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Abstract: This paper essentially presents the last and important steps in the study of (practical)
solvability of two-dimensional product-type systems of difference equations of the following form
zn = αza

n−kwb
n−l , wn = βwc

n−mzd
n−s, n ∈ N0, where k, l, m, s ∈ N, a, b, c, d ∈ Z, and where α, β and

the initial values are complex numbers. It is devoted to the most complex case which has not been
considered so far (the case k = l = s = 1 and m = 3). Closed form formulas for solutions to the
system are found in all possible cases. The structure of the solutions to the system is considered
in detail. The following five cases: (1) b = 0; (2) c = 0; (3) d = 0; (4) ac 6= 0; (5) a = 0, bcd 6= 0,
are considered separately. Some of the situations appear for the first time in the literature.
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1. Introduction

There has been a growing interest in difference equations and systems of difference equations
(see, for example, [1–43]). Among several subfields of recent interest we mention here two, on whose
intersection is the study in this paper. The first one is the classical subfield of finding solutions
to the equations and systems in closed form. Books [6,12–16] contain some old information in the
subfield. Some recent ones can be found, for example, in the following papers: [5,27,31–43] (see
also numerous references therein). For some related results and applications of solvable difference
equations and systems, see also [1–4]. The recent interest has been considerably motivated by the fact
that some new interesting classes of nonlinear difference equations and systems have been solved
by transforming them to known solvable ones. One of our transformations has had some impact
in the recent interest. For more information, see, for example, [5,27,34], and the related references
therein. Beside the line of investigation, there have been some other several ones which also use some
related ideas. The reader can consult the representative paper [34] and find many other related ones
in its list of references. Generally speaking, above mentioned lines of investigations use the method
of transformation in solving the equations and systems therein. In many of these papers obtained
formulas for the solutions to the equations and systems studied therein are used in describing their
long-term behavior (for example, in [5,39]).

The second one is the subfield on concrete systems of difference equations. Some of the papers
which have had some impact on the growing interest in the subfield are [19–21] by Papaschinopoulos
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and Schinas. One of their main ideas is to consider symmetric systems of difference equations obtained
from the following scalar one

xn = f (xn−k, xn−l), n ∈ N0,

where k, l ∈ N, k 6= l, for concrete values of function f , that is, to study some concrete systems of
difference equations of one of the following forms

xn = f (xn−k, yn−l), yn = f (yn−k, xn−l),

xn = f (yn−k, xn−l), yn = f (xn−k, yn−l),

xn = f (yn−k, yn−l), yn = f (xn−k, xn−l), n ∈ N0.

This, among other things, has motivated us to study the solvability of some concrete systems
of the form, such as the ones in [5,39,40] (see also the related references therein). The idea naturally
evolved into the investigation of more general symmetric systems of difference equations. For example,
a few symmetric systems with three variables were studied in [23], while in [22] were studied,
among others, the invariants of the following system of nonlinear difference equations

xn+1 =
a + b(yn + xn−1 + · · ·+ yn−k+1 + xn−k)

yn−k−1

yn+1 =
a + b(xn + yn−1 + · · ·+ xn−k+1 + yn−k)

xn−k−1

where k is an odd number and a, b ∈ (0, ∞), which means that more complex symmetric systems were
studied therein. In fact, the study of the invariants of some equations and systems can be regarded
as a kind of the study of their solvability, so that paper [22], as well as [21] essentially belong to
both subfields.

It is highly expected that the methods and ideas used in the study of symmetric systems of
difference equations can produce the same or related results for the systems which are not symmetric,
but are close to them. For example, the following max-type system of difference equations

xn+1 =
max{anyn, bn}

ynxn−1
, yn+1 =

max{cnxn, dn}
xnyn−1

, n ∈ N0,

where an, bn, cn, dn are sequences of positive numbers and x−1, x0, y−1, y0 are positive numbers,
is such one, and was studied in [25] (for another max-type system see also [28]). Such system
are called close-to-symmetric systems of difference equations and are frequently studied
(see, for example, [8,17,24,29,31,33] and the related references therein). In paper [11] was initiated
study of cyclic systems of difference equations, which naturally evolved into the study of some close
to cyclic systems of difference equations (see, for example, [7,18]).

Studying positive solutions to some classes of equations and systems, such as the ones of the
special cases of the following equation

xn = α +
xp

n−k

xq
n−l

, n ∈ N0,

where α, p, q ∈ (0, ∞), k, l ∈ N, k 6= l (see, for example, [30], as well as [9,10,26] and the related
references therein), as well as of the corresponding two-dimensional symmetric systems of difference
equations, such as

xn = α +
yp

n−k

xq
n−l

, yn = α +
xp

n−k

yq
n−l

, n ∈ N0,

we came across some product-type equations and systems.
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The solvability of the product-type equations and systems in this case is something which should
be known to any expert. Namely, if all the initial values are positive a simple inductive argument shows
that all other terms are also positive, so that by using the logarithm the equation/system is transformed
to a linear one with constant coefficients, which is one of the most known solvable equation/system. If
the domain is changed, then several problems occur which prevent using the standard method for
solving the equations and systems for the case of positive solutions. Our study of the systems on the
complex plane was set off in [39]. It turned out that finding solutions to some related systems is not so
simple problem. The next product-type system was solved in [40], but without detailed analysis of the
structure of its solutions. The forms of the systems studied in [39,40] are similar, which suggested an
investigation of the extensions which include both of them. On the other hand, the occurrence of some
multipliers in some cases of the one-dimensional equation in [34] has suggested an investigation of the
related systems with additional constant multipliers, which has been done for the first time in [31].

Somewhat later, a detailed analysis has shown that complete lists of formulas can be given for
some of concrete systems of difference equations of the following form

zn = αza
n−kwb

n−l , wn = βwc
n−mzd

n−s, n ∈ N, (1)

with “small" values of delays k, l, m and s, which means that they are solvable. Since we have studied
so far a number of the systems of type (1), to facilitate classification and terminology, from now on we
will say that the system is of delay-type (k, m, l, s).

The corresponding lists of formulas for solutions are given first for the systems in [33,43],
unlike the systems in above mentioned paper [40] and for the system in [42]. For some systems
such as the ones in [35,41] the solutions were obtained more easily, so the analysis was simpler and
it was of a different character. Some technical problems in dealing with the systems of the sort
in (1) lead us to devising another method for solving them in [32], which has been recently also
used in [37]. Recently, we have done, for the first time a detailed analysis of the structure of solutions
to a class of product-type systems with an associated polynomial (to the system) of the fourth order
in [38], and quite recently in [36].

The main goal of the whole project is to classify solvable product-type systems of difference
equations of the form in (1) and present their solutions in closed form in terms of the involved
parameters and initial values. Here we continue the project. This paper is a natural continuation of
our research in [31–33,35–43], and essentially presents the last and important steps in the finishing of
the project.

Our task here is to show the solvability of system (1) of delay-type (1, 3, 1, 1) (the case k = l = s = 1
and m = 3), that is, of

zn+1 = αza
nwb

n, wn+1 = βwc
n−2zd

n, n ∈ N0, (2)

where a, b, c, d ∈ Z, α, β, z0, w−2, w−1, w0 ∈ C \ {0}. The case when some of the quantities α, β, z0,
w−2, w−1, w0 is zero we do not take into consideration because in the case are obtained solutions which
are either not defined or trivial, so of not special interest.

The following five cases are considered separately in this paper: (1) b = 0; (2) c = 0; (3) d = 0;
(4) ac 6= 0; (5) a = 0, bcd 6= 0. We would like to point out that the fifth case is not covered with the
fourth one, since the condition a = 0 changes the order of an associated polynomial appearing in the
study. If k, l ∈ Z, then the notation k, l, denotes the set of all j ∈ Z such that k ≤ j ≤ l, whereas we
regard that ∑l−1

j=l cj = 0 for each l ∈ Z.

2. Auxiliary Results

The following three lemmas are useful tools in our investigation and have been already used
in some of our previous papers devoted to the project on product-type systems. The first one
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is a consequence of the Langrage formula applied to the functions fs(t) = ts, s ∈ N (see, for
example, [13] or [44], as well as [40] for a proof based on complex analysis).

Lemma 1. Let

pk(t) = ck

k

∏
j=1

(t− tj),

ck 6= 0 and ti 6= tj, i 6= j. Then
k

∑
j=1

ts
j

p′k(tj)
= 0, 0 ≤ s ≤ k− 2,

and
k

∑
j=1

tk−1
j

p′k(tj)
=

1
ck

.

Further, we need several closed form formulas for some sums which can be found in numerous
books (see, for example, [13] or [16]). For a general method for calculating this type of sums consult
our recent paper [33] where a recurrent formula for this type of sums is presented, and by using it the
sums can be calculated.

Lemma 2. Let

s(i)n (z) =
n

∑
j=1

jizj−1, n ∈ N, (3)

where i ∈ N0 and z ∈ C.
Then

s(0)n (z) =
1− zn

1− z
, (4)

s(1)n (z) =
1− (n + 1)zn + nzn+1

(1− z)2 , (5)

s(2)n (z) =
1 + z− (n + 1)2zn + (2n2 + 2n− 1)zn+1 − n2zn+2

(1− z)3 , (6)

s(3)n (z) =
n3zn(z− 1)3 − 3n2zn(z− 1)2 + 3nzn(z2 − 1)− (zn − 1)(z2 + 4z + 1)

(1− z)4 , (7)

for every z ∈ C \ {1} and n ∈ N.

The following lemma describes the nature/type of the zeros of an arbitrary fourth order
polynomial equation. The results in the lemma are certainly folklore and were essentially obtained,
for example, in [45] (the lemma formulates the results appearing therein in a unified way, although the
notation and some quantities are different).

Lemma 3. Let
P4(t) = t4 + bt3 + ct2 + dt + e,
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where b, c, d, e are real numbers,

∆0 = c2 − 3bd + 12e, ∆1 = 2c3 − 9bcd + 27b2e + 27d2 − 72ce,

∆ =
1
27

(4∆3
0 − ∆2

1), P = 8c− 3b2,

Q = b3 + 8d− 4bc, D = 64e− 16c2 + 16b2c− 16bd− 3b4.

Then, the following statements hold.

(a) If ∆ < 0, then two zeros of P4 are real and different, and two are complex conjugate.
(b) If ∆ > 0, then all the zeros of P4 are real or none is. More precisely,

1◦ if P < 0 and D < 0, then all four zeros of P4 are real and different;
2◦ if P > 0 or D > 0, then there are two pairs of complex conjugate zeros of P4.

(c) If ∆ = 0, then and only then P4 has a multiple zero. The following cases can occur:

1◦ if P < 0, D < 0 and ∆0 6= 0, then two zeros of P4 are real and equal and two are real and simple;
2◦ if D > 0 or (P > 0 and (D 6= 0 or Q 6= 0)), then two zeros of P4 are real and equal and two are

complex conjugate;
3◦ if ∆0 = 0 and D 6= 0, there is a triple zero of P4 and one simple, all real;
4◦ if D = 0, then

4.1◦ if P < 0 there are two double real zeros of P4;
4.2◦ if P > 0 and Q = 0 there are two double complex conjugate zeros of P4;
4.3◦ if ∆0 = 0, then all four zeros of P4 are real and equal to −b/4.

