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Abstract: Cosmic Dark Fluid is considered as a non-stationary medium, in which electromagnetic
waves propagate, and magneto-electric field structures emerge and evolve. A medium-type
representation of the Dark Fluid allows us to involve in its analysis the concepts and mathematical
formalism elaborated in the framework of classical covariant electrodynamics of continua, and to
distinguish dark analogs of well-known medium-effects, such as optical activity, pyro-electricity,
piezo-magnetism, electro- and magneto-striction and dynamo-optical activity. The Dark Fluid is
assumed to be formed by a duet of a Dark Matter (a pseudoscalar axionic constituent) and Dark
Energy (a scalar element); respectively, we distinguish electrodynamic effects induced by these
two constituents of the Dark Fluid. The review contains discussions of 10 models, which describe
electrodynamic effects induced by Dark Matter and/or Dark Energy. The models are accompanied
by examples of exact solutions to the master equations, correspondingly extended; applications
are considered for cosmology and space-times with spherical and pp-wave symmetries. In these
applications we focused the attention on three main electromagnetic phenomena induced by the Dark
Fluid: first, emergence of Longitudinal Magneto-Electric Clusters; second, generation of anomalous
electromagnetic responses; third, formation of Dark Epochs in the Universe history.
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1. Introduction

1.1. Preface

The term Dark Fluid was introduced into the theory of Universe evolution in order to unify two key
constitutive elements of modern cosmology: the Dark Matter and Dark Energy (for short, DM and
DE, respectively). DM and DE appeared in the scientific lexicon in two different ways. The Dark
Matter is associated foremost with the explanation of the flat velocity curves of the spiral galaxies
rotation, and observations of a gravitational lensing (see, e.g., [1–4] for historical details and references).
The Dark Energy is considered as a reason for the late-time accelerated expansion of the Universe
discovered at the end of 20th century [5–7] (see also [8–12] for theories, constraints and references).
The tendency to unify DM and DE into a Dark Fluid can be motivated by two hypotheses. The first
one is that such a unified dark cosmic substratum is suitable to play the role of a dominant source of
the Universe evolution, since the total contribution of the DM and DE into the Universe energy balance
is estimated to be 95% (72 % for DE and 23% for DM). The second hypothesis is that DM and DE are
connected by specific interactions, and links between them display some common essence [13–17].
From this point of view the Dark Fluid can be considered as an energy reservoir for the baryonic
matter and cosmic photons, and thus, as a cosmic medium, in which the electromagnetic fields of all
known scales and origins are forming. There is a confidence that in a basic state the Dark Fluid does
not include electrically charged particles; however, the hypothesis exists that the Dark Fluid particles
can possess electric and/or magnetic dipole moments [18]. In other words, the Dark Fluid itself cannot
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be the source of electromagnetic fields, however, being in fact a cosmic medium, it can influence the
processes of photon generation inside the baryonic matter, the process of photon propagation in the
Universe, and the processes of organization of stationary electric and magnetic configurations. Thus,
the Dark Fluid can act indirectly on photons, which provide observers with information about the
Universe evolution.

How a theorist could distinguish indirect electromagnetic effects produced by the Dark Matter
from the effects produced by the Dark Energy? For this purpose one has to choose basic models
for the DM and DE. Generally, one can consider two alternative approaches (see, e.g., [19–26] for
review, details and references). In the framework of the first approach, the Dark Fluid is treated as
a real fluid with specific equation of state; in terms of proposed extended versions of the Field Theory,
in order to describe DM and DE, one has to deal with a couple of real fields: e.g., two scalar fields,
the pseudoscalar and scalar fields, etc. The second (alternative) approach is based on the idea that
the effect of accelerated expansion of the Universe is a cumulative result of specific interactions
between gravitation and known fields: scalar, pseudoscalar, electromagnetic, massive vector, gauge, etc.
The non-minimal coupling of the mentioned fields to the space-time curvature is one of the most
known examples of such specific interaction (see, e.g., [27–34]).

In one part of our works, we follow the idea that in terms of Field Theory the Dark Matter can be
described by some pseudoscalar field, φ, and the Dark Energy can be described by (true) scalar field, Ψ;
in terms of particle physics, this approach means that a pseudo-Goldstone boson (axion) relates to
the Dark Matter, and some true boson corresponds to the Dark Energy. In the second part of our
works we consider coupling of photons and pseudo-Goldstone bosons to the space-time curvature,
thus replacing the real Dark Energy by some non-minimal field conglomerate, which possesses the
macroscopic properties similar to the ones typical for an effective Dark Energy. Of course, we admit,
that the pseudo-Goldstone bosons can form only one fraction of the Dark Matter (e.g., sterile neutrino
can form the second fraction, etc.). In any case we consider the models, in which the DM can be
coupled to the electromagnetic field only via the pseudo-Goldstone boson subsystems.

The most probable candidates to the Dark Matter particles are axions, massive pseudo-Goldstone
bosons. The particles of this type were postulated in 1977 by Peccei and Quinn [35] in order to
solve the problem of strong CP-invariance, and were introduced into the high energy physics as
new light bosons by Weinberg [36] and Wilczek [37] in 1978. The description of these axions in
terms of the Field Theory is based on the introduction of a pseudoscalar field φ, which is assumed
to interact with electromagnetic and SU(2)—symmetric gauge fields. The theory of interaction
between electromagnetic and pseudoscalar fields was elaborated by Ni in 1977 [38]. Later these
pseudo-Goldstone bosons were indicated as axions, and due to the works of Sikivie (see, e.g., [39]) we
recognize now this sector of science as axion electrodynamics.

The story of how axions appeared in the cosmological context is also well-known. The Dark
Matter is a cosmic substance, which neither emits nor scatters the electromagnetic radiation. The mass
density distribution of the DM is presented in the astrophysical catalogues as a result of observations
and theoretical simulations. One of the most attractive hypothesis links the Dark Matter with massive
pseudo-Goldstone bosons, the axions, which are considered now as an appropriate candidate for the
DM particles (see, e.g., [40–48] for details, review and references). At present, the axion as a massive
boson is not yet discovered; one can find the description of basic experiments, aimed for the axion
detection, e.g., in [49–53].

We are interested to develop the Electrodynamics of a cosmic Dark Fluid. Clearly, the Dark Fluid
produces electromagnetic effects of two types: the effects of the first one are connected with the
Dark Matter, the effects of the second type are provoked by the photon coupling to the Dark Energy.
The effects of the first type are described below in the framework of axion electrodynamics and
its extensions; it is the field-type representation of the axion-photon coupling. The DF-induced
electromagnetic effects of the second type, caused by the DE constituent, are described below in the
framework of a macroscopic medium-type representation.
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Electrodynamic systems are associated with a basic channel of information about the Universe
structure, since the majority of information about Cosmos is delivered with photons registered by
terrestrial and satellite detectors. There are a number of schemes for description of the DF influence on
this channel of information. In the cosmological context, the electrodynamic system can be considered
as a marker, which signalizes (by its electromagnetic response) about the variations in the state of the
Dark Fluid, the energy reservoir, into which this marker is immersed. We are interested to answer
the question: what mechanisms might be responsible for a transmission of information about the
Dark Fluid state to the electrodynamic systems? These mechanisms could help to reconstruct features
of the Dark Fluid evolution, e.g., by tracking down specific fine details of the spectrum of observed
electromagnetic waves, of their phase and group velocities.

Classification and discussion of schemes of mathematical description of these marker-effects are
the main purposes of the presented review. The key idea is that the Dark Fluid can be considered as
a specific cosmic medium in which the electromagnetic fields evolve. In this sense we can attract the
attention to effects, which are the analogs of well-known and well-tested effects in the electrodynamics
of moving polarizable/magnetizable continuous media in classical (relativistic) theory. For this
purpose, we introduce standardly the electromagnetic potential four-vector Ai, the Maxwell tensor
Fik, which describes the electromagnetic field strength. The next step, associated with formulation
of extended equations of a Dark Fluid Electrodynamics, can be made based on formulation of an
action functional. Below we start the classification of terms included into the action functional. The
description of each model starts with the corresponding term of the total Lagrangian, then we discuss
the properties of the susceptibility tensor, and finally, consider examples of exact solutions of the
master equations as illustrations.

1.2. Ten Schemes of Description of Dark Fluid Coupling to Electromagnetic Field

Below we consider 10 models, which describe interactions between the electromagnetic field
and the Dark Fluid. Enumeration of models, displayed below in the list of models, corresponds to
the Sections of the review. The Models 1–4 relate to the photon couplings to the axionic Dark Matter;
the mathematical description is based on the standard axion electrodynamics (see the Model 1), and on
its extensions (see the Models 2–4). The Models 5–8 describe the coupling of photons to the DE
constituent of the Dark Fluid; for the description we use the medium representation of bosonic systems
associated with a scalar Dark Energy. The Model 9 deals with representation of the DE-effects as
cumulative effects of non-minimal coupling of photons to the gravity field. The Model 10 presents
an example of description of the DF-influence on photons mediated by coupling to a fermionic system.
More precisely, this Model 10 deals with a multi-component relativistic self-interacting plasma,
and thus, it deals with the DM and DE interactions with the cooperative electromagnetic field linking
charged plasma particles.

