fuzzy
DEA. In other words, the integrated fuzzy DEA/AHP method ranks efficient DMUs, which are not
ranked by fuzzy DEA, and also ranks inefficient DMUs, assuring at the same time that efficient DMUs
have the better position than the inefficient DMUs.

4. An Illustrated Example on the Facility Layout Design Application

To illustrate the idea of the proposed approach, the modified real data set of a case study for
evaluating the facility layout designs of the plastic profile production system from the study of [27]
is utilized. The effective facility layout evaluation procedure considers fuzzy criteria, e.g., flexibility
in volume and variety and quality related to the product and production, as well as quantitative
criteria such as material handling cost and adjacency score, shape ratio, and material handling vehicle
utilization in the decision process.

Eighteen facility layout alternatives are evaluated using four output variables and two input
variables in the illustrated example. To take care of the multiple criteria by fuzzy DEA, the criteria that
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are to be minimized are viewed as inputs and the criteria to be maximized are considered as outputs.
The two inputs are material handling cost (x1) and adjacency scores (x2). The four outputs are shape
ratio (y1), flexibility (ỹ2), quality (ỹ3) and utilization of material-handling vehicle (y4). Table 3 provides
inputs and outputs data for the example.

Table 3. Input and output data.

DMU Inputs Outputs

j x1j x2j y1j ỹ2j ỹ3j y4j

1 20,309.56 6405 0.4697 [113, 123] [410, 425] 30.89
2 20,411.22 5393 0.4380 [337, 360] [484, 510] 31.34
3 20,280.28 5294 0.4392 [308, 330] [653, 680] 30.26
4 20,053.20 4450 0.3776 [245, 265] [638, 660] 28.03
5 19,998.75 4370 0.3526 [856, 880] [484, 510] 25.43
6 20,193.68 4393 0.3674 [717, 760] [361, 380] 29.11
7 19,779.73 2862 0.2854 [245, 260] [846, 880] 25.29
8 19,831.00 5473 0.4398 [113, 130] [129, 140] 24.80
9 19,608.43 5161 0.2868 [674, 690] [724, 750] 24.45

10 20,038.10 6078 0.6624 [856, 880] [653, 675] 26.45
11 20,330.68 4516 0.3437 [856, 870] [638, 675] 29.46
12 20,155.09 3702 0.3526 [856, 880] [846, 860] 28.07
13 19,641.86 5726 0.2690 [337, 360] [361, 380] 24.58
14 20,575.67 4639 0.3441 [856, 885] [638, 650] 32.20
15 20,687.50 5646 0.4326 [337, 360] [452, 470] 33.21
16 20,779.75 5507 0.3312 [856, 880] [653, 675] 33.60
17 19,853.38 3912 0.2847 [245, 260] [638, 660] 31.29
18 19,853.38 5974 0.4398 [337, 360] [179, 190] 25.12

To evaluate the facility layout alternatives by the proposed fuzzy DEA/AHP approach, pairwise
comparisons of AHP are derived from the results of average of efficiencies by running fuzzy DEA.
In Step 1 of the proposed algorithm, the fuzzy DEA model (5) is applied to obtain the efficiency of
DMUp, FEp, p = 1, 2, · · · , 18. For instance, to measure the efficiency of DMU1, we have

FE1 = min θ1

s.t. 20309.56λ1 + 20411.22λ2 + · · ·+ 19853.38λ18 ≤ 20309.56θ1

6405λ1 + 5393λ2 + · · ·+ 5974λ18 ≤ 6405θ1

0.4697λ1 + 0.4380λ2 + · · ·+ 0.4398λ18 ≥ 0.4697
(10µ− 123)λ1 + (23µ− 360)λ2 + · · ·+ (23µ− 360)λ18 ≤ 10µ− 123
(15µ− 425)λ1 + (26µ− 510)λ2 + · · ·+ (11µ− 190)λ18 ≤ 15µ− 425
30.89λ1 + 31.34λ2 + · · ·+ 25.12λ18 ≥ 30.89
λ1, λ2, · · · , λ18 ≥ 0.