3. Main Results

In this section we state and prove our main results and by using them and some further analysis
we get several corollaries. Before this we give a list of first several members of the sequences zn and
wn, whose values will be used in the proofs of some of the results.

We have

z1 = αza
0wb

0,

w1 = βwc
−2zd

0,

z2 = α(αza
0wb

0)
a(βwc

−2zd
0)

b = α1+aβbza2+bd
0 wbc

−2wab
0 ,

w2 = βwc
−1zd

1 = βwc
−1(αza

0wb
0)

d = αdβzad
0 wc
−1wbd

0 (8)

z3 = αza
2wb

2 = α(α1+aβbza2+bd
0 wbc

−2wab
0 )a(αdβzad

0 wc
−1wbd

0 )b

= α1+a+a2+bdβb+abza3+2abd
0 wabc

−2 wbc
−1wb(a2+bd)

0 .

As we have already mentioned we will consider the following five cases separately: (1) b = 0;
(2) c = 0; (3) d = 0; (4) ac 6= 0; (5) a = 0, bcd 6= 0. Hence, we will prove five results on the solvability
and by further analysis we will get several consequences from them.

Theorem 1. Assume that a, c, d ∈ Z, b = 0, α, β, z0, w−2, w−1, w0 ∈ C \ {0}. Then system (2) is solvable in
closed form.

Proof. Since b = 0, we have

zn+1 = αza
n, wn+1 = βwc

n−2zd
n, n ∈ N0, (9)
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from which it follows that

zn = α∑n−1
j=0 aj

zan

0 , (10)

for n ∈ N.
From (10) we have that

zn = α
1−an
1−a zan

0 , n ∈ N, (11)

when a 6= 1, and

zn = αnz0, n ∈ N, (12)

when a = 1.
Using (10) in the second equation in (9), is obtained

wn = α
d ∑n−2

j=0 aj
βzdan−1

0 wc
n−3, n ≥ 2,

which is equivalent to

w3m+i = α
d ∑3m+i−2

j=0 aj
βzda3m+i−1

0 wc
3(m−1)+i, (13)

for m ∈ N and i = −1, 0, 1.
From (13) and by induction it is proved that

w3m+i = α
d ∑k−1

l=0 cl ∑
3(m−l)+i−2
j=0 aj

β∑k−1
l=0 cl

z
d ∑k−1

l=0 cl a3(m−l)+i−1

0 wck

3(m−k)+i,

for m ≥ k and i = −1, 0, 1, from which for k = m is obtained

w3m+i = α
d ∑m−1

l=0 cl ∑
3(m−l)+i−2
j=0 aj

β∑m−1
l=0 cl

z
d ∑m−1

l=0 cl a3(m−l)+i−1

0 wcm

i , (14)

for m ∈ N and i = −1, 0, 1.
From (8) and (14), we have

w3m−1 =α
d ∑m−1

l=0 cl ∑
3(m−l−1)
j=0 aj

β∑m−1
l=0 cl

z
d ∑m−1

l=0 cl a3(m−l)−2

0 wcm

−1, (15)

w3m =α
d ∑m−1

l=0 cl ∑
3(m−l)−2
j=0 aj

β∑m−1
l=0 cl

z
d ∑m−1

l=0 cl a3(m−l)−1

0 wcm

0 , (16)

w3m+1 =α
d ∑m−1

l=0 cl ∑
3(m−l)−1
j=0 aj

β∑m−1
l=0 cl

z
d ∑m−1

l=0 cl a3(m−l)

0 (βwc
−2zd

0)
cm

=α
d ∑m−1

l=0 cl ∑
3(m−l)−1
j=0 aj

β∑m
l=0 cl

zd ∑m
l=0 cl a3(m−l)

0 wcm+1

−2 , (17)

for m ∈ N.
Now we use the formulas in (15)–(17) in five subcases separately.
Case a 6= 1 6= c 6= a3. From (15)–(17) and by Lemma 2, we obtain

w3m−1 =αd ∑m−1
l=0 cl 1−a3(m−l)−2

1−a β
1−cm
1−c z

ad a3m−cm

a3−c
0 wcm

−1

=α
d

1−a

(
1−cm
1−c −a a3m−cm

a3−c

)
β

1−cm
1−c z

ad a3m−cm

a3−c
0 wcm

−1

=α
d(a3−c+(1−a)(a+a2+c)cm+(c−1)a3m+1)

(1−a)(1−c)(a3−c) β
1−cm
1−c z

ad a3m−cm

a3−c
0 wcm

−1, (18)
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w3m =αd ∑m−1
l=0 cl 1−a3(m−l)−1

1−a β
1−cm
1−c z

da2 a3m−cm

a3−c
0 wcm

0

=α
d

1−a

(
1−cm
1−c −a2 a3m−cm

a3−c

)
β

1−cm
1−c z

da2 a3m−cm

a3−c
0 wcm

0

=α
d(a3−c+(1−a)(c+ca+a2)cm+(c−1)a3m+2)

(1−a)(1−c)(a3−c) β
1−cm
1−c z

da2 a3m−cm

a3−c
0 wcm

0 , (19)

w3m+1 =αd ∑m−1
l=0 cl 1−a3(m−l)

1−a β
1−cm+1

1−c z
d a3m+3−cm+1

a3−c
0 wcm+1

−2

=α
d

1−a

(
1−cm
1−c −a3 a3m−cm

a3−c

)
β

1−cm+1
1−c z

d a3m+3−cm+1

a3−c
0 wcm+1

−2

=α
d(a3−c+(1−a3)cm+1+(c−1)a3m+3)

(1−a)(1−c)(a3−c) β
1−cm+1

1−c z
d a3m+3−cm+1

a3−c
0 wcm+1

−2 , (20)

for m ∈ N.
Case a 6= 1 6= c = a3. From (15)–(17) and by Lemma 2, we obtain

w3m−1 =α
d ∑m−1

l=0 a3l ∑
3(m−l−1)
j=0 aj

β∑m−1
l=0 a3l

z
d ∑m−1

l=0 a3l a3(m−l)−2

0 wa3m

−1

=αd ∑m−1
l=0 a3l 1−a3(m−l)−2

1−a β
1−a3m

1−a3 zdma3m−2

0 wa3m

−1

=α
d

1−a

(
1−a3m

1−a3 −ma3m−2
)

β
1−a3m

1−a3 zdma3m−2

0 wa3m

−1

=α
d(ma3m+1−a3m−ma3m−2+1)

(1−a)(1−a3) β
1−a3m

1−a3 zdma3m−2

0 wa3m

−1 , (21)

w3m =α
d ∑m−1

l=0 a3l ∑
3(m−l)−2
j=0 aj

β∑m−1
l=0 a3l

z
d ∑m−1

l=0 a3l a3(m−l)−1

0 wa3m

0

=αd ∑m−1
l=0 a3l 1−a3(m−l)−1

1−a β
1−a3m

1−a3 zdma3m−1

0 wa3m

0

=α
d

1−a

(
1−a3m

1−a3 −ma3m−1
)

β
1−a3m

1−a3 zmda3m−1

0 wa3m

0

=α
d(ma3m+2−a3m−ma3m−1+1)

(1−a)(1−a3) β
1−a3m

1−a3 zdma3m−1

0 wa3m

0 , (22)

w3m+1 =α
d ∑m−1

l=0 a3l ∑
3(m−l)−1
j=0 aj

β∑m
l=0 a3l

zd ∑m
l=0 a3l a3(m−l)

0 wa3m+3

−2

=αd ∑m−1
l=0 a3l 1−a3(m−l)

1−a β
1−a3m+3

1−a3 zd(m+1)a3m

0 wa3m+3

−2

=α
d

1−a

(
1−a3m

1−a3 −ma3m
)

β
1−a3m+3

1−a3 zd(m+1)a3m

0 wa3m+3

−2

=α
d(ma3m+3−(m+1)a3m+1)

(1−a)(1−a3) β
1−a3m+3

1−a3 zd(m+1)a3m

0 wa3m+3

−2 , (23)

for m ∈ N.
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Case a 6= 1 = c. From (15)–(17) and by Lemma 2, we obtain

w3m−1 =α
d ∑m−1

l=0 ∑
3(m−l−1)
j=0 aj

β∑m−1
l=0 1z

d ∑m−1
l=0 a3(m−l)−2

0 w−1

=αd ∑m−1
l=0

1−a3(m−l)−2
1−a βmz

ad a3m−1
a3−1

0 w−1

=α
d

1−a

(
m−a a3m−1

a3−1

)
βmz

ad a3m−1
a3−1

0 w−1

=α
d(a3m+1+m(1−a3)−a)

(1−a)(1−a3) βmz
ad a3m−1

a3−1
0 w−1, (24)

w3m =α
d ∑m−1

l=0 ∑
3(m−l)−2
j=0 aj

β∑m−1
l=0 1z

d ∑m−1
l=0 a3(m−l)−1

0 w0

=αd ∑m−1
l=0

1−a3(m−l)−1
1−a βmz

da2 a3m−1
a3−1

0 w0

=α
d

1−a

(
m−a2 a3m−1

a3−1

)
βmz

da2 a3m−1
a3−1

0 w0

=α
d(a3m+2+m(1−a3)−a2)

(1−a)(1−a3) βmz
da2 a3m−1

a3−1
0 w0, (25)

w3m+1 =α
d ∑m−1

l=0 ∑
3(m−l)−1
j=0 aj

β∑m
l=0 1zd ∑m

l=0 a3(m−l)

0 w−2

=αd ∑m−1
l=0

1−a3(m−l)
1−a βm+1z

d a3m+3−1
a3−1

0 w−2

=α
d

1−a

(
m−a3 a3m−1

a3−1

)
βm+1z

d a3m+3−1
a3−1

0 w−2

=α
d(a3m+3−(m+1)a3+m)

(1−a)(1−a3) βm+1z
d a3m+3−1

a3−1
0 w−2, (26)

for m ∈ N.
Case a = 1 6= c. From (15)–(17) and by Lemma 2, we obtain

w3m−1 =α
d ∑m−1

l=0 cl ∑
3(m−l−1)
j=0 1

β∑m−1
l=0 cl

z
d ∑m−1

l=0 cl

0 wcm

−1

=αd ∑m−1
l=0 (3(m−l−1)+1)cl

β
1−cm
1−c z

d 1−cm
1−c

0 wcm

−1

=α
d
(
(3m−2) 1−cm

1−c −3c 1−mcm−1+(m−1)cm

(1−c)2

)
β

1−cm
1−c z

d 1−cm
1−c

0 wcm

−1

=α
d(3m−2−(3m+1)c+2cm+cm+1)