The list of models is the following.

(1) Minimal coupling of photons to the axionic Dark Matter.
(2) Non-stationary optical activity induced by the axionic Dark Matter.
(3) Gradient-type interactions with the axionic Dark Matter.
(4) Dynamo-optical interactions associated with the axionic Dark Matter.
(5) Striction-type coupling via a scalar Dark Energy.
(6) Piezo-type coupling via a scalar Dark Energy.
(7) Pyro-type coupling via a scalar Dark Energy.
(8) Dynamo-optical interactions associated with Dark Energy.
(9) Non-minimal coupling of photons to the Dark Fluid.

(10) Electromagnetic interactions induced by the Dark Fluid in a plasma with cooperative field.

The paper is organized as follows. In Section 2 we consider the formalism, which gives the
mathematical grounds for all 10 listed models. Sections 3–12 include analysis of 10 models listed above.
Every Section includes discussions about the corresponding contributions into the total Lagrangian,
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into the master equations and into the susceptibility tensors, as well as, illustrations based on exact
solutions obtained in the framework of the model under consideration.

2. General Formalism

2.1. The Action Functional and Decomposition of the Total Lagrangian

We consider the total action functional to be of the standard form:

S(total) =
∫

d4x
√
−g £ , £ = £(0) + £(interaction) (1)

Here g is the determinant of the metric tensor gik; £ is the total Lagrangian, which is divided into
the Lagrangian of basic constituents, £(0), and the part £(interaction), which describes interactions of
various types between these constituents. We include the sum of five intrinsic elements into the first
part of the Lagrangian:

£(0) = L(Grav) + L(EM) + L(DM) + L(DE) + L(OM) (2)

The term L(Grav) relates to the gravity field. It can be the Einstein-Hilbert Lagrangian, L(Grav) → R
2κ

with the Ricci scalar R and the Einstein constant κ = 8πG
c4 ; also, one can use the Lagrangian quadratic

in the Riemann tensor Ri
kmn and in the Ricci tensor Rik; it can contain the Gauss-Bonnet term, etc.

(see, e.g., [19–21] for review, details and references). The next term, L(EM), describes the electromagnetic
field in vacuum; since we deal with linear electrodynamics, we use the gauge-invariant term
L(EM) → 1

4 FmnFmn with the Maxwell tensor Fmn. The terms L(DM) and L(DE) relate to the contributions
of the Dark Matter and Dark Energy, respectively; we will decode their structure later. The last term
L(OM) describes the contribution of the so-called Ordinary Matter, in particular, the fermionic matter,
which contains the contributions from electrically charged particles (electrons, positrons, protons, etc.)

The interaction term is considered to be up to the second order with respect to the Maxwell
tensor Fmn:

£(interaction) = L(NonEM) +
1
2
HmnFmn +

1
4

χikmnFikFmn (3)

The first term L(NonEM) does not contain the Maxwell tensor, and describes all possible interactions
without participation of photons; in particular, it can be the Lagrangian of interaction between
DM and DE inside the Dark Fluid itself. The part 1

2HmnFmn is linear in the Maxwell tensor Fik.
The skew-symmetric tensor Hmn does not contain information about the electromagnetic field
and describes the so-called spontaneous polarization-magnetization. The last term 1

4 χikmnFikFmn is
quadratic in Fmn; the quantity χikmn describes the tensor of total susceptibility. In analogy with
classical linear electrodynamics of continua (see, e.g., [54–58]) we distinguish between two types of
polarization-magnetization, which can appear in the medium. The polarization-magnetization of the
first type, which is indicated terminologically as spontaneous and is described by the tensor Hmn,
is produced by the forces of a non-electromagnetic origin, e.g., it can be induced by the gradient
of internal temperature, stress, torsion and deformation of the medium. This term, spontaneous,
appeared, first, in the theory of Phase Transition of the Second Kind, and then it has taken root in linear
and non-linear electrodynamics of continua. The polarization-magnetization of the second type is
produced by the influence of electromagnetic field; the corresponding contribution is described by the
tensor χikmnFmn, i.e., it is proportional to the Maxwell tensor. Clearly, the term susceptibility stands for
coefficients, which describe the linear response of the medium to the action of the electromagnetic field.

The construction (3) possesses the U(1) symmetry; it contains the gauge invariant quantity Fik only.
Another approach exists, which admits the appearance of gauge non-invariant terms∇k Ai+∇i Ak and

∇k Ak in the Lagrangian. For instance, in [59] the term 1
2 ζ
(
∇k Ak

)2
is introduced into the Lagrangian,

providing the extended electromagnetism to mimic the Dark Energy effects. The problem of violence
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of Lorentz invariance in extended equations of electromagnetism was discussed in many works;
we quote for illustration only two papers [60,61], which give an idea how does such extensions change
the results of analysis.

Our further plan is the following: first, we intend to represent the Lagrangian of interaction
as a sum £(interaction) = L(1) + L(2) + ... + L(10) and to specify L(1), L(2), ..., L(10) according to the
chosen models; second, for each model we plan to derive master equations for the electromagnetic
field, to find and discuss the corresponding contributions to the scalar L(NonEM) and tensors Hmn

and χikmn; third, for mentioned models of interaction between DF and photons, we discuss illustrations
and physical sense of results.

2.2. Master Equations for the Electromagnetic Field

The Maxwell tensor Fik is a basic element of the U(1)—symmetric covariant electrodynamics. It is
standardly represented in terms of a four-vector potential Ai as

Fik = ∇i Ak −∇k Ai (4)

and thus satisfies the condition
∇kF∗ik = 0 (5)

where∇k denotes the covariant derivative. The pseudotensor F∗ik ≡ 1
2 εikpqFpq is the tensor dual to Fpq;

the term εikpq ≡ 1√−g Eikpq is the Levi-Civita (pseudo)tensor, Eikpq is the absolutely skew-symmetric

Levi-Civita symbol with E0123 = 1. Also, we assume that the Lorentz gauge is valid, i.e., ∇k Ak = 0.
Master equations for the electromagnetic field can be derived using the variation of the action

functional (1) with respect to the four-vector potential Ai, and can be written as:

∇k Hik = −4π

c
Ji (6)

Here Hik is the induction tensor [56]; it is convenient to represent it in the form

Hik ≡ ∂£
∂Fik
− ∂£

∂Fki
(7)

The four-vector Ji defined as

Ji =
1

4π

δL(OM)

δAi
, ∇i Ji = 0 (8)

describes the electric current produced by the fermionic part of the total physical system. We assume
that L(OM) does not include the Maxwell tensor Fmn, nevertheless, it can depend on the potential
four-vector Ai, if the medium is conductive. As for the terms L(DM) and L(DE), they do not contain any
information about the electromagnetic field and electric charge.

2.3. Velocity Four-Vector and Decompositions of the Maxwell and Excitation Tensors

In order to deepen the physical sense of the electrodynamic model, one needs to decompose
all the quantities, introduced above, in terms of velocity four-vector Ui, normalized as gikUiUk = 1.
What is the origin of this unit four-vector? We mention only three procedures, which show, how one
can introduce this four-vector.
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2.3.1. Eigen Four-Vector of the DE Stress-Energy Tensor

The first version is associated with a search for a unit time-like eigen four-vector of the
stress-energy tensor for the DE component of the Dark Fluid. Technically, we have to introduce
the DE stress-energy tensor

T(DE)
ik ≡ − 2√−g

δ[
√−gL(DE)]

δgik (9)

and then to find the eigen four-vector Ui using the standard algebraic procedure

T(DE)
ik Uk = W(DE)Ui , W(DE) = UiT(DE)

ik Uk (10)

The scalar W(DE), the corresponding eigen-value, is the DE energy-density. Based on (10) we
obtain that

T(DE)
ik = W(DE)UiUk + Pik (11)

where the quantity Pik

Pik = ∆p
i T(DE)

pq ∆q
k (12)

is the symmetric pressure tensor, defined using the projector ∆p
i ≡ δ

p
i −UpUi. Clearly, the pressure

tensor satisfies the relationships

PikUk = 0 = PikUi (13)

i.e., it is orthogonal to the velocity four-vector.

2.3.2. Eigen Four-Vector of the DF Stress-Energy Tensor

One can use also the same procedure for the L(DF), which is the sum L(DF) = L(DM) + L(DE).
The corresponding formulas are similar to (10) and (11), and we do not repeat them.