(14)

The efficiencies of DMUp, FEp, p = 1, 2, · · · , 18 are listed in the second column of Table 4.
To obtain the efficiency of DMUp after removing the k-th DMU, p = 1, 2, · · · , 18, k = 1, 2, · · · , 18,

the DEA model (7) is applied in Step 1.3 of the proposed algorithm. For instance, to measure the
efficiency of DMU2 after removing DMU1, the following problem is considered:

FE2
1 = min θ2

s.t. 20411.22λ+20280.28λ3 + · · ·+ 19853.38λ18 ≤ 20411.22θ2

5393λ2 + 5294λ3 + · · ·+ 5974λ18 ≤ 5393θ2

0.4380λ2 + 0.4392λ2 + · · ·+ 0.4398λ18 ≥ 0.4380
(23µ− 360)λ2 + (22µ− 330)λ3 + · · ·+ (23µ− 360)λ18 ≤ 23µ− 360
(26µ− 510)λ2 + (27µ− 680)λ3 + · · ·+ (11µ− 190)λ18 ≤ 26µ− 510
31.34λ2 + 30.26λ3 + · · ·+ 25.12λ18 ≥ 31.34
λ2, · · · , λ18 ≥ 0.

(15)
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Table 5 shows the efficiency of DMUp after removing the k-th DMU, FEp
k , p = 1, 2, · · · , 18,

k = 1, 2, · · · , 18.
Using the results in Table 3 and the second column of Table 4, the pairwise comparison matrix

A = (aij)18×18 can be constructed by (8) as shown in Table 6.
In Step 2 of the proposed algorithm, the pairwise comparison matrix A = (aij)18×18 is utilized

to fully rank DMUs by a single level AHP. The weight vector obtained by solving (9) is listed in
the last column of Table 4 with the maximum eigenvalue λmax = 18.0000. According to Theorem 1,
the pairwise comparison matrix in Table 6 is almost compatible.

Table 4 shows the results of ranking by the fuzzy DEA model (1), the method in [27] and the
proposed ranking method by the hybrid fuzzy DEA/AHP. The numbers in parentheses are rankings of
the corresponding DMUs. The second column of Table 4 shows the efficiency scores, FEi, i = 1, 2, · · · , n,
calculated from the fuzzy DEA model (1). There are 12 efficient DMUs which cannot be differentiated.
The third column of Table 4 shows efficiency scores calculated from the model (3) in [27]. There are
eight efficient DMUs that cannot be differentiated. The last column of Table 4 shows the weight
vector obtained by the proposed hybrid fuzzy DEA/AHP ranking method. According to Table 4,
the proposed ranking method leads to more discrimination and the DMU5 has the best rank of all
DMUs by the hybrid fuzzy DEA/AHP approach. If we examine Table 5, we can see that DMU5

has more effect on DMU4, DMU8, DMU9 and DMU18, so it has the best rank in comparison to other
DMUs. In addition, from Table 4, DMUs that are efficient in the fuzzy DEA rank higher than inefficient
DMUs by using the proposed ranking method.

Table 4. Ranking by different methods.

DMUs Fuzzy DEA Method in [27] Weight Vector in
Fuzzy DEA/AHP

1 0.9989(13) 0.985(12) 0.2419804 (13)
2 1.0000(1) 0.988(11) 0.2422704 (4)
3 1.0000(1) 0.997(10) 0.2422452 (5)
4 0.9595(14) 0.949(14) 0.2350762 (14)
5 1.0000(1) 1.000(1) 0.2424019 (1)
6 1.0000(1) 0.973(13) 0.2422439 (6)
7 1.0000(1) 1.000(1) 0.2421172 (10)
8 0.8617(16) 0.857(16) 0.2138516 (17)
9 0.9098(15) 0.889(15) 0.2250112 (15)