(1−c)2 β
1−cm
1−c z

d 1−cm
1−c

0 wcm

−1, (27)

w3m =α
d ∑m−1

l=0 cl ∑
3(m−l)−2
j=0 1

β∑m−1
l=0 cl

z
d ∑m−1

l=0 cl

0 wcm

0

=αd ∑m−1
l=0 (3(m−l)−1)cl

β
1−cm
1−c z

d 1−cm
1−c

0 wcm

0

=α
d
(
(3m−1) 1−cm

1−c −3c 1−mcm−1+(m−1)cm

(1−c)2

)
β

1−cm
1−c z

d 1−cm
1−c

0 wcm

0

=α
d(3m−1−(3m+2)c+cm+2cm+1)

(1−c)2 β
1−cm
1−c z

d 1−cm
1−c

0 wcm

0 , (28)
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w3m+1 =α
d ∑m−1

l=0 cl ∑
3(m−l)−1
j=0 1

β∑m
l=0 cl

zd ∑m
l=0 cl

0 wcm+1

−2

=αd ∑m−1
l=0 3(m−l)cl

β
1−cm+1

1−c z
d 1−cm+1

1−c
0 wcm+1

−2

=α
d
(

3m 1−cm
1−c −3c 1−mcm−1+(m−1)cm

(1−c)2

)
β

1−cm+1
1−c z

d 1−cm+1
1−c

0 wcm+1

−2

=α
3d(m−(m+1)c+cm+1)

(1−c)2 β
1−cm+1

1−c z
d 1−cm+1

1−c
0 wcm+1

−2 , (29)

for m ∈ N.
Case a = c = 1. From (15)–(17), we obtain

w3m−1 =α
d ∑m−1

l=0 ∑
3(m−l−1)
j=0 1

β∑m−1
l=0 1z

d ∑m−1
l=0 1

0 w−1

=αd ∑m−1
l=0 (3(m−l−1)+1)βmzdm

0 w−1

=αd m(3m−1)
2 βmzdm

0 w−1, (30)

w3m =α
d ∑m−1

l=0 ∑
3(m−l)−2
j=0 1

β∑m−1
l=0 1z

d ∑m−1
l=0 1

0 w0

=αd ∑m−1
l=0 (3(m−l)−1)βmzdm

0 w0

=αd m(3m+1)
2 βmzdm

0 w0, (31)

w3m+1 =α
d ∑m−1

l=0 ∑
3(m−l)−1
j=0 1

βm+1zd(m+1)
0 w−2

=α3d ∑m−1
l=0 (m−l)βm+1zd(m+1)

0 w−2

=α3d m(m+1)
2 βm+1zd(m+1)

0 w−2, (32)

for m ∈ N.
From (11), (12), (18)–(32) the theorem follows.

The following corollary follows from Theorem 1.

Corollary 1. Assume that a, c, d ∈ Z, b = 0, α, β, z0, w−2, w−1, w0 ∈ C \ {0}. Then the following statements
are true.

(a) If a 6= 1 6= c 6= a3, then the general solution to system (2) is given by formulas (11), (18)–(20).
(b) If a 6= 1 6= c = a3, then the general solution to system (2) is given by formulas (11), (21)–(23).
(c) If a 6= 1 = c, then the general solution to system (2) is given by formulas (11), (24)–(26).
(d) If a = 1 6= c, then the general solution to system (2) is given by formulas (12), (27)–(29).
(e) If a = c = 1, then the general solution to system (2) is given by formulas (12), (30)–(32).

Theorem 2. Assume that a, b, c ∈ Z, d = 0, α, β, z0, w−2, w−1, w0 ∈ C \ {0}. Then system (2) is solvable in
closed form.

Proof. In this case we have

zn+1 = αza
nwb

n, wn+1 = βwc
n−2, n ∈ N0. (33)
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Hence

w3n+i = βwc
3(n−1)+i, (34)

for n ∈ N and i = −2, 0, and consequently

w3n+i = β∑n−1
j=0 cj

wcn

i , (35)

for n ∈ N and i = −2, 0.
When c 6= 1 relation (35) implies

w3n+i = β
1−cn
1−c wcn

i , (36)

for n ∈ N and i = −2, 0, and

w3n+i = βnwi, (37)

for n ∈ N and i = −2, 0, when c = 1.
Further, we have

zn = α(αza
n−2wb

n−2)
awb

n−1

= α1+aza2

n−2wba
n−2wb

n−1

= α1+a(αza
n−3wb

n−3)
a2

wba
n−2wb

n−1

= α1+a+a2
wba2

n−3wba
n−2wb

n−1za3

n−3,

for n ≥ 3, which can be written as

z3n = α1+a+a2
wba2

3n−3wba
3n−2wb

3n−1za3

3(n−1) (38)

z3n+1 = α1+a+a2
wba2

3n−2wba
3n−1wb

3nza3

3(n−1)+1 (39)

z3n+2 = α1+a+a2
wba2

3n−1wba
3nwb

3n+1za3

3(n−1)+2, (40)

for n ∈ N.
Employing the method of induction we get

z3n = za3n

0

n−1

∏
j=0

(
α1+a+a2

wba2

3j wba
3j+1wb

3j+2

)a3(n−j−1)

(41)

z3n+1 = za3n

1

n−1

∏
j=0

(
α1+a+a2

wba2

3j+1wba
3j+2wb

3j+3

)a3(n−j−1)

(42)

z3n+2 = za3n

2

n−1

∏
j=0

(
α1+a+a2

wba2

3j+2wba
3j+3wb

3j+4

)a3(n−j−1)

, (43)

for n ∈ N0.
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Using formula (35), along with the first equation in (33) with n = 0, 1, into (41)–(43), we get

z3n =za3n

0

n−1

∏
j=0

(
α1+a+a2

βba2 ∑
j−1
l=0 cl

wba2cj

0 βba ∑
j
l=0 cl

wbacj+1

−2 βb ∑
j
l=0 cl

wbcj+1

−1

)a3(n−j−1)

=α∑3n−1
j=0 aj

β
ba2 ∑n−1

j=0 a3(n−j−1) ∑
j−1
l=0 cl+ba ∑n−1

j=0 a3(n−j−1) ∑
j
l=0 cl+b ∑n−1

j=0 a3(n−j−1) ∑
j
l=0 cl

× za3n

0 w
bac ∑n−1

j=0 cja3(n−j−1)

−2 w
bc ∑n−1

j=0 cja3(n−j−1)

−1 w
ba2 ∑n−1

j=0 cja3(n−j−1)

0 , (44)

z3n+1 =(αza
0wb

0)
a3n

n−1

∏
j=0

(
α1+a+a2

βba2 ∑
j
l=0 cl

wba2cj+1

−2 βba ∑
j
l=0 cl

wbacj+1

−1 βb ∑
j
l=0 cl

wbcj+1

0

)a3(n−j−1)

=α∑3n
j=0 aj

β
ba2 ∑n−1

j=0 a3(n−j−1) ∑
j
l=0 cl+ba ∑n−1

j=0 a3(n−j−1) ∑
j
l=0 cl+b ∑n−1

j=0 a3(n−j−1) ∑
j
l=0 cl

× za3n+1

0 w
ba2c ∑n−1

j=0 cja3(n−j−1)

−2 w
bac ∑n−1

j=0 cja3(n−j−1)

−1 w
b ∑n

j=0 cja3(n−j)

0 , (45)

z3n+2 =(α1+aβbza2

0 wbc
−2wab

0 )a3n

×
n−1

∏
j=0

(
α1+a+a2

βba2 ∑
j
l=0 cl

wba2cj+1

−1 βba ∑
j
l=0 cl

wbacj+1

0 βb ∑
j+1
l=0 cl

wbcj+2

−2

)a3(n−j−1)

=α∑3n+1
j=0 aj

β
ba2 ∑n−1

j=0 a3(n−j−1) ∑
j
l=0 cl+ba ∑n−1

j=0 a3(n−j−1) ∑
j
l=0 cl+b ∑n

j=0 a3(n−j) ∑
j
l=0 cl

× za3n+2

0 w
bc ∑n

j=0 cja3(n−j)

−2 w
ba2c ∑n−1

j=0 cja3(n−j−1)

−1 w
ab ∑n

j=0 cja3(n−j)

0 , (46)

for n ∈ N0.

As in the proof of the previous theorem, there are five subcases, depending on the values of
parameters a and c, for which we get closed form formulas for solutions to system (2).

Case a 6= 1 6= c 6= a3. From (44)–(46) and by Lemma 2, we have

z3n =α∑3n−1
j=0 aj

β
ba2 ∑n−1

j=0 a3(n−j−1) ∑
j−1
l=0 cl+ba ∑n−1

j=0 a3(n−j−1) ∑
j
l=0 cl+b ∑n−1

j=0 a3(n−j−1) ∑
j
l=0 cl

× za3n

0 w
bac ∑n−1

j=0 cja3(n−j−1)

−2 w
bc ∑n−1

j=0 cja3(n−j−1)

−1 w
ba2 ∑n−1

j=0 cja3(n−j−1)

0

=α
1−a3n

1−a β
ba2 ∑n−1

j=0 a3(n−j−1) 1−cj
1−c +ba ∑n−1

j=0 a3(n−j−1) 1−cj+1
1−c +b ∑n−1

j=0 a3(n−j−1) 1−cj+1
1−c

× za3n

0 w
bac a3n−cn

a3−c
−2 w

bc a3n−cn

a3−c
−1 w

ba2 a3n−cn

a3−c
0

=α
1−a3n

1−a β
b(a2+a+1)

1−c
1−a3n

1−a3 −
b(a2+ac+c)

1−c
a3n−cn

a3−c za3n

0 w
bac a3n−cn

a3−c
−2 w

bc a3n−cn

a3−c
−1 w

ba2 a3n−cn

a3−c
0

=α
1−a3n

1−a β
b(a3−c+(c−1)a3n+2−(a2+ac+c)(a−1)cn)

(1−c)(a3−c)(1−a) za3n

0 w
bac a3n−cn

a3−c
−2 w

bc a3n−cn

a3−c
−1 w

ba2 a3n−cn

a3−c
0 , (47)
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z3n+1 =α∑3n
j=0 aj

β
ba2 ∑n−1

j=0 a3(n−j−1) ∑
j
l=0 cl+ba ∑n−1

j=0 a3(n−j−1) ∑
j
l=0 cl+b ∑n−1

j=0 a3(n−j−1) ∑
j
l=0 cl

× za3n+1

0 w
ba2c ∑n−1

j=0 cja3(n−j−1)

−2 w
bac ∑n−1

j=0 cja3(n−j−1)

−1 w
b ∑n

j=0 cja3(n−j)

0

=α
1−a3n+1

1−a β
ba2 ∑n−1

j=0 a3(n−j−1) 1−cj+1
1−c +ba ∑n−1

j=0 a3(n−j−1) 1−cj+1
1−c +b ∑n−1

j=0 a3(n−j−1) 1−cj+1
1−c

× za3n+1

0 w
ba2c a3n−cn

a3−c
−2 w

bac a3n−cn

a3−c
−1 w

b a3n+3−cn+1

a3−c
0

=α
1−a3n+1

1−a β
b(a2+a+1)

1−c
1−a3n

1−a3 −
bc(a2+a+1)