2.3.3. Unit Dynamic Vector Field

The third version of introduction of the unit vector field Ui is associated with the so-called
Einstein-aether theory (see, e.g., [62–65] for details, review and references). In this theory, a unit
vector field is introduced, which is usually attributed to the velocity of an aether; in other words,
this alternative theory of gravity can be indicated as vector-tensor theory of the gravitational field.
Clearly, instead of aether one can consider the Dark Energy or Dark Fluid as a whole, thus introducing
the four-vector of DE or DF motion.

There are other versions, but below we focus on the first and third versions only. In all these cases
the velocity four-vector plays the fundamental roles in the decomposition of electrodynamic quantities.
Let us start with the decomposition of the covariant derivative ∇iUk.

2.4. Irreducible Representations of Basic Quantities in Terms of Velocity Four-Vector Ui

2.4.1. Irreducible Representation of the Tensor ∇iUk

The covariant derivative ∇iUk forms a non-symmetric tensor, which can be decomposed into
a sum of four parts, containing the acceleration four-vector DUi, the shear tensor σik, the vorticity
tensor ωik, and the expansion scalar Θ. This decomposition has the form

∇iUk = UiDUk + σik + ωik +
1
3

∆ikΘ (14)
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DUk ≡ Um∇mUk , σik ≡
1
2

∆m
i ∆n

k (∇mUn+∇nUm)−
1
3

∆ikΘ , ∆ik = gik −UiUk (15)

ωik ≡
1
2

∆m
i ∆n

k (∇mUn−∇nUm) , Θ ≡ ∇mUm , D ≡ Ui∇i (16)

The quantities DUi, σik, ωik and ∆ik are orthogonal to the velocity four-vector Ui.

2.4.2. Irreducible Representation of the Maxwell Tensor Fik and its Dual F∗ik

The four-vectors of electric field Ei and magnetic induction Bi can be obtained from Fik
by projections:

Ei = FikUk , Bi = F∗ikUk (17)

Clearly, EiUi = 0 and BiUi = 0, i.e., these four-vectors are orthogonal to the velocity four-vector Ui.
Based on these definitions we obtain that

Fmn = δ
pq
mnEpUq − ηmnl Bl , F∗mn = δ

pq
mnBpUq + ηmnlEl (18)

where δik
mn is the 4-indices Kronecker tensor

δik
mn = δi

mδk
n − δi

nδk
m (19)

and ηmnl is a skew-symmetric (pseudo)tensor defined as follows:

ηmnl ≡ εmnlsUs , ηikl ≡ εiklsUs (20)

To check the compatibility of the formulas (17) and (18) one has to keep in mind the identity

1
2

ηiklηklm = −δil
msUlUs = −∆i

m (21)

Also, it is convenient to use the relationships

− ηikpηmnp = δikl
mnsUlUs = ∆i

m∆k
n − ∆i

n∆k
m (22)

where
δikl

mns = δi
mδk

nδl
s + δk

mδl
nδi

s + δl
mδi

nδk
s − δi

mδl
nδk

s − δl
mδk

nδi
s − δk

mδi
nδl

s (23)

is the known 6-indices skew-symmetric Kronecker tensor.

2.4.3. Irreducible Representation of the Induction Tensor

For the Lagrangian of interaction (3), the induction tensor (7) is linear in the Maxwell tensor

Hik = Hik + Fik + χikmnFmn (24)

Combining the second and third terms one can represent the induction tensor as

Hik = Hik + C ikmnFmn (25)

where the tensor
C ikmn ≡ 1

2
(gimgkn − gingkm) + χikmn (26)

is known as a linear response tensor. In the framework of Lagrange approach this tensor possesses
the symmetries

Cikmn = Cmnik = −Ckimn = −Ciknm (27)
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and thus it has 21 independent components. There is, however, another approach (see, e.g., [56]),
for which the symmetry Cikmn = Cmnik is not obligatory; this approach is faced with a new phenomenon
indicated as skewon (see, e.g., [66–68] for details and references).

The four-vectors of electric induction Di and magnetic field Hi can be obtained from Hik

as follows:
Di = HikUk , Hi = H∗ikUk (28)

Again, one can see thatDiUi = 0 andHiUi = 0. For the induction tensor there exist decompositions

Hmn = δ
pq
mnDpUq − ηmnlHl , H∗mn = δ

pq
mnHpUq + ηmnlDl (29)

which are similar to the ones for the Maxwell tensor (18).

2.4.4. Irreducible Representation of the Tensor of Spontaneous Polarization-MagnetizationHik

The skew-symmetric tensorHik can be decomposed as (see, e.g., [54])

Hik = δik
mnUnPm − εikmnUnMm (30)

where Pm is the polarization four-vector andMm is the magnetization pseudo four-vector. Inverting the
relation (30) we find

P i ≡ HikUk , Mi ≡ 1
2

εikmnHmnUk (31)

with P iUi = 0,MiUi = 0.

2.4.5. Irreducible Representation of the Linear Response Tensor Cikmn

In terms of the velocity four-vector Ui the tensor Cikmn can be reconstructed as follows:

Cikmn =
1
2

[
εimUkUn − εinUkUm + εknUiUm − εkmUiUn

]
−

−1
2

ηikl(µ−1)lsη
mns −

−1
2

[
ηikl(Umν n

l −Unν m
l ) + ηlmn(Uiν k

l −Ukν i
l )
]

(32)

Here εim, (µ−1)pq and ν m
p are defined as

εim = 2CikmnUkUn

(µ−1)pq = −1
2

ηpikCikmnηmnq

ν m
p = ηpikCikmnUn (33)

The tensors εik and (µ−1)ik are symmetric, but ν k
l is non-symmetric. These tensors are orthogonal

to the velocity four-vector Ui,

εikUk = 0 , (µ−1)ikUk = 0 , ν k
l Ul = 0 = ν k

l Uk (34)

The definitions (28) and the decomposition (32) give

Di = εimEm − Blν i
l and Hi = (µ−1)imBm + ν m

i Em (35)

The quantity εim is a four-dimensional analog of the dielectric permittivity tensor; µpq is
a four-dimensional analog of the magnetic permeability tensor; the quantity ν m

p describes
magneto-electric cross effects [54,56,57]. The 21 independent components of Cikmn include 6 components
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of εim, 6 components of (µ−1)pq and 9 components of ν m
p . The trace of the tensor Cikmn can be reduced

to the traces of permittivity tensors

Cikmngimgkn = εk
k + (µ−1)k

k (36)

The trace of the magneto-electric tensor can be expressed as

ν k
k = −1

4
εikmnCikmn (37)

The so-called Post constraint ν k
k = 0 (see, e.g., [69] for details) provides the tensor Cikmn to possess

20 independent components instead of 21.

2.4.6. Reduction of Electrodynamic Equations

In terms of quantities Ei, Bi, Di and Di the current-free Maxwell equations can be rewritten in the
form, which is well-known in classical electrodynamics.

First, the Gauss law takes the form

⊥
∇kDk = ωkHk (38)

Second, the law of the magnetic flux conservation is of the form

⊥
∇kBk = −ωkEk (39)

Third, the Ampère law can be written as

∆ikDDk − ηikm
⊥
∇kHm = −2∆i

kHmω∗km +

(
σik−ωik−2

3
Θ∆ik

)
Dk (40)

Fourth, the Faraday law is

∆ikDBk + ηikm
⊥
∇kEm = 2∆i

kEmω∗km +

(
σik−ωik−2

3
Θ∆ik

)
Bk (41)

Here we used the standard definition ωi ≡ −ηikm∇kUm for the local angular velocity of rotation,

and the definition
⊥
∇k = ∆i

k∇i for the operator of spatial gradient.

2.5. Gravity Field Equations

2.5.1. The Structure of Master Equations for the Gravity Field

In order to obtain the equations of the gravitational field one has to find the variation of the action
functional (1) with respect to metric. For the case, when one uses the Einstein-Hilbert Lagrangian for
the gravity field, the master equations can be written in the following form

Rik −
1
2

Rgik = κ
[

T(0)
ik + T(interaction)

ik

]
(42)

The first quantity, T(0)
ik , formally obtained as

T(0)
ik = − 2√−g

δ
[√−g £(0)

]
δgik (43)
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contains the sum of four tensors

T(0)
ik = T(EM)

ik + T(DM)
ik + T(DE)

ik + T(OM)
ik (44)

with evident indication. The first addend is the standard stress-energy tensor of the vacuum
electromagnetic field

T(EM)
ik =

1
4

gikFmnFmn − FimF m
k (45)

The stress-energy tensor of the Dark Energy, T(DE)
ik , is presented by (11). The stress-energy tensor of

the axionic Dark Matter, T(DM)
ik , will be discussed in the next Subsection. The algebraic decomposition of

the stress-energy tensor of ordinary matter, T(OM)
ik , is more sophisticated than (11), since the macroscopic

velocity four-vector Ui is already fixed as an eigen four-vector of the DE stress-energy tensor. The term
T(OM)

ik is of the form

T(OM)
ik ≡W(OM)UiUk + Ui I

(OM)
k + Uk I(OM)

i + P(OM)
ik (46)

and includes the heat-flux four-vector I(OM)
k ≡ ∆l

kT(OM)
ls Us.