10 1.0000(1) 1.000(1) 0.2423731 (2)
11 1.0000(1) 0.998(9) 0.2421616 (7)
12 1.0000(1) 1.000(1) 0.2421571 (8)
13 0.7901(18) 0.776(18) 0.1945052 (18)
14 1.0000(1) 1.000(1) 0.2420896 (12)
15 1.0000(1) 1.000(1) 0.2422820 (3)
16 1.0000(1) 1.000(1) 0.2421566 (9)
17 1.0000(1) 1.000(1) 0.2420933 (11)
18 0.8611(17) 0.852(17) 0.2190128 (16)

From the experimental results, we see that the proposed method leads to a more discrimination
ranking of units with multiple fuzzy criteria. Moreover, it also shows the perfect compatibility between
the proposed ranking method by hybrid fuzzy DEA/AHP and the fuzzy DEA.
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Table 5. The efficiencies of DMUs after removing the k-th DMU, k = 1, 2, · · · , 18.

DMUs 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Remove 1 ∗ 1 1 0.9595 1 1 1 0.8617 0.9098 1 1 1 0.7901 1 1 1 1 0.8611
Remove 2 1.0000 ∗ 1 1.0000 1 1 1 0.8715 0.9265 1 1 1 0.8130 1 1 1 1 1.0000
Remove 3 1.0000 1 ∗ 0.9703 1 1 1 0.8889 0.9138 1 1 1 0.8072 1 1 1 1 1.0000
Remove 4 0.9989 1 1 ∗ 1 1 1 0.8617 0.9098 1 1 1 0.7901 1 1 1 1 0.8611
Remove 5 1.0000 1 1 0.9983 ∗ 1 1 1.0000 0.9513 1 1 1 0.8088 1 1 1 1 1.0000
Remove 6 1.0000 1 1 0.9769 1 ∗ 1 0.8637 0.9322 1 1 1 0.8074 1 1 1 1 1.0000
Remove 7 1.0000 1 1 0.9761 1 1 ∗ 0.8642 0.9207 1 1 1 0.8081 1 1 1 1 0.8662
Remove 8 0.9989 1 1 0.9595 1 1 1 ∗ 0.9098 1 1 1 0.7901 1 1 1 1 0.8611
Remove 9 0.9989 1 1 0.9595 1 1 1 0.8617 ∗ 1 1 1 0.7901 1 1 1 1 0.8611
Remove 10 1.0000 1 1 0.9771 1 1 1 1.0000 0.9396 ∗ 1 1 0.8073 1 1 1 1 1.0000
Remove 11 1.0000 1 1 0.9598 1 1 1 0.8621 0.9268 1 ∗ 1 0.8650 1 1 1 1 0.8640
Remove 12 1.0000 1 1 0.9697 1 1 1 0.8622 1 1 1 ∗ 0.7906 1 1 1 1 0.8620
Remove 13 1.0000 1 1 0.9595 1 1 1 0.8617 0.9098 1 1 1 ∗ 1 1 1 1 0.8611
Remove 14 1.0000 1 1 0.9624 1 1 1 0.8627 0.9255 1 1 1 0.7912 ∗ 1 1 1 0.8633
Remove 15 1.0000 1 1 0.9889 1 1 1 0.9002 0.9388 1 1 1 0.8155 1 ∗ 1 1 0.9360
Remove 16 1.0000 1 1 0.9774 1 1 1 0.8924 0.9269 1 1 1 0.8167 1 1 ∗ 1 0.8654
Remove 17 1.0000 1 1 0.9661 1 1 1 0.8637 0.9257 1 1 1 0.7918 1 1 1 ∗ 0.8621
Remove 18 0.9989 1 1 0.9595 1 1 1 0.8617 0.9098 1 1 1 0.7901 1 1 1 1 ∗

“ ∗ ” denotes that efficiencies of DMUk after removing the k-th DMU, k = 1, 2, · · · , 18, does not exist.
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Table 6. The pairwise comparison matrix in the example.