1−c
a3n−cn

a3−c za3n+1

0 w
ba2c a3n−cn

a3−c
−2 w

bac a3n−cn

a3−c
−1 w

b a3n+3−cn+1

a3−c
0

=α
1−a3n+1

1−a β
b(a3−c+(c−1)a3n+3+(1−a3)cn+1)

(1−c)(1−a)(a3−c) za3n+1

0 w
ba2c a3n−cn

a3−c
−2 w

bac a3n−cn

a3−c
−1 w

b a3n+3−cn+1

a3−c
0 , (48)

z3n+2 =α∑3n+1
j=0 aj

β
ba2 ∑n−1

j=0 a3(n−j−1) ∑
j
l=0 cl+ba ∑n−1

j=0 a3(n−j−1) ∑
j
l=0 cl+b ∑n

j=0 a3(n−j) ∑
j
l=0 cl

× za3n+2

0 w
bc ∑n

j=0 cja3(n−j)

−2 w
ba2c ∑n−1

j=0 cja3(n−j−1)

−1 w
ab ∑n

j=0 cja3(n−j)

0

=α
1−a3n+2

1−a β
ba2 ∑n−1

j=0 a3(n−j−1) 1−cj+1
1−c +ba ∑n−1

j=0 a3(n−j−1) 1−cj+1
1−c +b ∑n

j=0 a3(n−j) 1−cj+1
1−c

× za3n+2

0 w
bc a3n+3−cn+1

a3−c
−2 w

ba2c a3n−cn

a3−c
−1 w

ab a3n+3−cn+1

a3−c
0

=α
1−a3n+2

1−a β
b(a2+a)

1−c
1−a3n

1−a3 + b(1−a3n+3)
(1−c)(1−a3)

− bc(a2+a)
1−c

a3n−cn

a3−c
− bc

1−c
a3n+3−cn+1

a3−c

× za3n+2

0 w
bc a3n+3−cn+1

a3−c
−2 w

ba2c a3n−cn

a3−c
−1 w

ab a3n+3−cn+1

a3−c
0

=α
1−a3n+2

1−a β
b(a3−c+(c−1)a3n+4+(1−a)(a2+a+c)cn+1)

(1−c)(1−a)(a3−c) za3n+2

0

× w
bc a3n+3−cn+1

a3−c
−2 w

ba2c a3n−cn

a3−c
−1 w

ab a3n+3−cn+1

a3−c
0 , (49)

for n ∈ N0.

Case a 6= 1 6= c = a3. From (44)–(46) and by Lemma 2, we have

z3n =α∑3n−1
j=0 aj

β
ba2 ∑n−1

j=0 a3(n−j−1) ∑
j−1
l=0 a3l+ba ∑n−1

j=0 a3(n−j−1) ∑
j
l=0 a3l+b ∑n−1

j=0 a3(n−j−1) ∑
j
l=0 a3l

× za3n

0 w
ba4 ∑n−1

j=0 a3ja3(n−j−1)

−2 w
ba3 ∑n−1

j=0 a3ja3(n−j−1)

−1 w
ba2 ∑n−1

j=0 a3ja3(n−j−1)

0

=α
1−a3n

1−a β
ba2 ∑n−1

j=0 a3(n−j−1) 1−a3j

1−a3 +ba ∑n−1
j=0 a3(n−j−1) 1−a3j+3

1−a3 +b ∑n−1
j=0 a3(n−j−1) 1−a3j+3

1−a3

× za3n

0 wbna3n+1

−2 wbna3n

−1 wbna3n−1

0

=α
1−a3n

1−a β
ba2

1−a3

(
1−a3n

1−a3 −na3n−3
)
+ ba

1−a3

(
1−a3n

1−a3 −na3n
)
+ b

1−a3

(
1−a3n

1−a3 −na3n
)

× za3n

0 wbna3n+1

−2 wbna3n

−1 wbna3n−1

0

=α
1−a3n

1−a β
b na3n+2−a3n−na3n−1+1

(1−a)(1−a3) za3n

0 wbna3n+1

−2 wbna3n

−1 wbna3n−1

0 , (50)
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z3n+1 =α∑3n
j=0 aj

β
ba2 ∑n−1

j=0 a3(n−j−1) ∑
j
l=0 a3l+ba ∑n−1

j=0 a3(n−j−1) ∑
j
l=0 a3l+b ∑n−1

j=0 a3(n−j−1) ∑
j
l=0 a3l

× za3n+1

0 w
ba5 ∑n−1

j=0 a3ja3(n−j−1)

−2 w
ba4 ∑n−1

j=0 a3ja3(n−j−1)

−1 w
b ∑n

j=0 a3ja3(n−j)

0

=α
1−a3n+1

1−a β
ba2 ∑n−1

j=0 a3(n−j−1) 1−a3j+3

1−a3 +ba ∑n−1
j=0 a3(n−j−1) 1−a3j+3

1−a3 +b ∑n−1
j=0 a3(n−j−1) 1−a3j+3

1−a3

× za3n+1

0 wbna3n+2

−2 wbna3n+1

−1 wb(n+1)a3n

0

=α
1−a3n+1

1−a β
ba2

1−a3

(
1−a3n

1−a3 −na3n
)
+ ba

1−a3

(
1−a3n

1−a3 −na3n
)
+ b

1−a3

(
1−a3n

1−a3 −na3n
)

× za3n+1

0 wbna3n+2

−2 wbna3n+1

−1 wb(n+1)a3n

0

=α
1−a3n+1

1−a β
b(na3n+3−(n+1)a3n+1)

(1−a)(1−a3) za3n+1

0 wbna3n+2

−2 wbna3n+1

−1 wb(n+1)a3n

0 , (51)

z3n+2 =α∑3n+1
j=0 aj

β
ba2 ∑n−1

j=0 a3(n−j−1) ∑
j
l=0 a3l+ba ∑n−1

j=0 a3(n−j−1) ∑
j
l=0 a3l+b ∑n

j=0 a3(n−j) ∑
j
l=0 a3l

× za3n+2

0 w
ba3 ∑n

j=0 a3ja3(n−j)

−2 w
ba5 ∑n−1

j=0 a3ja3(n−j−1)

−1 w
ab ∑n

j=0 a3ja3(n−j)

0

=α
1−a3n+2

1−a β
ba2 ∑n−1

j=0 a3(n−j−1) 1−a3j+3

1−a3 +ba ∑n−1
j=0 a3(n−j−1) 1−a3j+3

1−a3 +b ∑n
j=0 a3(n−j) 1−a3j+3

1−a3

× za3n+2

0 wb(n+1)a3n+3

−2 wbna3n+2

−1 wb(n+1)a3n+1

0

=α
1−a3n+2

1−a β
ba2

1−a3

(
1−a3n

1−a3 −na3n
)
+ ba

1−a3

(
1−a3n

1−a3 −na3n
)
+ b

1−a3

(
1−a3n+3

1−a3 −(n+1)a3n+3
)

× za3n+2

0 wb(n+1)a3n+3

−2 wbna3n+2

−1 wb(n+1)a3n+1

0

=α
1−a3n+2

1−a β
b((n+1)a3n+4−a3n+3−(n+1)a3n+1+1)

(1−a)(1−a3) za3n+2

0 wb(n+1)a3n+3

−2 wbna3n+2

−1 wb(n+1)a3n+1

0 , (52)

for n ∈ N0.

Case If a 6= 1 = c. From (44)–(46) and by Lemma 2, we have

z3n =α∑3n−1
j=0 aj

β
ba2 ∑n−1

j=0 ja3(n−j−1)+ba ∑n−1
j=0 (j+1)a3(n−j−1)+b ∑n−1

j=0 (j+1)a3(n−j−1)

× za3n

0 w
ba ∑n−1

j=0 a3(n−j−1)

−2 w
b ∑n−1

j=0 a3(n−j−1)

−1 w
ba2 ∑n−1

j=0 a3(n−j−1)

0

=α
1−a3n

1−a β
ba2 a3n−na3+n−1

(a3−1)2
+ba a3n+3−(n+1)a3+n

(a3−1)2
+b a3n+3−(n+1)a3+n

(a3−1)2

× za3n

0 w
ba 1−a3n

1−a3
−2 w

b 1−a3n

1−a3
−1 w

ba2 1−a3n

1−a3
0

=α
1−a3n

1−a β
b (a2+a+1)a3n+2−na5−(n+1)a4−(n+1)a3+(n−1)a2+na+n

(a3−1)2

× za3n

0 w
ba 1−a3n

1−a3
−2 w

b 1−a3n

1−a3
−1 w

ba2 1−a3n

1−a3
0

=α
1−a3n

1−a β
b a3n+2−na3+n−a2

(a−1)(a3−1) za3n

0 w
ba 1−a3n

1−a3
−2 w

b 1−a3n

1−a3
−1 w

ba2 1−a3n

1−a3
0 , (53)
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z3n+1 =α∑3n
j=0 aj

β
ba2 ∑n−1

j=0 (j+1)a3(n−j−1)+ba ∑n−1
j=0 (j+1)a3(n−j−1)+b ∑n−1

j=0 (j+1)a3(n−j−1)

× za3n+1

0 w
ba2 ∑n−1

j=0 a3(n−j−1)

−2 w
ba ∑n−1

j=0 a3(n−j−1)

−1 w
b ∑n

j=0 a3(n−j)

0

=α
1−a3n+1

1−a β
b a3n+3−(n+1)a3+n

(a−1)(a3−1) za3n+1

0 w
ba2 1−a3n

1−a3
−2 w

ba 1−a3n

1−a3
−1 w

b 1−a3n+3

1−a3
0 , (54)

z3n+2 =α∑3n+1
j=0 aj

β
ba2 ∑n−1

j=0 (j+1)a3(n−j−1)+ba ∑n−1
j=0 (j+1)a3(n−j−1)+b ∑n

j=0(j+1)a3(n−j)

× za3n+2

0 w
b ∑n

j=0 a3(n−j)

−2 w
ba2 ∑n−1

j=0 a3(n−j−1)

−1 w
ab ∑n

j=0 a3(n−j)

0

=α
1−a3n+2

1−a β
ba2 a3n+3−(n+1)a3+n

(a3−1)2
+ba a3n+3−(n+1)a3+n

(a3−1)2
+b a3n+6−(n+2)a3+n+1

(a3−1)2

× za3n+2

0 w
b 1−a3n+3

1−a3
−2 w

ba2 1−a3n

1−a3
−1 w

ab 1−a3n+3

1−a3
0

=α
1−a3n+2

1−a β
b a3n+4+(1−a3)n−(a3+a−1)

(a−1)(a3−1) za3n+2

0 w
b 1−a3n+3

1−a3
−2 w

ba2 1−a3n

1−a3
−1 w

ab 1−a3n+3

1−a3
0 , (55)

for n ∈ N0.