The stress-energy tensor

T(interaction)
ik = − 2√−g

δ
[√−g £(interaction)

]
δgik (47)

is originated from the interaction terms; its structure will be considered in the next Sections.

2.5.2. Stress-Energy Tensor of the Dark Matter

The Lagrangian of the axionic Dark Matter presented in terms of dimensionless pseudoscalar
field φ, is chosen to be of the form

L(DM) = −
1
2

Ψ2
0

[
ξ∇mφ∇mφ−V(φ2)

]
(48)

The corresponding stress-energy tensor reads

T(DM)
ik = Ψ2

0

{
ξ∇iφ∇kφ− 1

2
gik

[
ξ∇mφ∇mφ−V(φ2)

]}
(49)

Here the constant Ψ0 = 1/gAγγ describes the inverted constant of the axion-photon coupling,
gAγγ (see, e.g., [40,44,46]). The parameter ξ takes two values: ξ = 1 and ξ = −1. The first case
corresponds to the standard (canonic) pseudoscalar field; when ξ = −1, one deals with phantom-like
pseudoscalar field, or in other words, the pseudoscalar field with negative kinetic term (see, e.g., [70] for
discussion of similar idea in terms of scalar fields). As usual, V(φ2) is the potential of this pseudoscalar field.

There is an alternative description of the stress-energy tensor of the axionic Dark Matter, it has
the form typical for the fluid-type representation:

T(DM)
ik = W(DM)UiUk + IiUk + IkUi + P(DM)

ik (50)

Comparing (49) with (50), one can find the following. First, an axionic system, considered as
a fluid, is characterized by a heat-flux four-vector

Ii ≡ Up T(DM)
pq ∆iq = ξΨ2

0 Dφ
⊥
∇iφ (51)
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The energy-density scalar W(DM) can be written as follows

W(DM) ≡ UpT(DM)
pq Uq =

1
2

Ψ2
0

[
ξ(Dφ)2 +V− ξ

⊥
∇iφ

⊥
∇iφ

]
(52)

The tensor of the DM pressure has the form

P(DM)
ik ≡ ∆p

i T(DM)
pq ∆q

k =

=
1
2

Ψ2
0∆ik

[
V−ξ(Dφ)2−ξ

⊥
∇mφ

⊥
∇mφ

]
+ ξΨ2

0

⊥
∇iφ

⊥
∇kφ (53)

For the canonic pseudoscalar field (ξ = 1), we deal with bilingual description of the axionic Dark
Matter with the following compliance:

Ψ2
0(Dφ)2 =

1
2

[
W(DM) + P(DM)

] [
1+

√
1−Q2

]
(54)

Ψ2
0V(φ2) =

[
W(DM) + P(DM)

] [
1+

√
1−Q2

]
− 2P(DM) (55)

Ψ0
⊥
∇iφ = Ii

{
1
2

[
W(DM) + P(DM)

] [
1+

√
1−Q2

]}− 1
2

(56)

Here we used the following definitions:

P(DM) ≡ −1
3

∆ikP(DM)
ik , Q ≡ 2√

3
I[

W(DM) + P(DM)
] , I2 = −Ii Ii > 0 (57)

When the axionic Dark Matter is considered as a homogeneous substance, i.e.,
⊥
∇iφ = 0, we obtain

that the effective heat-flux four vector vanishes, Ii = 0, and thus Q = 0. Then the formulas (54)
and (55) cover the known result

Ψ2
0(Dφ)2 =

[
W(DM) + P(DM)

]
, Ψ2

0V(φ2) =
[
W(DM) − P(DM)

]
(58)

which was used, e.g., in [19] in the context of study of the scalar field evolution.

2.6. Master Equation for the Axion Field

The evolutionary equation for the pseudoscalar field is the result of variation of the total action
functional with respect to φ. This equation[

ξ∇m∇m +V′(φ2)
]

φ = J , J ≡ − 1
Ψ2

0

δ

δφ
£(interaction) (59)

depends essentially on the structure of the Lagrangian of interactions, and we return to this equation
below by fixing the model assumptions.

3. Model 1. Minimal Coupling of Photons to the Axionic Dark Matter

In [38] Wei-Tou Ni has introduced a new interaction term into the Lagrangian of the
electromagnetic theory; the corresponding part of the Lagrangian was of the form:

L(1) =
1
4

φF∗mnFmn (60)



Symmetry 2016, 8, 56 12 of 48

Since φ is a pseudoscalar field, the product φF∗mn is the true tensor. We add the term L(1) into
£(interaction), and consider the corresponding contributions only.

3.1. Basic Quantities and Equations

The coupling term (60) introduces the contribution Hik
(1) = φF∗ik into the total induction tensor,

and, consequently, the term

χikmn
(1) =

1
2

φεikmn (61)

into the total susceptibility tensor. Clearly, this term does not contribute to the dielectric and magnetic
permittivity tensors εik and (µ−1)mn, and only the contribution into the tensor of magneto-electric cross
effects is nontrivial:

νlm
(1) = −φ∆lm (62)

The corresponding contribution into the stress-energy tensor gives trivial result, since

T(1)
pq = − 2√−g

δ
[√−gφεikmnFikFmn

]
δgpq = − 8√−g

δ
[
φEikmn∂iAk∂mAn

]
δgpq = 0 (63)

The pseudoscalar source in the right-hand side of the equation for the axion field (59) is of the form

J → − 1
4Ψ2

0
F∗mnFmn (64)

With the minimal coupling term L(1), the electrodynamic equations for a non-conducting medium
have the form

∇k[Fik + φF∗ik] = 0 → ∇kFik = −F∗ik∇kφ (65)

The simplification of these equations is the consequence of the relationship∇kF∗ik = 0; the last
representation of the master equations of the axion electrodynamics shows explicitly, that axionic
Dark Matter influences the photons if and only if the gradient four-vector∇iφ is not equal to zero, i.e.,
when the pseudoscalar (axion) field is inhomogeneous and/or non-stationary. Clearly, this gradient
four-vector can be time-like (∇iφ∇iφ > 0), space-like (∇iφ∇iφ < 0), and null (∇iφ∇iφ = 0).
These three cases can be illustrated by models with relic cosmological axions, axions distributed
around spherically symmetric static objects, and axions in a gravitational pp-wave field, respectively.
Below we present new results, which we obtained for two models from the mentioned three ones.

3.2. Relic Cosmological Axions, Cold Dark Matter and Terrestrial Magnetic and Electric Fields

Let us assume that the gravitational background is given, the space-time is of the Friedmann
–Lemaître–Robertson–Walker (FLRW) type

ds2 = a2(x0)
[
(dx0)2− dl2

]
(66)

with the scale factor a and Hubble function H = 1
a2

da
dx0 . Time parameter t is connected with x0 by

the differential relation a(x0) dx0 = dt; below the dot relates to the derivative with respect to time t.
The metric in the three-space is represented in the spherical coordinates

dl2 = dr2 + r2(dθ2 + sin2 θdϕ2) (67)

and
√−g = a4 r2 sin θ. We do not consider backreaction of the electromagnetic field on the gravitational

field and neglect the direct influence of the terrestrial gravity field on the electric and geomagnetic
fields in comparison with the influence of the relic cosmological axions. In other words, we assume
that the number of axions produced by the macroscopic electromagnetic field Fik is much less than
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the number of relic (primordial) axions created in the early Universe. This means that we neglect the
electromagnetic source in the right-hand side of the Equation (59) and consider the function φ(t) to
satisfy the decoupled equation

φ̈ + 3Hφ̇ + µ2φ = 0 (68)

For the cold Dark Matter with P(DM) → 0 and W(DM) → ρ(DM) the relationships (58) yield

q ≡ a φ̇→ ± a
Ψ0

√
ρ(DM) (69)

where ρ(DM) is the mass density of the cold Dark Matter. In [71] we have solved the electrodynamic
Equations (65) in the background space-time with metric (66) and (67), for the axion field with q = const
(see (69)); below we briefly discuss the main results of this work.