1.000 0.999 0.999 1.028 0.999 0.999 0.999 1.129 1.074 0.999 0.999 0.999 1.242 0.999 0.999 0.999 0.999 1.101
1.004 1.000 1.000 1.0316 1.000 1.000 1.000 1.1310 1.0756 1.000 1.000 1.000 1.242 0.999 0.999 0.999 0.999 1.112
1.000 1.000 1.000 1.031 1.000 1.000 1.000 1.140 1.077 1.000 1.000 1.000 1.2449 1.000 1.000 1.000 1.000 1.112
0.972 0.969 0.971 1.000 0.969 0.970 0.970 1.098 1.044 0.970 0.971 0.971 1.208 0.971 0.970 0.970 0.971 1.071
1.000 1.000 1.000 1.031 1.000 1.000 1.000 1.140 1.0773 1.000 1.000 1.000 1.245 1.000 1.000 1.000 1.000 1.112
1.000 1.000 1.000 1.030 1.000 1.000 1.000 1.130 1.076 1.000 1.000 1.000 1.244 1.000 1.000 1.000 1.000 1.112
1.000 1.000 1.000 1.030 1.000 1.000 1.000 1.130 1.075 1.000 1.000 1.000 1.245 1.000 1.000 1.000 1.000 1.102
0.885 0.884 0.883 0.910 0.876 0.884 0.884 1.000 0.950 0.876 0.884 0.884 1.100 0.884 0.882 0.882 0.884 0.975
0.931 0.929 0.930 0.957 0.928 0.929 0.930 1.052 1.000 0.928 0.929 0.925 1.157 0.929 0.926 0.929 0.929 1.025
1.000 1.000 1.000 1.030 1.000 1.000 1.000 1.140 1.076 1.000 1.000 1.000 1.244 1.000 1.000 1.000 1.000 1.112
1.000 1.000 1.000 1.029 1.000 1.000 1.000 1.130 1.075 1.000 1.000 1.000 1.250 1.000 1.000 1.000 1.000 1.102
1.000 1.000 1.000 1.029 1.000 1.000 1.000 1.130 1.080 1.000 1.000 1.000 1.243 1.000 1.000 1.000 1.000 1.102
0.804 0.803 0.803 0.827 0.803 0.803 0.803 0.909 0.864 0.803 0.799 0.804 1.000 0.804 0.802 0.802 0.804 0.886
1.000 1.000 1.000 1.029 1.000 1.000 1.000 1.130 1.075 1.000 1.000 1.000 1.243 1.000 1.000 1.000 1.000 1.102
1.000 1.000 1.000 1.030 1.000 1.000 1.000 1.133 1.079 1.000 1.000 1.000 1.245 1.000 1.000 1.000 1.000 1.107
1.000 1.000 1.000 1.030 1.000 1.000 1.000 1.132 1.075 1.000 1.000 1.000 1.245 1.000 1.000 1.000 1.000 1.102
1.000 1.000 1.000 1.029 1.000 1.000 1.000 1.130 1.075 1.000 1.000 1.000 1.243 1.000 1.000 1.000 1.000 1.102
0.907 0.899 0.899 0.933 0.899 0.899 0.907 1.025 0.974 0.899 0.907 0.907 1.128 0.907 0.902 0.907 0.907 1.000
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5. Conclusions

In this work, a ranking method by the hybrid fuzzy DEA/AHP is proposed for fully ranking units
in a fuzzy environment. The proposed approach takes care of the multiple fuzzy criteria by fuzzy DEA
and ranks units by AHP. It employs benefits of both fuzzy DEA and AHP methods to present a logical
ranking of DMUs that is compatible with the efficient/inefficient classification derived from fuzzy
DEA. Compared with other methods from the literature, the ranking by the hybrid fuzzy DEA/AHP
approach leads to more discrimination. Moreover, since the AHP pairwise comparisons are derived
mathematically from the fuzzy multiple criteria by fuzzy DEA, there is no subjective assessment
of a decision-maker evaluation involved. A study on the facility layout design in manufacturing
systems is provided to illustrate the superiority of the proposed approach. It shows that the ranking
by the proposed approach is compatible with the results by fuzzy DEA and it furthers the analysis by
providing full ranking for all units with multiple fuzzy criteria.
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