Case If a = 1 6= c. From (44)–(46) and by Lemma 2, we have

z3n =α3nβ
b ∑n−1

j=0 ∑
j−1
l=0 cl+b ∑n−1

j=0 ∑
j
l=0 cl+b ∑n−1

j=0 ∑
j
l=0 cl

z0w
bc ∑n−1

j=0 cj

−2 w
bc ∑n−1

j=0 cj

−1 w
b ∑n−1

j=0 cj

0

=α3nβ
b ∑n−1

j=0
1−cj
1−c +b ∑n−1

j=0
1−cj+1

1−c +b ∑n−1
j=0

1−cj+1
1−c z0w

bc 1−cn
1−c

−2 w
bc 1−cn

1−c
−1 w

b 1−cn
1−c

0

=α3nβ
b(2cn+1+cn−3(c−1)n−2c−1)

(1−c)2 z0w
bc 1−cn

1−c
−2 w

bc 1−cn
1−c

−1 w
b 1−cn

1−c
0 , (56)

z3n+1 =α3n+1β
b ∑n−1

j=0 ∑
j
l=0 cl+b ∑n−1

j=0 ∑
j
l=0 cl+b ∑n−1

j=0 ∑
j
l=0 cl

z0w
bc ∑n−1

j=0 cj

−2 w
bc ∑n−1

j=0 cj

−1 w
b ∑n

j=0 cj

0

=α3n+1β
3b ∑n−1

j=0
1−cj+1

1−c z0w
bc 1−cn

1−c
−2 w

bc 1−cn
1−c

−1 w
b 1−cn+1

1−c
0

=α3n+1β
3b cn+1−(c−1)n−c

(1−c)2 z0w
bc 1−cn

1−c
−2 w

bc 1−cn
1−c

−1 w
b 1−cn+1

1−c
0 , (57)

z3n+2 =α3n+2β
b ∑n−1

j=0 ∑
j
l=0 cl+b ∑n−1

j=0 ∑
j
l=0 cl+b ∑n

j=0 ∑
j
l=0 cl

× z0w
bc ∑n

j=0 cj

−2 w
bc ∑n−1

j=0 cj

−1 w
b ∑n

j=0 cj

0

=α3n+2β
b ∑n−1

j=0
1−cj+1

1−c +b ∑n−1
j=0

1−cj+1
1−c +b ∑n

j=0
1−cj+1

1−c

× z0w
bc 1−cn+1

1−c
−2 w

bc 1−cn
1−c

−1 w
b 1−cn+1

1−c
0

=α3n+2β
b(cn+2+2cn+1−3(c−1)n+1−4c)

(1−c)2 z0w
bc 1−cn+1

1−c
−2 w

bc 1−cn
1−c

−1 w
b 1−cn+1

1−c
0 , (58)

for n ∈ N0.

Case If a = c = 1. From (44)–(46), we have

z3n =α3nβ
b ∑n−1

j=0 j+b ∑n−1
j=0 (j+1)+b ∑n−1

j=0 (j+1)z0wbn
−2wbn

−1wbn
0

=α3nβb n(3n+1)
2 z0wbn

−2wbn
−1wbn

0 , (59)



Symmetry 2017, 9, 200 15 of 31

z3n+1 =α3n+1β
b ∑n−1

j=0 (j+1)+b ∑n−1
j=0 (j+1)+b ∑n−1

j=0 (j+1)z0wbn
−2wbn

−1wb(n+1)
0

=α3n+1β3b n(n+1)
2 z0wbn

−2wbn
−1wb(n+1)

0 , (60)

z3n+2 =α3n+2β
b ∑n−1

j=0 (j+1)+b ∑n−1
j=0 (j+1)+b ∑n

j=0(j+1)z0wb(n+1)
−2 wbn

−1wb(n+1)
0

=α3n+2βb (n+1)(3n+2)
2 z0wb(n+1)

−2 wbn
−1wb(n+1)

0 , (61)

for n ∈ N0.
From all above presented formulas we see that system of difference equations (2) is solvable in

this case, as claimed.

The statements in the following corollary are direct consequences of the formulas presented in the
proof of Theorem 2.

Corollary 2. Assume that a, b, c ∈ Z, d = 0, α, β, z0, w−2, w−1, w0 ∈ C \ {0}. Then the following statements
are true.

(a) If a 6= 1 6= c 6= a3, then the general solution to system (2) is given by (36), (47)–(49).
(b) If a 6= 1 6= c = a3, then the general solution to system (2) is given by (36), (50)–(52).
(c) If a 6= 1 = c, then the general solution to system (2) is given by (37), (53)–(55).
(d) If a = 1 6= c, then the general solution to system (2) is given by (36), (56)–(58).
(e) If a = c = 1, then the general solution to system (2) is given by (37), (59)–(61).

The following result concerns the case c = 0. Note that under the condition system (2) of difference
equations is

zn+1 = αza
nwb

n, wn+1 = βzd
n, n ∈ N0, (62)

which is system (3.15) in [33].
From (62) it follows that

zn+1 = αβbza
nzbd

n−1,

for n ∈ N.
How this product-type difference equation can be solved was explained in the proof of

Theorem 3.3 in [33]. From the closed-form formulas obtained in the proof of Theorem 3.3 therein it
follows directly that the following result holds. Hence, to avoid repeating, the proof of the theorem is
omitted here.

Theorem 3. Assume that a, b, d ∈ Z, c = 0, α, β, z0, w0 ∈ C \ {0}. Then the following statements are true.

(a) If bd 6= 0, a2 + 4bd 6= 0 and a + bd 6= 1, then the general solution to system (2) is given by

zn =α
(λ2−1)λn+1

1 −(λ1−1)λn+1
2 +λ1−λ2

(λ1−λ2)(λ1−1)(λ2−1) β
b
(λ2−1)λn

1−(λ1−1)λn
2+λ1−λ2

(λ1−λ2)(λ1−1)(λ2−1) z
λn+1

1 −λn+1
2

λ1−λ2
0 w

b
λn

1−λn
2

λ1−λ2
0 ,

wn =α
d
(λ2−1)λn

1−(λ1−1)λn
2+λ1−λ2

(λ1−λ2)(λ1−1)(λ2−1) β
1+bd

(λ2−1)λn−1
1 −(λ1−1)λn−1

2 +λ1−λ2
(λ1−λ2)(λ1−1)(λ2−1) z

d
λn

1−λn
2

λ1−λ2
0 w

bd
λn−1

1 −λn−1
2

λ1−λ2
0 ,

for n ∈ N, where

λ1,2 =
a±
√

a2 + 4bd
2

.
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(b) If bd 6= 0, a2 + 4bd = 0 and a + bd 6= 1, then the general solution to system (2) is given by

zn =α

1−(n+1)λn
1+nλn+1

1
(1−λ1)

2 β
b

1−nλn−1
1 +(n−1)λn

1
(1−λ1)

2 z(n+1)λn
1

0 w
bnλn−1

1
0

wn =α
d

1−nλn−1
1 +(n−1)λn

1
(1−λ1)

2 β

1−2λ1+(n−1)λn
1−(n−2)λn+1

1
(1−λ1)

2 z
dnλn−1

1
0 w(1−n)λn

1
0

for n ∈ N, where
λ1 =

a
2

.

(c) If bd 6= 0, a2 + 4bd 6= 0 and a + bd = 1, then the general solution to system (2) is given by

zn =α
(−bd)n+1+(n+1)bd+n

(1+bd)2 β
b (−bd)n+nbd+n−1

(1+bd)2 z
1−(−bd)n+1

1+bd
0 w

b 1−(−bd)n
1+bd

0 ,

wn =α
d (−bd)n+nbd+n−1

(1+bd)2 β
1+bd (−bd)n−1+(n−1)bd+n−2

(1+bd)2 z
d 1−(−bd)n

1+bd
0 w

bd 1−(−bd)n−1
1+bd

0 ,

for n ∈ N.
(d) If bd 6= 0, a2 + 4bd = 0 and a + bd = 1, then the general solution to system (2) is given by

zn =α
n(n+1)

2 βb (n−1)n
2 zn+1

0 wbn
0

wn =αd (n−1)n
2 β

(3−n)n
2 zdn

0 w1−n
0

for n ∈ N.
(e) If bd = 0 and a 6= 1, then the general solution to system (2) is given by

zn =α
1−an
1−a βb 1−an−1

1−a zan

0 wban−1

0

wn =αd 1−an−1
1−a βzdan−1

0 ,

for n ∈ N.
(f) If bd = 0 and a = 1, then the general solution to system (2) is given by

zn =αnβb(n−1)z0wb
0

wn =αd(n−1)βzd
0,

for n ∈ N.

Theorem 4. Assume that a, b, c, d ∈ Z, ac 6= 0, α, β, z0, w−2, w−1, w0 ∈ C \ {0}. Then system (2) is solvable
in closed form.

Proof. To deal with the case we use and modify our method previously used, for example, in [40,43].
Since α, β, z0, w−2, w−1, w0 ∈ C \ {0}, we have znwn 6= 0 for n ∈ N0. Hence,

wb
n =

zn+1

αza
n

, n ∈ N0, (63)

wb
n+1 = βbwbc

n−2zbd
n , n ∈ N0, (64)

from which we get

zn+2 = α1−cβbza
n+1zbd

n zc
n−1z−ac

n−2, (65)
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for n ≥ 2.
Let δ = α1−cβb,

a1 = a, b1 = bd, c1 = c, d1 = −ac, y1 = 1, (66)

then

zn+2 = δy1 za1
n+1zb1

n zc1
n−1zd1

n−2, n ≥ 2. (67)

From (67) is obtained

zn+2 = δy1(δza1
n zb1

n−1zc1
n−2zd1

n−3)
a1 zb1

n zc1
n−1zd1

n−2,

= δy1+a1 za1a1+b1
n zb1a1+c1

n−1 zc1a1+d1
n−2 zd1a1

n−3

= δy2 za2
n zb2

n−1zc2
n−2zd2

n−3, (68)

for n ≥ 3, where

a2 := a1a1 + b1, b2 := b1a1 + c1, c2 := c1a1 + d1, d2 := d1a1, y2 := y1 + a1. (69)

Suppose

zn+2 = δyk zak
n+2−kzbk

n+1−kzck
n−kzdk

n−k−1, (70)

for a k ≥ 2 and n ≥ k + 1, and

ak = a1ak−1 + bk−1, bk = b1ak−1 + ck−1,

ck = c1ak−1 + dk−1, dk = d1ak−1,
(71)

yk = yk−1 + ak−1. (72)

Using (67) in (70), we get

zn+2 = δyk (δza1
n+1−kzb1

n−kzc1
n−k−1zd1

n−k−2)
ak zbk

n+1−kzck
n−kzdk

n−k−1

= δyk+ak za1ak+bk
n+1−k zb1ak+ck

n−k zc1ak+dk
n−k−1 zd1ak

n−k−2

= δyk+1 zak+1
n+1−kzbk+1

n−k zck+1
n−k−1zdk+1

n−k−2, (73)

for n ≥ k + 2, where
ak+1 := a1ak + bk, bk+1 := b1ak + ck,

ck+1 := c1ak + dk, dk+1 := d1ak,
(74)

yk+1 := yk + ak. (75)