3.2.1. Axion Magnetostatics

Searching for radial, meridional and azimuthal components of the static terrestrial magnetic field

B(rad) = −
1

r2 sin θ

∂Aϕ

∂θ
, B(merid) = −

1
r sin θ

∂Aϕ

∂r
, B(azim) = −

1
r

[
∂Aθ

∂r
− ∂Ar

∂θ

]
(70)

as solutions to the equations of axion electrodynamics (65), we have found in [71] that

B(rad) = −
∞

∑
n=1

n(n+1)
r

Pn(cos θ) <n(r, q) (71)

B(merid) = −
∞

∑
n=1

P(1)
n (cos θ)

1
r

d
dr

[r<n(r, q)] (72)

B(azim) = −q
∞

∑
n=1

P(1)
n (cos θ)<n(r, q) (73)

where the radial function <n(r, q) is given by

<n(r, q) =

√
R
r

{
An

[
Γ
(

n+
1
2

)(
1
2

qR
)−(n+ 1

2)
]

Jn+ 1
2
(qr)+

+Bn

(−1)n π

Γ
(

n+ 1
2

) (1
2

qR
)n+ 1

2

 J−(n+ 1
2)
(qr)

 (74)

with the Bessel function of the first kind with the half-integer index Jn+ 1
2
(qr), adjoint Legendre

polynomials P(m)
n , Gamma-functions Γ(s), and integration constants An, Bn. The main new feature is

the following: the azimuthal component B(azim), being equal to zero at q = 0, becomes non-vanishing
at q 6= 0. For instance, for the model with dipole-type terrestrial magnetic field we obtain

B(rad)(r, q) = −2µ

r3 cos θ (cos qr + qr sin qr) (75)

B(merid)(r, q) =
µ sin θ

r3

[
(cos qr + qr sin qr)− q2r2 cos qr

]
(76)

B(azim)(r, q) = −q sin θ
µ

r2 (cos qr + qr sin qr) (77)



Symmetry 2016, 8, 56 14 of 48

If the photon-axion coupling is absent, q = 0, (75)–(77) give standard formulas for the static dipole
geomagnetic field

B(rad)(r, 0) = −2µ

r3 cos θ , B(merid)(r, 0) =
µ sin θ

r3 , B(azim)(r, 0) = 0 (78)

Clearly, the relic DM axions deform the static terrestrial magnetic field: while the original
geomagnetic field has the radial and meridional components only, the axion-photon coupling produces
a supplementary azimuthal component; this effect contributes to the phenomenon of the Earth’s
magnetic pole drift. Also, the axion-photon coupling provides the dependence of the magnetic field on
the altitude to become non-monotonic (see (75)–(77)).

3.2.2. Axionically Induced Longitudinal Magneto-Electric Oscillations

When we deal with axionically coupled oscillations in the spherical resonator, bounded by
the Earth surface (r = R) and the bottom edge of the Earth Ionosphere (r = R∗), we enter the
world of standing and running waves with frequencies of wide range, which are generated by
various geophysical processes and human activity. We are interested to extract the information
about axionically induced electromagnetic oscillations. To obtain the solution of the corresponding
electrodynamic problem we reduced Equations (65) to a pair of equations for two potentials, U and
V, the analogs of known Debye potentials (see [71]). In more detail, we consider the following
representation of radial, meridional, azimuthal components of electric and magnetic fields:

F0r = −
1

r sin θ

∂

∂θ
(V sin θ) = E(rad) , Fθϕ = r

∂

∂θ
(U sin θ) = −r2 sin θB(rad) (79)

Fθ0 = − ∂

∂r
(rV) = −rE(merid) , Frϕ = sin θ

∂

∂r
(rU) = −r sin θB(merid) (80)

Fϕ0 = −r sin θ
∂

∂x0 U = −r sin θE(azim) , Frθ = r
(

qU +
∂

∂x0 V
)
= −rB(azim) (81)

and decompose the Debye potentials according to the requirements of boundary value problem on the
borders of spherical resonator:

U(t̃, r, θ) =
∞

∑
n=0

∞

∑
j=0

unj(t̃) P(1)
n (cos θ)Hnj(r) (82)

V(t̃, r, θ) =
∞

∑
n=0

∞

∑
j=0

vnj(t̃) P(1)
n (cos θ)Hnj(r) (83)

Here the radial functionsHnj(r) are

Hnj(r)=
1√
r

[
Jn+ 1

2

(
ν
(n)
j r
)

J−(n+ 1
2)

(
ν
(n)
j R

)
−Jn+ 1

2

(
ν
(n)
j R

)
J−(n+ 1

2)

(
ν
(n)
j r
)]

(84)

and the parameters ν
(n)
j can be extracted from the equation

Jn+ 1
2

(
ν
(n)
j R

)
J−(n+ 1

2)

(
ν
(n)
j R∗

)
= Jn+ 1

2

(
ν
(n)
j R∗

)
J−(n+ 1

2)

(
ν
(n)
j R

)
(85)

where the index j = 0, 1, 2, ... counts the positive zeros of the Equation (85). Then we obtain the coupled
pair of equations for the mode amplitudes unj and vnj:

ünj + c2
[(

ν
(n)
j

)2
− q2

]
unj − qcv̇nj = 0 (86)
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v̈nj + c2
(

ν
(n)
j

)2
vnj + qcu̇nj = 0 (87)

Clearly, when q = 0, i.e., when the axions are absent, the modes are decoupled; thus, namely the
axions provide the interactions between U and V modes of oscillations. In [71] we presented a complete
analysis of the oscillation modes, but here we display the results for one case only, as an illustration of
a resonant situation. In the resonance case, when q = ν

(n∗)
j∗ , for the mode with the number n∗ and index

j∗, the corresponding amplitudes

v∗(t̃) =
1
2

[
v∗(0)−

u̇∗(0)
q

]
+

1
2

[
v∗(0)+

u̇∗(0)
q

]
cos
√

2qt̃ +
v̇∗(0)√

2q
sin
√

2qt̃ (88)

u∗(t̃) =
[

u∗(0)+
v̇∗(0)

2q

]
− qt̃

2

[
v∗(0)−

u̇∗(0)
q

]
+

+
1

2
√

2

[
v∗(0)+

u̇∗(0)
q

]
sin
√

2qt̃− v̇∗(0)
2q

cos
√

2qt̃ (89)

oscillate with the axionic frequency ωA=
√

2q, and the U-potential grows linearly with time (t̃ = x0,
see (66)).

Main results of the analysis given in [71] are the following.

(1) Relic axions produce oscillations of a new type in the resonator “Earth-Ionosphere”. We indicated
them as Longitudinal Magneto-Electric Oscillations, since they possess the following specific
feature: the axionically coupled electric and magnetic fields are parallel to one another. When the
axions are absent and q = 0, there exist only transversal electromagnetic oscillations, usual for the
Faraday–Maxwell version of electrodynamics. Longitudinal Magneto-Electric Oscillations can be
considered as a dynamic analog of a static axionically induced effect predicted by Wilczek in [72]
(axions produce radial electric field in the vicinity of a monopole with radial magnetic field).

(2) New “hybrid” frequencies of oscillations appear in the global resonator “Earth-Ionosphere” due
to the axionic Dark Matter influence.

(3) Estimations of the effect for ρ(DM) ' 1.25 GeV · cm−3 and 1
Ψ0
=ρAγγ ' 10−9 GeV−1, give the value

ν(Axion) ' 10−5 Hz for the effective frequency of Longitudinal Magneto-Electric Oscillations in the
Earth Magnetosphere.

3.3. Electromagnetic Response on the Action of Gravitational pp-Waves in an Axionic Environment

The second example of analysis of exact solutions to the equations of the minimal axion
electrodynamics is associated with the case, when the gradient four-vector ∇iφ is the null one, i.e.,
gik∇iφ∇kφ = 0. It is typical for models with the pp-wave symmetry [73]. In the framework of such
models we use the background space-time metric of the form

ds2 = 2dudv− L2
[
e2β(dx2)2 + e−2β(dx3)2

]
(90)

which describes the gravitational pp-wave of the first polarization (see, e.g., [74]). Here u = ct−x1
√

2
is the

retarded time, v = ct+x1
√

2
is the advanced time, and L(u), β(u) are the functions of the retarded time only.