Hence, by the induction we get that (70)–(72) hold.
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From (70) with k = n− 1 and (8), it follows that

zn+2 =δyn−1 zan−1
3 zbn−1

2 zcn−1
1 zdn−1

0

=(α1−cβb)yn−1(α1+a+a2+bdβb+abza3+2abd
0 wabc

−2 wbc
−1wb(a2+bd)

0 )an−1

× (α1+aβbza2+bd
0 wbc

−2wab
0 )bn−1(αza

0wb
0)

cn−1 zdn−1
0

=α(1−c)yn−1+(1+a+a2+bd)an−1+(1+a)bn−1+cn−1 βbyn−1+b(1+a)an−1+bbn−1

× z(a3+2abd)an−1+(a2+bd)bn−1+acn−1+dn−1
0 wabcan−1+bcbn−1

−2 wbcan−1
−1

× wb(a2+bd)an−1+abbn−1+bcn−1
0

=αyn+2−cyn−1 βbyn+1 zan+2−can−1
0 wbcan

−2 wbcan−1
−1 wban+1

0 , (76)

for n ∈ N0.
From (71) we have

ak = a1ak−1 + b1ak−2 + c1ak−3 + d1ak−4, k ≥ 5, (77)

and that bk, ck and dk also satisfy the equation, and using (74) and (75) for k = 0,−1,−2,−3 is obtained

a−3 = 0, a−2 = 0, a−1 = 0, a0 = 1, (78)

y−3 = y−2 = y−1 = y0 = 0, y1 = 1, (79)

and

yk =
k−1

∑
j=0

aj, (80)

(see, for example, [33] for more details).
The solvability of (77) is a classical thing. Hence, by finding closed form formula for ak,

employing it in (80), then using Lemma 2, is calculated yk. These two formulas and (76) give a
closed-form formula for solution to (65).

Now note that

zd
n =

wn+1

βwc
n−2

, n ∈ N0, (81)

zd
n+1 = αdzad

n wbd
n , n ∈ N0, (82)

from which we get

wn+2 = αdβ1−awa
n+1wbd

n wc
n−1w−ac

n−2, n ∈ N0. (83)

As above is get

wn+2 = ηyk wak
n+2−kwbk

n+1−kwck
n−kwdk

n−k−1, (84)

for every k, n ∈ N, such that n ≥ k− 1, where η = αdβ1−a, (ak)k∈N, (bk)k∈N, (ck)k∈N and (dk)k∈N are
defined by (66) and (71), while (yk)k∈N is defined by (72) and (79).
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From (84) with k = n + 1 and (8), we have

wn+2 = ηyn+1 wan+1
1 wbn+1

0 wcn+1
−1 wdn+1

−2

= (αdβ1−a)yn+1(βwc
−2zd

0)
an+1 wbn+1

0 wcn+1
−1 wdn+1

−2

= αdyn+1 β(1−a)yn+1+an+1 zdan+1
0 wcan+1+dn+1

−2 wcn+1
−1 wbn+1

0

= αdyn+1 βyn+2−ayn+1 zdan+1
0 wc(an+1−aan)

−2 wc(an−aan−1)
−1 wan+2−aan+1

0 , (85)

for n ∈ N0.
Recall that closed form formulas for ak and yk can be found. Applying them into (85) we show the

solvability of equation (83). It can be checked that (76) and (85) present a solution to (2), from which
the theorem follows.

Corollary 3. Consider system (2) with a, b, c, d ∈ Z, ac 6= 0, α, β, z0, w−2, w−1, w0 ∈ C \ {0}. Then the
general solution to (2) is given by (76) and (85), where (ak)k∈N is defined by (77) and (78), while (yk)k∈N is
defined by (79) and (80).

Detailed Form of Solutions Given in (76) and (85)

Equation (77) is not only theoretically but also practically solvable. The reason for this is that its
characteristic polynomial

p4(λ) = λ4 − aλ3 − bdλ2 − cλ + ac, (86)

for the case ac 6= 0, is of the forth degree, thus, solvable by radicals.
Note that the equation p4(λ) = 0 can be written as follows [44].(

λ2 − a
2

λ +
s
2

)2

−
((

a2

4
+ s + bd

)
λ2 −

(
as
2
− c
)

λ +
s2

4
− ac

)
= 0, (87)

Now, choose s so that the expression in the second bracket in (87) is a perfect square. Thus, it must be

(as− 2c)2 = (a2 + 4s + 4bd)(s2 − 4ac),

that is,

s3 + bds2 − 3acs− a3c− c2 − 4abcd = 0. (88)

Hence, (87) can be written as(
λ2 − a

2
λ +

s
2

)2

−
(√

a2 + 4s + 4bd
2

λ− as− 2c
2
√

a2 + 4s + 4bd

)2

= 0, (89)

which is equivalent to

λ2 −
(

a
2
+

√
a2 + 4s + 4bd

2

)
λ +

s
2
+

as− 2c
2
√

a2 + 4s + 4bd
= 0, (90)

λ2 −
(

a
2
−
√

a2 + 4s + 4bd
2

)
λ +

s
2
− as− 2c

2
√

a2 + 4s + 4bd
= 0. (91)

Using the change of variables s = t− bd
3 in (88), it follows that

t3 −
(

b2d2

3
+ 3ac

)
t +

2b3d3

27
− a3c− c2 − 3abcd = 0. (92)
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Let

p = −
(

b2d2

3
+ 3ac

)
and q = −27a3c + 27c2 + 81abcd− 2b3d3

27
.

As usual, a solution to (92) is found in the form t = u + v. Putting it into (92) and requesting
uv = −p/3, is get u3 + v3 = −q and u3v3 = −p3/27. Hence, u3 and v3 are solutions to the equation
z2 + qz− p3/27 = 0, so, they must be (−q±

√
q2 + 4p3/27)/2.

Hence

t =
3

√
− q

2
−
√

q2

4
+

p3

27
+

3

√
− q

2
+

√
q2

4
+

p3

27
, (93)

where any of the three possible values of the right-hand side can be chosen. If p = −∆0/3 and
q = −∆1/27, then it can be written as

t =
1

3 3
√

2

(
3

√
∆1 −

√
∆2

1 − 4∆3
0 +

3

√
∆1 +

√
∆2

1 − 4∆3
0

)
. (94)

For such chosen s, that is, t, (90) and (91) can be solved and by some calculation it is obtained that
the zeros of p4 are

λ1 =
a
4
+

1
2

√
a2

4
+

2bd
3

+ t +
1
2

√√√√ a2

2
+

4bd
3
− t− Q

4
√

a2

4 + 2bd
3 + t

, (95)

λ2 =
a
4
+

1
2

√
a2

4
+

2bd
3

+ t− 1
2

√√√√ a2

2
+

4bd
3
− t− Q

4
√

a2

4 + 2bd
3 + t

, (96)

λ3 =
a
4
− 1

2

√
a2

4
+

2bd
3

+ t +
1
2

√√√√ a2

2
+

4bd
3
− t +

Q

4
√

a2

4 + 2bd
3 + t

, (97)

λ4 =
a
4
− 1

2

√
a2

4
+

2bd
3

+ t− 1
2

√√√√ a2

2
+

4bd
3
− t +

Q

4
√

a2

4 + 2bd
3 + t

, (98)

where

Q :=− a3 − 8c− 4abd. (99)

Recall, that the nature of these λj’s depends on the sign of the discriminant

∆ :=
1

27
(4∆3

0 − ∆2
1), (100)

where

∆0 :=b2d2 + 9ac, (101)

∆1 :=− 2b3d3 + 81acbd + 27a3c + 27c2, (102)
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and the signs of

P := −8bd− 3a2 (103)

and

D := 48ac− 16b2d2 − 16a2bd− 3a4. (104)

Zeros of p4 are different and none of them is 1. If a, b, c and d are chosen such that

∆0 = b2d2 + 9ac < 0,

then it will be ∆ < 0, from which by Lemma 3 we have in this case that p4 has four different zeros.
Moreover, since ∆ < 0 two zeros are real and two are complex-conjugate.

Zeros of p4 are different and one of them is 1. Polynomial p4 has a zero equal to 1 if p4(1) =

1− a− bd− c + ac = 0, that is, if

(a− 1)(c− 1) = bd, (105)

so that

p4(λ) = λ4 − aλ3 − (a− 1)(c− 1)λ2 − cλ + ac. (106)

Thus, if we choose a and c such that

p′4(1) = 4− 3a− 2(a− 1)(c− 1)− c 6= 0,

that is, (2a− 1)(2c + 1) 6= 3, then p4 will be such a polynomial if ∆ 6= 0. For example, if a = 3 and
c = 2, then bd = 2 6= 0, ∆ 6= 0, which means that polynomial p4 has all zeros mutually different and
exactly one of them is equal to 1

p4(λ) = λ4 − 3λ3 − 2λ2 − 2λ + 6 = (λ− 1)(λ3 − 2λ2 − 4λ− 6). (107)

Since in these two cases λj 6= λi, i 6= j, then the general solution to (77) is

an = γ1λn
1 + γ2λn

2 + γ3λn
3 + γ4λn

4 , n ∈ N, (108)

where γi, i = 1, 4, are arbitrary constants.
Lemma 1 implies

4

∑
j=1

λl
j

p′4(λj)
= 0 for l = 0, 2, and

4

∑
j=1

λ3
j

p′4(λj)
= 1. (109)

From initial conditions (78) and (109), it is obtained

an =
4

∑
j=1

λn+3
j

p′4(λj)
=

λn+3
1

(λ1 − λ2)(λ1 − λ3)(λ1 − λ4)
+

λn+3
2

(λ2 − λ1)(λ2 − λ3)(λ2 − λ4)

+
λn+3

3
(λ3 − λ1)(λ3 − λ2)(λ3 − λ4)

+
λn+3

4
(λ4 − λ1)(λ4 − λ2)(λ4 − λ3)

, (110)
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for n ≥ −3 ([40]).
Combining (80) and (110), we get

yn =
n−1

∑
j=0

4

∑
i=1

λ
j+3
i

p′4(λi)
=

4

∑
i=1

λ3
i (λ

n
i − 1)

p′4(λi)(λi − 1)
, n ∈ N, (111)

when λi 6= 1, i = 1, 4, and

yn =
n

2− a + c− 2ac
+

4

∑
i=2

λ3
i (λ

n
i − 1)

p′4(λi)(λi − 1)
, n ∈ N, (112)

when one of the zeros is 1, say λ1, is equal to 1.
Note that if one of the zeros is equal to 1, then we have

p4(λ) =λ4 − aλ3 − (a− 1)(c− 1)λ2 − cλ + ac

=(λ− 1)(λ3 + (1− a)λ2 + (1− a)cλ− ac). (113)

By using the change of variables λ = t + a−1
3 in (113) we get that the equation

λ3 + (1− a)λ2 + (1− a)cλ− ac = 0, (114)

is transformed to the following one
t3 + p̃t + q̃ = 0,

with

p̃ = − (a− 1)(a + 3c− 1)
3

and q̃ = −
(

2(a− 1)3

27
+

c(a− 1)2

3
+ ac

)
, (115)

whose solutions are given by

tj = εj−1 3

√
− q̃

2
−
√

q̃2

4
+

p̃3

27
+ εj−1 3

√
− q̃

2
+

√
q̃2

4
+

p̃3

27
, j = 1, 3,

where ε3 = 1 and ε 6= 1.
Hence,

λj =
a− 1

3
+ εj−2 3

√
− q̃

2
−
√

q2

4
+

p̃3

27
+ εj−2 3

√
− q̃

2
+

√
q̃2

4
+

p̃3

27
, (116)

for j = 2, 4, are the other three zeros of the equation p4(λ) = 0, in this case.
A simple calculation along with (109) shows that (111) holds also for n = −j, j = 0, 3.

The previous analysis along with Corollary 3 implies the following corollary.

Corollary 4. Assume that a, b, c, d ∈ Z, ac 6= 0, α, β, z0, w−2, w−1, w0 ∈ C \ {0} and ∆ 6= 0. Then the
following statements are true.

(a) If (a− 1)(c− 1) 6= bd, then the general solution to (2) is given by (76) and (85), where (an)n≥−3 is
given by (110), (yn)n≥−3 is given by (111), while λj’s, j = 1, 4, are given by (95)–(98).

(b) If (a− 1)(c− 1) = bd and (2a− 1)(2c + 1) 6= 3, then the general solution to (2) is given by (76) and
(85), where (an)n≥−3 is given by (110) with λ1 = 1, (yn)n≥−3 is given by (112), λ1 = 1, while λj’s,
j = 2, 4, are given by (116) and (115).
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p4 has only one double zero which is equal to 1. Polynomial (86) has a double zero equal to 1 if (105)
holds and

(2a− 1)(2c + 1) = 3. (117)

From (117) we have that it must be a = 2 and c = 0, or a = 1 and c = 1, or a = 0 and c = −2,
or a = −1 and c = −1. If a = 0 or c = 0, then ac = 0, which contradicts to the assumption ac 6= 0.

If a = c = 1, then bd = 0, from which it follows that

p4(λ) = λ4 − λ3 − λ + 1 = (λ− 1)2(λ2 + λ + 1),

and consequently

λ3,4 =
−1± i

√
3

2
, (118)

are the non-unit zeros of polynomial p4 in the case.
If a = c = −1, then bd = 4, from which it follows that

p4(λ) = λ4 + λ3 − 4λ2 + λ + 1 = (λ− 1)2(λ2 + 3λ + 1),

and consequently

λ3,4 =
−3±

√
5

2
, (119)

are the non-unit zeros of polynomial p4 in the case.
From this, we have proved in passing, that there are no a, c ∈ Z \ {0}, such that 1 is a triple zero

of p4 or that it has two pairs of double zeros one of which is 1.
In these two cases we have (see, for example, [38])

an =
n(1− λ3)(1− λ4) + 3λ3λ4 − 2λ3 − 2λ4 + 1

(1− λ3)2(1− λ4)2 +
λn+3

3
(λ3 − 1)2(λ3 − λ4)

+
λn+3

4
(λ4 − 1)2(λ4 − λ3)

, (120)

and

yn =
n−1

∑
j=0

(
j(1− λ3)(1− λ4) + 3λ3λ4 − 2λ3 − 2λ4 + 1

(1− λ3)2(1− λ4)2 +
λ

j+3
3

(λ3 − 1)2(λ3 − λ4)
+

λ
j+3
4

(λ4 − 1)2(λ4 − λ3)

)

=
(n− 1)n

2(1− λ3)(1− λ4)
+

n(3λ3λ4 − 2λ3 − 2λ4 + 1)
(1− λ3)2(1− λ4)2 +

λ3
3(λ

n
3 − 1)

(λ3 − 1)3(λ3 − λ4)
+

λ3
4(λ

n
4 − 1)

(λ4 − 1)3(λ4 − λ3)
.

(121)

p4 has a double zero different from 1. Let bd = 0, then

p4(λ) = λ4 − aλ3 − cλ + ac = (λ− a)(λ3 − c).

If we take c = a3, then it is obtained

p4(λ) = (λ− a)2(λ2 + aλ + a2),

which for a ∈ Z \ {0, 1} is a polynomial with a double zero different from 1 and two non-real
complex-conjugate zeros.
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Since, in the case λ1 = λ2, λi 6= λj, 2 ≤ i, j ≤ 4, we have

an = (γ1 + γ2n)λn
2 + γ3λn

3 + γ4λn
4 , n ∈ N, (122)

where γi, i = 1, 4, are arbitrary constants, and the solution satisfying (78) can be obtained, for example,
by letting λ1 → λ2 in (110) [38]

an =
λn+2

2 ((n + 3)(λ2 − λ3)(λ2 − λ4)− λ2(2λ2 − λ3 − λ4))

(λ2 − λ3)2(λ2 − λ4)2

+
λn+3

3
(λ3 − λ2)2(λ3 − λ4)

+
λn+3

4
(λ4 − λ2)2(λ4 − λ3)

. (123)

From (80), (123) and by Lemma 2, we get

yn =
n−1

∑
j=0

(
λ

j+2
2 ((j + 3)(λ2 − λ3)(λ2 − λ4)− λ2(2λ2 − λ3 − λ4))

(λ2 − λ3)2(λ2 − λ4)2

+
λ

j+3
3

(λ3 − λ2)2(λ3 − λ4)
+

λ
j+3
4

(λ4 − λ2)2(λ4 − λ3)

)
=

λ3
2 − nλn+2

2 + (n− 1)λn+3
2

(λ2 − λ3)(λ2 − λ4)(1− λ2)2 +
(λ4

2 − 2λ3
2λ3 − 2λ3

2λ4 + 3λ2
2λ3λ4)(λ

n
2 − 1)

(λ2 − λ3)2(λ2 − λ4)2(λ2 − 1)

+
λ3

3(λ
n
3 − 1)

(λ3 − λ2)2(λ3 − λ4)(λ3 − 1)
+

λ3
4(λ

n
4 − 1)

(λ4 − λ2)2(λ4 − λ3)(λ4 − 1)
. (124)

From the previous analysis and Corollary 3 we obtain the following result.

Corollary 5. Assume that a, b, c, d ∈ Z, ac 6= 0 and α, β, z0, w−2, w−1, w0 ∈ C \ {0}. Then the following
statements are true.

(a) If only one of the zeros of p4 is double and different from 1, then the general solution to (2) is given by (76)
and (85), where (an)n≥−3 is given by (123), while (yn)n≥−3 is given by (124).

(b) If 1 is a unique double zero of polynomial p4, say λ1 = λ2 = 1, then the general solution to (2) is given
by (76) and (85), where (an)n≥−3 is given by (120), (yn)n≥−3 is given by (121), while λ3,4 are given by
(118) if a = c = 1 or by (119) if a = c = −1.

Two pairs of different double zeros. In this case it must be D = 0 which implies that

16t2 + 16a2t + 3a4 − 48ac = 0, (125)

where t = bd. On the other hand, it must be ∆ = 0, which is equivalent to 4∆3
0 = ∆2

1, that is,

(−2b3d3 + 81acbd + 27a3c + 27c2)2 = 4(b2d2 + 9ac)3,

from which it follows that

c
(
16at4 + 4(a3 + c)t3 − 207a2ct2 − 162ac(a3 + c)t− 27c(a3 − c)2)

)
= 0. (126)

The problem of the existence of a joint zero of the polynomials in (125) and (126) for some integers
a, b, c and d, such that ac 6= 0, seems quite technical, so we leave it to the reader.
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Solutions to (77) in this case are

an = (γ1 + γ2n)λn
1 + (γ3 + γ4n)λn

3 , n ∈ N, (127)

where γi, i = 1, 4 are constants. The solution to (127) such that (78) holds is [38]

an =
λn+2

2 (n(λ2 − λ4)
2 + λ2

2 − 4λ2λ4 + 3λ2
4)

(λ2 − λ4)4 +
λn+2

4 (n(λ4 − λ2)
2 + λ2

4 − 4λ2λ4 + 3λ2
2)

(λ4 − λ2)4 . (128)

From (80), (128) and Lemma 2, we get

yn =
n−1

∑
j=0

(
λ

j+2
2 (j(λ2 − λ4)

2 + λ2
2 − 4λ2λ4 + 3λ2

4)

(λ2 − λ4)4 +
λ

j+2
4 (j(λ4 − λ2)

2 + λ2
4 − 4λ2λ4 + 3λ2

2)

(λ4 − λ2)4

)

=
λ3

2 − nλn+2
2 + (n− 1)λn+3

2
(λ2 − λ4)2(1− λ2)2 +

(λ4
2 − 4λ3

2λ4 + 3λ2
2λ2

4)(λ
n
2 − 1)

(λ2 − λ4)4(λ2 − 1)

+
λ3

4 − nλn+2
4 + (n− 1)λn+3

4
(λ4 − λ2)2(1− λ4)2 +

(λ4
4 − 4λ2λ3

4 + 3λ2
2λ2

4)(λ
n
4 − 1)

(λ4 − λ2)4(λ4 − 1)
. (129)

Corollary 6. Assume that a, b, c, d ∈ Z, ac 6= 0 and α, β, z0, w−2, w−1, w0 ∈ C \ {0}. Then the following
statements are true.

(a) If polynomial p4 has two pairs of double zeros both different from 1, then the general solution to (2) is
given by (76) and (85), where (an)n≥−3 is given by (128), while (yn)n≥−3 is given by (129).

(b) The polynomial in (86) cannot have two pairs of double zeros such that one of them is equal to 1.

Triple zero case. In this case it must be ∆ = ∆0 = 0, or equivalently, ∆0 = ∆1 = 0. Hence,

ac = −b2d2/9 and 2b3d3 − 81acbd− 27a3c− 27c2 = 0,

from which it follows that

11(bd)3 + 3a2(bd)2 − (bd)4

3a2 = 0. (130)

Since bd = 0 implies ac = 0, which contradicts to the assumption ac 6= 0, from (130) it follows that

s2 − 33s− 9 = 0, (131)

where s = bd/a2. Hence, it must be

bd/a2 =
33 +

√
1125

2
or bd/a2 =

33−
√

1125
2

,

which is not possible since bd/a2 is a rational number, whereas (33±
√

1125)/2 are both irrational
numbers. Hence, p4 cannot have a triple, and consequently cannot have a quadruple zero.

Corollary 7. Assume that a, b, c, d ∈ Z, ac 6= 0 and α, β, z0, w−2, w−1, w0 ∈ C \ {0}. Then polynomial (86)
cannot have a triple zero.