The front of incoming plane gravitational wave is characterized by u = 0, and we assume that L(0) = 1,
L′(0) = 0, β(0) = 0 and F∗mnFmn(0) = 0. After discovery of the gravitational waves reported in [75],
we obtained a new impetus to consider new problems associated with the influence of the gravitational
radiation on axionically active media.
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In [76] we solved the master equations of axion electrodynamics using two assumptions. Our first
ansatz is that the potential of the pseudoscalar field has the form

V(φ2) =
1
2

[
m2
(a)

ν
+ ν(φ2− φ2

∗)

]2

(91)

The second ansatz concerns the initial data. We assume, that at u < 0, i.e., before the gravitational
wave appearing, the master equation for the pseudoscalar field

∇k∇kφ +
[
m2
(a) + ν2(φ2− φ2

∗)
]

φ = − 1
4Ψ2

0
F∗mnFmn (92)

admits the constant solution Φ, which satisfies two conditions

V(Φ2) = 0 ,
[

d
dφ

V(φ2)

]
|φ=Φ

= 0 (93)

Clearly, this constant solution is of the form

Φ = ±

√
φ2∗ −

m2
(a)

ν2 = φ(0) (94)

We assume that |φ∗| >
m(a)
|ν| , thus this potential has two symmetric (real) minima. As an illustration,

in [76] we considered the case, for which the initial electric field was absent, and magnetic field was
constant, B1(u < 0) = B||, B2(u < 0) = B⊥ cos Θ, B3(u < 0) = B⊥ sin Θ. In the field of gravitational
wave, i.e., at u > 0, the exact solutions of the set of master equations of the axion electrodynamics can
be represented as follows. First, the solution for the axion field is

φ(u) = φ(0)− 2 arctan
[

sin 2Θ sinh β(u)
cosh β(u) + cos 2Θ sinh β(u)

]
(95)

where
a(u) ≡ 1√

cosh 2β(u) + cos 2Θ sinh 2β(u)
, a(0) = 1 (96)

Second, the longitudinal magnetic field B|| is not distorted. The longitudinal electric field E||(u) is
proportional to the value B||:

E||(u) =
2B||
L2 arctan

[
sin 2Θ sinh β

cosh β + cos 2Θ sinh β

]
= −

B||
L2 [φ(u)− φ(0)] (97)

Third, the transversal components of the magnetic field are distorted:

B2 = LeβB(2) [1+ X(u, v) + Z(u)] , B3 = Le−βB(3) [1+ X(u, v)− Z(u)] (98)

The transversal components of the electric field are generated under the influence of axionic and
gravitational wave fields:

E2 =
B(3)

L
eβ [−Y(u, v)− Z(u)] , E3 =

B(2)

L
e−β [Y(u, v)− Z(u)] (99)

The distortion functions are defined as

X(u, v) =
1
2
[
a(u)− 1− va′(u)

]
, Y(u, v) =

1
2
[
a(u)− 1+ va′(u)

]
(100)
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Z(u) =
2Ψ2

0L2

a(u)B2
⊥ sin 2Θ

[
H(Φ)+

(B||)2

L4Ψ2
0

]
arctan

[
sin 2Θ sinh β

cosh β+ cos 2Θ sinh β

]
(101)

H(Φ) ≡ m2
(A) + ν2

[
Φ2 + Φφ(0) + φ2(0)− φ2

∗

]
(102)

where the prime denotes the derivative with respect to retarded time. These formulas display the
symptom of anomalous behavior of the electromagnetic response on the gravitational wave action in the
environment of axionic Dark Matter. Indeed, let us compare the limit limB⊥→0{Fik(B⊥)} and the value
{Fik(B⊥ = 0)}. Clearly, when β 6= 0, the function Z(u) contains the parameter B⊥ in the denominator,
so the mentioned limit is infinite, while the second quantity, i.e., the absent electromagnetic field,
is equal to zero. When β = 0, one sees that Z(u) = 0, and two mentioned limits coincide.

This model describes, in fact a new mechanism of axion-photon-graviton coupling, which is
associated with anomalous behavior of the electromagnetic response. In this mechanism the axionic
Dark Matter plays a provocative role of a mediator-amplifier. Clearly, the constant pseudoscalar
(axion) field φ is hidden from the point of view of axion electrodynamics; but this degeneracy happens
to be removed after the appearance of the gravitational pp-wave. Then, the activated axion field
generates the electric field proportional to the value of the initial magnetic field, and deforms the
initial magnetic field. Concerning the magnitude of the described effect, the very optimistic value for

the term
Ψ2

0m2
(A)

B2
⊥

in the function Z(u) is estimated to be of the order 1020 for the terrestrial magnetic

field, and of the order 1028 for the magnetized interstellar medium (see [76] for details and extended
analysis of the model). These estimations, given for the axionically mediated electromagnetic response,
are much more optimistic than the estimations for electromagnetic response induced by pure
gravitational wave, which deforms an initially constant magnetic field in vacuum (see, e.g., [77,78]).

4. Model 2. Non-Stationary Optical Activity Induced by the Axionic Dark Matter

4.1. Extension of the Axion Electrodynamics: Inertia Effects and Field Theory

We use the term “inertia effects” in an wide sense, when the Lagrangian of a model depends on
the velocity four-vector Ui. It is known, that when one deals with scalar, electromagnetic, gauge, etc.
fields in a standard vacuum, one uses the taboo on the introduction of the velocity four-vector Ui

into the Lagrangian. Thus, insertion of the velocity four-vector Ui is a symptom of consideration of
a new coupling.

4.1.1. Susceptibility of Spatially Isotropic Moving Medium

The most known example of such extension appeared in the electrodynamics of spatially isotropic
continua [54], where the additional term

L(21) =
1
4

χikmn
(21) FikFmn (103)

was introduced with

χikmn
(21) =

1
2

(
1
µ
−1
)[

gimgkn−gingkm
]
+

1
2

(
ε− 1

µ

)[
gimUkUn−ginUkUm+gknUiUm−gkmUiUn

]
(104)

Here the phenomenological parameters ε and µ are the dielectric and magnetic permittivities,
respectively. In vacuum, ε = 1 and µ = 1, so χikmn

(21) = 0. Let us note that the nomenclature (21) in the term

χikmn
(21) means that it is the first example in the second model. In our context, the four-vector Ui describes

the velocity of the Dark Energy, thus the term (104) relates to a specific inertia-type interaction between
the electromagnetic field and Dark Energy.
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The additional term (103) gives the following total induction tensor Hik:

Hik =
1
µ

Fik +

(
ε− 1

µ

)
Um

[
FimUk − FkmUi

]
(105)

providing the well-known formulas for the total permittivities:

εim = ε∆im ,
(

µ−1
)im

=
1
µ

∆im , νpq = 0 (106)

and the constitutive equations

Di = εEi , Hm =
1
µ

Bm (107)

The total stress-energy tensor of the electromagnetic field in such medium is derived in [79]; it has
the form

T(EM)
ik =

1
4

gkl HmnFmn −
1
2
(HkmFl

m + HlmFk
m) (108)

This stress-energy tensor is symmetric (e.g., as the Abraham tensor) and traceless (e.g., as the
Minkowski tensor) (one can find the detailed discussion concerning the Abraham-Minkowski
controversy, e.g., in the review [58]). In order to derive (108) we used the formulas for variation
of the velocity four-vector with respect to metric

δUi =
1
4

δgpq
(

Upδi
q+Uqδi

p

)
, δUi = −

1
4

δgpq (Upgiq+Uqgip
)

(109)

(see [79,80] for details).

4.1.2. Axionically Induced Spontaneous Magnetization of the Inertia-Type

There are no terms linear in Fmn, which contain the four-vector Ui only, however, using the
gradient four-vector∇iφ, as an additional element, one can construct the new term

L(22) =
1
2

λ(22)F
∗
mn∇mφ Un (110)

This term contributes into the tensor of spontaneous polarization-magnetization

Hik
(22) =

1
2

λ(22)ε
ikmn∇mφ Un (111)

gives vanishing polarization, P i = 0, but forms a spontaneous magnetization

Mp = −1
2

λ(22)
⊥
∇pφ (112)

The corresponding contribution into the total stress-energy tensor is linear in the dual
Maxwell tensor

T(22)
ik = −1

4
λ(22)∇mφ (UiF∗km +UkF∗im) (113)

Finally, let us mention that the term (110) changes the master equation for the axion field by
adding the source

J(22) =
1
2

λ(22)F
∗mn∇[mUn] (114)

into the right-hand side of (59). As usual, the symbol ∇[mUn] indicates the skew-symmetrization,
∇[mUn] ≡ 1

2 [∇mUn−∇nUm]. We repeat, that the nomenclature (22) indicates that we deal with term
number two in the second model.
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4.1.3. Axionically Induced Optical Activity of the Inertia-Type

Let us extend the Lagrangian by the terms quadratic in the Maxwell tensor Fmn, linear in φ or in
∇kφ, and containing the velocity four-vector Uk. Clearly, in order to form irreducible scalar invariants
of such type we have to use the convolution FikF∗kj. As it was shown in the Appendix A of [81],
this convolution satisfies the relations.

FikF∗kj =
1
4

δi
j FmnF∗mn (115)

One can check directly, that the set of new possible terms of mentioned type can be reduced to
one irreducible invariant only, namely

L(23) =
1
4

λ(23) FmnF∗mn Uk∇kφ (116)

with one new coupling constant λ(23). The corresponding contribution into the induction tensor

Hik
(23) = λ(23)F

∗ikDφ (117)

provides the only total tensor of magneto-electric coefficients to be extended

ν m
p = −∆m

p

[
φ + λ(23)Dφ

]
(118)

The electrodynamic equations takes now the form

∇kFik = −F∗ik∇k[φ + λ(23)Dφ] (119)

Equation for the axion field evolution obtains the following new term in the right-hand side:

J(23) =
λ(23)

4Ψ2
0
(Θ + D) (F∗mnFmn) (120)

The backreaction of this coupling to the gravity field is described by the source-term

T(23)
pq = −1

8
λ(23) FmnF∗mn

(
Up∇qφ+Uq∇pφ

)
(121)

in the right-hand side of the gravity field equations.