Theorem 5. Assume that b, c, d ∈ Z, a = 0, bcd 6= 0, α, β, z0, w−2, w−1, w0 ∈ C \ {0}. Then system (2) is
solvable in closed form.
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Proof. In this case (2) is

zn+1 = αwb
n, wn+1 = βwc

n−2zd
n, n ∈ N0. (132)

Using the first equation in (132) into the second one it follows that

wn+1 = αdβwbd
n−1wc

n−2, n ∈ N. (133)

Let η = αdβ,

β1 = bd, γ1 = c, δ1 = 0, x1 = 1, (134)

then, we have

wn+1 = ηwβ1
n−1wγ1

n−2wδ1
n−3, n ∈ N. (135)

Hence

wn+1 =ηx1(ηwβ1
n−3wγ1

n−4)
β1 wγ1

n−2wδ1
n−3

=ηx1+β1 wγ1
n−2wβ1β1+δ1

n−3 wγ1β1
n−4

=ηx2 wβ2
n−2wγ2

n−3wδ2
n−4,

for n ≥ 3, where
x2 := x1 + β1, β2 := γ1, γ2 := β1β1 + δ1, δ2 := γ1β1.

Suppose that

wn+1 =ηxk wβk
n−kwγk

n−k−1wδk
n−k−2, (136)

for a k ∈ N \ {1} and every n ≥ k + 1, and

βk = γk−1, γk = β1βk−1 + δk−1, δk = γ1βk−1, (137)

xk = xk−1 + βk−1. (138)

Using (135) in (136), we have

wn+1 =ηxk (ηwβ1
n−k−2wγ1

n−k−3)
βk wγk

n−k−1wδk
n−k−2

=ηxk+βk wγk
n−k−1wβ1βk+δk

n−k−2 wγ1βk
n−k−3

=ηxk+1 wβk+1
n−k−1wγk+1

n−k−2wδk+1
n−k−3,

for a k ≥ 2 and n ≥ k + 2, and where

βk+1 := γk, γk+1 := β1βk + δk, δk+1 := γ1βk,

xk+1 := xk + βk.

From this we see that hypotheses (136)–(138) are true.
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Let k = n− 1, then from (136)–(138), it follows that

wn+1 =ηxn−1 wβn−1
1 wγn−1

0 wδn−1
−1

=(αdβ)xn−1(βwc
−2zd

0)
βn−1 wγn−1

0 wδn−1
−1

=αdxn−1 βxn−1+βn−1 zdβn−1
0 wcβn−1

−2 wδn−1
−1 wγn−1

0

=αdxn−1 βxn zdβn−1
0 wcβn−1

−2 wcβn−2
−1 wβn

0 , (139)

for n ≥ 3.
From (137) it follows that

βk = β1βk−2 + γ1βk−3, k ≥ 4, (140)

and that γk and δk also satisfy (140).
From (140) and since γ1 = c 6= 0, we have that

βk−3 =
βk − β1βk−2

γ1
, (141)

From (138) and (141) with k = 3, 2, 1 and some calculation is obtained

β−3 = 0, β−2 = 0, β−1 = 1, β0 = 0, (142)

x−3 = x−2 = x−1 = 0, x0 = x1 = 1, (143)

and

xk = 1 +
k−1

∑
j=1

β j. (144)

Since equation (140) is solvable, we can calculate βk, from which along with (144) and Lemma 2,
yk is calculated. These facts along with (139) gives a closed form formula for (133).

Using (139) in the first equation in (132) we get

zn+1 = α1+bdxn−2 βbxn−1 zbdβn−2
0 wbcβn−2

−2 wbcβn−3
−1 wbβn−1

0 , n ∈ N0. (145)

It is not difficult to see that (139) and (145) are solutions to (2) in the case.

Theorem 5 solves theoretically system (2) when a = 0 and bcd 6= 0. Now we will practically solve
it in terms of the parameters and initial values. The following polynomial

p3(λ) = λ3 − bdλ− c, (146)

is the characteristic one associated to Equation (140), and its solutions are

λj =
1

3 3
√

2

(
εj 3

√
∆̂1 −

√
∆̂2

1 − 4∆̂3
0 + εj 3

√
∆̂1 +

√
∆̂2

1 − 4∆̂3
0

)
, j = 0, 2, (147)

where

∆̂0 = 3bd =: −3p and ∆̂1 = 27c =: −27q, (148)

and ε3 = 1, ε 6= 1.
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Zeros of p3 are different and none of them is 1. In this case it must be ∆̂2
1 6= 4∆̂3

0, which can written as

27c2 6= 4(bd)3.

Hence, in the case all the zeros of p3 are different. If additionally p3(1) 6= 1, that is, c + bd 6= 1,
then none of the zeros is 1. For example, if c = bd = k ∈ N, then we have such a situation.

Zeros of p3 are different and one of them is 1. Polynomial p3 has a zero equal to 1 if c + bd = 1. Then

p3(λ) = λ3 + (c− 1)λ− c = (λ− 1)(λ2 + λ + c).

Hence

λ1 = 1, λ2,3 =
1±
√

1− 4c
2

, (149)

are the zeros of the equation p3(λ) = 0, in this case. Since p′3(1) = 2 + c, it follows that p3 can have 1
as a double zero only if c = −2.

The general solution to (140) in these two cases is

βn = α1λn
1 + α2λn

2 + α3λn
3 , n ∈ N, (150)

for some constants αi, i = 1, 3, which due to γ1 = c 6= 0 can be prolonged for every non-positive index.
From Lemma 1 with Q(t) = p3(t) = ∏3

j=1(t− λj), we have

3

∑
j=1

λl
j

p′3(λj)
= 0, for l = 0, 1, and

3

∑
j=1

λ2
j

p′3(λj)
= 1. (151)

From (142), (150) and (151), we get

βn =
λn+3

1
(λ1 − λ2)(λ1 − λ3)

+
λn+3

2
(λ2 − λ1)(λ2 − λ3)

+
λn+3

3
(λ3 − λ1)(λ3 − λ2)

, (152)

for n ≥ −2.
From (144) and (152), it follows that

xn = 1 +
n−1

∑
k=1

3

∑
j=1

λk+3
j

p′3(λj)
, (153)

for n ∈ N.
If λj 6= 1, j = 1, 3, then from formula (153), it follows that

xn =1 +
λ4

1(λ
n−1
1 − 1)

(λ1 − λ2)(λ1 − λ3)(λ1 − 1)
+

λ4
2(λ

n−1
2 − 1)

(λ2 − λ1)(λ2 − λ3)(λ2 − 1)

+
λ4

3(λ
n−1
3 − 1)

(λ3 − λ1)(λ3 − λ2)(λ3 − 1)
, (154)

for n ∈ N, moreover, (154) holds for every n ≥ −2.
If one of the zeros is 1, say λ3, then 1 6= λ1 6= λ2 6= 1, and we have

xn =1 +
λ4

1(λ
n−1
1 − 1)

(λ1 − λ2)(λ1 − 1)2 +
λ4

2(λ
n−1
2 − 1)

(λ2 − λ1)(λ2 − 1)2 +
n− 1

(λ1 − 1)(λ2 − 1)
. (155)

for n ∈ N. Moreover, due to (151), (155) holds for every n ≥ −2.
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Corollary 8. Assume that a, b, c, d ∈ Z, a = 0, bcd 6= 0, α, β, z0, w−2, w−1, w0 ∈ C \ {0} and ∆̂2
1 6= 4∆̂3

0.
Then the following statements are true.

(a) If c + bd 6= 1, then the general solution to (2) is given by (139) and (145), where (βn)n≥−2 is given by
(152), (xn)n≥−2 is given by (154), while λj’s, j = 1, 3 are given by (147) and (148).

(b) If c + bd = 1, then p3 has a unique zero equal to 1, say λ3, and the general solution to (2) is given by
formulas (139) and (145), where (βn)n≥−2 is given by (152) with λ3 = 1, (xn)n≥−2 is given by (155),
while λj’s, j = 1, 3 are given by (149).

One of the zeros is double. In this case it must be ∆̂2
1 = 4∆̂3

0, that is, (bd)3 = 27c2/4. Assume that m
is a double zero of p3, then it must be

m3 − bdm− c = 0 and 3m2 − bd = 0,

from which it follows that

p3(λ) = λ3 − 3m2λ + 2m3 = (λ−m)2(λ + 2m). (156)

Since bd 6= 0, we have m 6= 0. From this and since c 6= 0, from (156) we see that p3 cannot have
a triple zero. It also cannot have a unique zero equal to 1, since otherwise we would have 2m = −1,
from which it would be bd = 3/4 /∈ Z, which would be a contradiction. Note also that the polynomial
can have 1 as a double zero when bd = 3 and c = −2.

If λ1 6= λ2 = λ3, then the general solution to (140) has the following form

βn = α̂1λn
1 + (α̂2 + α̂3n)λn

2 , n ∈ N, (157)

where α̂i, i = 1, 3 are constants. Since, in our case condition (142) must be satisfied, the solution
(βn)n≥−2 to (140) can be found by letting λ3 → λ2 in (152), so that

βn =
λn+3

1 +
(
2λ2 − 3λ1 + n(λ2 − λ1)

)
λn+2

2
(λ2 − λ1)2 , (158)

for n ≥ −2.
From (144) and (158), we have

xn =1 +
n−1

∑
j=1

β j = 1 +
n−1

∑
j=1

λ
j+3
1 +

(
2λ2 − 3λ1 + j(λ2 − λ1)

)
λ

j+2
2

(λ2 − λ1)2 , (159)

for every n ∈ N.
From (159) and Lemma 2, we get

xn =1 +
λ4

1(λ
n−1
1 − 1)

(λ2 − λ1)2(λ1 − 1)
+

(2λ2 − 3λ1)λ
3
2(λ

n−1
2 − 1)

(λ2 − λ1)2(λ2 − 1)
+

λ3
2(1− nλn−1

2 + (n− 1)λn
2 )

(λ2 − λ1)(λ2 − 1)2 , (160)

for n ∈ N (in fact, (160) hold also for every n ≥ −2).
If we assume that λ1 6= 1 and λ2 = λ3 = 1, then from (159) it follows that

xn =1 +
λ4

1(λ
n−1
1 − 1)

(λ1 − 1)3 +
(2− 3λ1)(n− 1)

(λ1 − 1)2 +
(n− 1)n
2(1− λ1)

. (161)

A direct calculation shows that (161) holds also for every n ≥ −2.
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Corollary 9. Assume that b, c, d ∈ Z, a = 0, bcd 6= 0, α, β, z0, w−2, w−1, w0 ∈ C \ {0} and ∆̂2
1 = 4∆̂3

0.
Then the following statements are true.

(a) If c + bd 6= 1, then the general solution to (2) is given by (139) and (145), where (βn)n≥−2 is given by
(158), while (xn)n≥−2 is given by (160).

(b) If bd = 3 and c = −2, then 1 is a double zero of p3, say, λ2 = λ3 = 1, then the general solution to
system (2) is given by (139) and (145), where (βn)n≥−2 is given by (158) with λ2 = 1, (xn)n≥−2 is
given by (161), while λ3 = −2.

(c) It is not possible that 1 is a simple zero of p3.

Triple zero case. Since in this case p3 must have the form in (156), we see that the only possibility
that this polynomial has a triple zero is if m = 0, which is impossible due to the condition c 6= 0.
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38. Stević, S. Solvable product-type system of difference equations whose associated polynomial is of the fourth
order. Electron. J. Qual. Theory Differ. Equ. 2017, 2017, doi:10.1186/s13662-017-1204-4.
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