4.2. An Illustration

When a test electromagnetic wave coupled to the axionic Dark Matter propagates in the spatially
homogeneous FLRW-type space-time with the scale factor a(t) (say, in the direction 0x), in the short
wavelengths approximation k >> H(t) we obtain the solution for circularly polarized electromagnetic
wave (see [82]) in the form

A2(t, x) = −A0 sin [W − ϕ(t)] , A3(t, x) = A0 cos [W − ϕ(t)] , A2
2 + A2

3 = A2
0 (122)

Here the phase of the wave is given by the function

W = W(t0) + k
[∫ t

t0

dt′

a(t′)
− x
]

, ϕ(t) ≡ Φ(t)−Φ(t0) , Φ(t) =
1
2
[φ(t) + λ(23)φ̇] (123)

When λ(23) = 0, we deal with the well-known axionically induced polarization rotation: the angle
of the phase shift ϕ and the axion field φ differ by the coefficient 1

2 (see, e.g., [83,84]). When λ(23) 6= 0,
the angle of the polarization rotation depends on φ̇, i.e., on the rate of pseudoscalar field evolution.
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Let us remind that in the cosmological context the function φ̇ can be represented in terms of the
Dark Matter energy-density W(DM) and pressure P(DM) according to (58). Thus, the extended axion
electrodynamics can be considered as a tool for investigation of the nonstationary effects in the
evolution of the axionic Dark Matter, caused by a retardation of the response, or in other words,
caused by interactions of rheological type.

5. Model 3. Gradient-Type Interactions with the Axionic Dark Matter

5.1. Extended Axion Electrodynamics: Taking into Account Terms Quadratic in the Gradient Four-Vector

When we speak about quadratic terms in the gradient four-vector∇kφ, we do not use the velocity
four-vector Ui in the Lagrangian, and keep in mind, that there are only two irreducible terms of this
type to be included into the Lagrangian (see [85]):

L(3) =
1
4

λ(31)FmnFmn ∇pφ∇pφ+
1
4

λ(32)FmpFmq ∇pφ∇qφ (124)

where the parameters λ(31) and λ(32) are phenomenological coupling constants. Additional term
appeared in the induction tensor is now of the form

Hik
(3) = λ(31)F

ik ∇qφ∇qφ + λ(32)∇[kφFi]q∇qφ (125)

The corresponding term in the susceptibility tensor reads

χikmn
(3) =

1
2

(
gimgkn−gingkm

)
λ(31)∇pφ∇pφ+

+
1
2

λ(32)

(
gi[m∇n]φ∇kφ+gk[n∇m]φ∇iφ

)
(126)

The total tensors εim, (µ−1)im and νpm take now the form

εim = ∆im
[
1+λ(31)∇qφ∇qφ

]
+

1
2

λ(32)

[
∆im (Dφ)2 +

⊥
∇iφ

⊥
∇mφ

]
(127)

(
µ−1

)
im

= ∆im

[
1+ λ(31)∇qφ∇qφ

]
+

1
2

λ(32)

[
∆im

⊥
∇qφ

⊥
∇qφ−

⊥
∇iφ

⊥
∇mφ

]
(128)

νpm = −φ∆pm +
1
2

λ(32)Dφ ηpmk
⊥
∇kφ (129)

The equation of evolution of the pseudoscalar field contains additional terms in the left-hand side

∇q
[
(gpq−Θpq)∇pφ

]
+φV′

(
φ2
)
= − 1

4Ψ2
0

F∗mnFmn (130)

Here the tensor Θpq is introduced as follows:

Θpq =
1

2Ψ2
0

[
λ(31)g

pqFmnFmn+λ(32)F
mpF q

m

]
(131)

The principal novelty of the model is that the tensor

g̃pq = (gpq −Θpq) (132)
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plays the role of an effective metric for the axionic waves in analogy with color and color-acoustic
metrics studied in [86–88]. Gravity field equations are extended by the interaction source-term

T(3)
pq = λ(31)T

(31)
pq + λ(32)T

(32)
pq (133)

where the tensors
T(31)

pq = −1
2

FmnFmn∇pφ∇qφ + T(EM)
pq ∇nφ∇nφ (134)

T(32)
pq =

1
4

gpqF n
m Fml∇nφ∇lφ−

1
2
∇lφ

[
FqlF m

p ∇mφ+FmlFm
q∇pφ+FmlFm

p∇qφ
]

(135)

are quadratic both in the Maxwell tensor Fmn and in the gradient four-vector∇kφ.

5.2. First Illustration: A Spatially Homogeneous Anisotropic Cosmological Model

Let us consider the Bianchi-I model with magnetic field. This model with the metric [73]

ds2 = dt2−a2(t) (dx1)2−b2(t) (dx2)2−c2(t) (dx3)2 (136)

was used in hundreds of works for various cosmological contexts. (Keeping in mind applications to the
DF electrodynamics, we quote here only four papers [89–92]). We assume that all the state functions
depend on the cosmological time only. Direct calculations based on (127)–(129) show that for the
Model 3 with such space-time the dielectric permittivity tensor contains both new coupling constants

εim = ε(t) ∆im , ε(t) = 1+
[

λ(31) +
1
2

λ(32)

]
φ̇2 (137)

the magnetic impermeability tensor includes only one new coupling constant, λ(31),(
µ−1

)
im

=
1

µ(t)
∆im ,

1
µ(t)

= 1+λ(31)φ̇
2 (138)

and the magneto-electric cross-effect tensor contains neither λ(31), nor λ(32). The square of the
refraction index

n2(t) = ε(t)µ(t) =
1+

[
λ(31) +

1
2 λ(32)

]
φ̇2

1+λ(31)φ̇
2 (139)

depends now on cosmological time through the function φ̇2(t). As it was shown explicitly in [85] the
interaction of axionic Dark Matter with global magnetic field generates an electric field E3 = F30(t)
parallel to the magnetic field B3(t) = − 1

abc F12 (it is the typical axionically induced Longitudinal
Magneto-Electric Cluster). For an illustration, we display here the exact solution for the electric
field, which satisfies the condition F30(t0) = 0 at some moment of the cosmological time t0

F30(t)=
F12[φ(t)− φ(t0)]

a(t)b(t)c(t)
[
1+
(

λ(31)+
1
2 λ(32)

)
φ̇2(t)

] (140)

Clearly, when the coupling constants vanish, i.e., λ(31) = λ(32) = 0, we deal with standard vacuum
with n2 = 1 and without anomalies in the electromagnetic field. For non-vanishing coupling constants
there are six intrinsic cases.

(i) When λ(31)+
1
2 λ(32) ≥ 0 and λ(31) ≥ 0, there is no anomaly in the electric field, and the quantity

n2(t) is always positive.
(ii) When λ(31)+

1
2 λ(32) ≥ 0, and λ(31) < 0, there is no anomaly in the electric field, but the quantity

n2(t) can take infinite value at some moment t∗, for which φ̇2(t∗) = 1
|λ(31)|

. For infinite refraction

index, the phase velocity of electromagnetic waves V(ph)=
1
n and the group velocity V(gr)=

2n
n2+1
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take zero values, thus, the electromagnetic energy-information transfer stops. During the
interval of cosmological time, for which φ̇2(t) > 1

|λ(31)|
the square of refraction index is negative.

Such a situation is indicated in [93] as unlighted epoch in the Universe history, since electromagnetic
waves can not propagate in the Universe, when n is pure imaginary quantity. Also, one can say,
that it can be called a Dark Epoch of the first kind provided by the coupling of photons to the
Dark Matter.

(iii) When λ(31)+
1
2 λ(32) < 0 and λ(31) ≥ 0, a dynamic anomaly in the electric field can appear, if the

time moment t∗∗ exists, for which φ̇2(t∗∗) = 1
|λ(31)+

1
2 λ(32)|

. The quantity n2(t) can change the sign

at t∗∗ providing the existence of a Dark Epoch of the second kind. On the boundary of this Epoch
n2(t∗∗) = 0, V(ph)(t∗∗) = ∞, and the group velocity V(gr)(t∗∗) = 0, i.e., the electromagnetic energy
transfer stops.

(iv) When λ(31)+
1
2 λ(32) < 0, λ(31) < 0, and 0 < 1

2 λ(32) < |λ(31)|, again a dynamic anomaly in the
electric field can appear, and the quantity n2(t) can be negative, when

1
|λ(31)|

< φ̇2 <
1

| 12 λ(32) − |λ(31)||
(141)

On the boundary of the corresponding Dark Epoch n2(t∗) = ∞, V(ph)(t∗) = 0, V(gr)(t∗) = 0.
(v) When λ(31)+

1
2 λ(32) < 0, λ(31) >

1
2 |λ(32)|, and φ̇2 > 1

| 12 λ(32)+λ(31)|
a dynamic anomaly in the electric

field can appear, and the quantity n2(t) also can be negative. On the boundary of the corresponding
Dark Epoch n2(t∗∗) = 0, V(ph)(t∗∗) = ∞, V(gr)(t∗∗) = 0.

(vi) When λ(32) = 0, but λ(31) 6= 0, one obtains that n2 = 1, however, ε 6= 1 and µ 6= 1. There are
no Dark Epochs, nevertheless, the anomaly in the electric field can exist, if λ(31) is negative and
φ̇2(t) > 1

|λ(31)|
for some interval of the cosmological time.

Let us emphasize that according to (58) one can replace φ̇2 with φ̇2 = 1
Ψ2

0

[
W(DM)+P(DM)

]
, so in

the framework of this model, the inequalities discussed above in the context of Dark Epochs, involve
the state functions of the Dark Matter. In this context, some combinations of coupling constants can
be expressed via the critical values of the DE mass density. For instance, let the Dark Matter be cold,
and the coupling constants satisfy the inequalities related to the item (v). Then the inequality (141)

takes the form ρ(1) < ρ(DM) < ρ(2), where two critical values of the DE mass density, ρ(1) ≡
Ψ2

0
|λ(31)|

, and,

ρ(2) ≡
Ψ2

0
| 12 λ(32)−|λ(31)||

, are introduced.

5.3. Second Illustration: Static Model with Spherical Symmetry

We consider the metric of static spherically symmetric field configurations to be of the form

ds2 = σ2(r)N(r)dt2− 1
N(r)

dr2− r2
(

dθ2 + sin2 θdϕ2
)

(142)

and assume that φ also depends on r only. Since φ̇ = 0, we obtain that Ii = 0. The energy density,
longitudinal and transversal pressures of the Dark Matter are linked now by the following relationships

W(DM) =
1
2

Ψ2
0

[
V(φ2) + Nφ′2

]
(143)

− P(DM)
⊥ ≡ Pθ

θ = Pϕ
ϕ = W(DM) (144)

− P(DM)
|| ≡ Pr

r =
1
2

Ψ2
0

[
V(φ2)− Nφ′2

]
(145)
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The prime denotes the derivative with respect to r. Thus the pseudoscalar field φ(r) can be
reconstructed using formula

φ′(r) = ± 1
Ψ0
√

N

√
W(DM) + P(DM)

|| (146)

As an illustration, we consider the solution for the model with monopole, which possesses
a Longitudinal Magneto-Electric Cluster formed by collinear radial magnetic field and radial electric
field induced by the axion-photon coupling. This solution is asymptotically flat with φ(∞) = 0; it has
the form

Fθϕ = µ sin θ , F0r(r) =
µφ(r)

σr2
[
1−Nφ′2

(
λ(31)+

1
2 λ(32)

)] (147)

When λ(31)+
1
2λ(32) ≤ 0, the axionically induced electric field is regular. When λ(31)+

1
2λ(32) > 0,

the spatial anomaly can appear at r = r∗, where r∗ satisfies the equation φ′2(r∗)= N−1(r∗)[
(

λ(31)+
1
2λ(32)

)
]−1.

Let us emphasize that according to the formula (146) the quantity φ′2 can be expressed in terms of state
functions of the axionic Dark Matter distributed in the vicinity of spherically symmetric monopole.

6. Model 4. Dynamo-Optical Interactions Associated with the Axionic Dark Matter

In classical electrodynamics of continuous media there exists the term dynamo-optical phenomena,
which describes electromagnetic effects caused by a non-uniform motion of the medium [55].
Mathematically, these effects can be described by introduction into the Lagrangian terms linear
in the covariant derivative of the macroscopic velocity four-vector ∇iUk, or equivalently, the terms
including its irreducible elements, the acceleration four-vector DUi, shear tensor σik, vorticity tensor
ωik, and expansion scalar Θ [94]. In this Section we deal with the Lagrangian, which includes the
Maxwell tensor Fik, the velocity four-vector Ui and its covariant derivative∇iUk, as well as, the axion
field φ and its gradient four-vector∇iφ. The presence of φ or∇iφ in the Lagrangian L(4) allows us to
link this model with dynamo-optical phenomena induced by the axionic Dark Matter.

6.1. Axionic Extension of the Theory of Dynamo-Optically Active Electrodynamic Systems: The Lagrangian

In order to list all irreducible dynamo-optical terms we have proposed in [95] the following strategy:
in the decomposition of the Lagrangian instead of tensor Fik we used the four-vector of electric field Ei

and (pseudo) four-vector of magnetic induction Bk (see (17); instead of the tensor ∇iUk we used its
representation (14)–(16); instead of gradient (pseudo) four-vector∇iφ we used the convective derivative

Dφ and spatial gradient
⊥
∇iφ orthogonal to Ui, taken from the decomposition ∇iφ = UiDφ+

⊥
∇iφ.

The corresponding terms are presented by using the following nomenclature.

L(4) =
1
4

EmBn

[
φ+ λ(40)Dφ

] [
λ(41)Θgmn+λ(42)σ

mn+λ(43)ω
mn
]
+

+
1
4

ω(m
⊥
∇n)φ

[
∆mnλ(44)

(
EkEk − BkBk

)
+ λ(45) (E

mEn + BmBn)
]
+

+
1
4

⊥
∇nφ DUm

[
λ(46)∆

mnEkBk + λ(47) (E
nBm + EmBn)

]
+

+
1
4

λ(48)η
nmpσmk

⊥
∇nφ

(
EkEp+BkBp

)
(148)

Terms in the first line of this decomposition are linear in the pseudoscalar field φ and in the
convective derivative Dφ; they contain pseudovector Bi to provide the invariant property of this
part of the Lagrangian. Other lines contain terms linear in the spatial gradient of the pseudoscalar

field,
⊥
∇kφ. The second line in (148) contains scalars linear in the vorticity tensor with ωi = −ηiklω

kl,
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thus guaranteeing the product ωm
⊥
∇nφ to be the pure tensor. The third line in (148) includes the terms

linear in the acceleration four-vector DUk and linear in Bk. The fourth line is formed with the terms

linear in the shear tensor σik, the term ηnmp
⊥
∇nφ being the pure tensor.

6.2. Susceptibility of the Axionically Active Dynamo-Optical Medium

In the context of this Section, in order to calculate the new contributions into the induction tensor,
it is convenient to use the formula

Hik
(4) = 2Un

[
δik

mn
∂

∂Em
+ εik

mn
∂

∂Bm

]
L(4) (149)

then to use (28) and (35) to find new contributions into the permittivity tensors. Direct analysis yields

εim
(4) = λ(44)∆

im
(

ωn
⊥
∇nφ

)
+ λ(45)∆

j(i∆m)nω(j
⊥
∇n)φ+ λ(48)

⊥
∇nφ ηnj(iσ

m)
j (150)

(
µ−1

)im

(4)
= λ(44)∆

im
(

ωn
⊥
∇nφ

)
− λ(45)∆

j(i∆m)nω(j
⊥
∇n)φ− λ(48)

⊥
∇nφ ηnj(iσ

m)
j (151)

νim
(4) = −

1
2

[
φ+λ(40)Dφ

] [
λ(41)∆

imΘ+λ(42)σ
im−λ(43)ω

im
]
−λ(46)∆

imDUn
⊥
∇nφ−λ(47)DU(i

⊥
∇m)φ (152)

Clearly, three coupling parameters λ(44), λ(45), and λ(48) are included into the symmetric (true)

tensors of dielectric permittivity εim
(4) and magnetic impermeability

(
µ−1)im

(4). Six coupling parameters
λ(40), λ(41), λ(42), λ(43), λ(46) and λ(47) enter the non-symmetric pseudo-tensor of magneto-electric
cross-effect νim

(4).

6.3. An Illustration

When the space-time is spatially isotropic and homogeneous, and the metric is of the Friedmann
type, we know that the velocity four-vector can be chosen as Ui = δi

0, and

DUi = 0 , σik = 0 , ωik = 0 , Θ = 3H(t) (153)

This means that the axionically induced couplings of the dynamo-optical type do not disturb the
permittivities, i.e., εim

(4)=0 and
(
µ−1)im

(4) = 0 (see (150), (151)). However, the magneto-electric effects are
generated, since

νim
(4) =

3
2

λ(41)H(t)
[
φ(t) + λ(40)φ̇

]
∆im 6= 0 (154)

Again, as in the Model 2, we deal with polarization rotation, when electromagnetic waves
propagate in the Universe. The phase of rotation in that model was Φ(23) =

1
2

[
φ+λ(23)φ̇

]
. Now this

function has the form
Φ(4) =

3
2

λ(41)H(t)
[
φ+ λ(40)φ̇

]
(155)

Thus, in the model with additional Lagrangian L(4), the effect of axionically induced optical
activity is mediated by dynamo-optical interactions, which is displayed in the rotation function Φ(4)
via the multiplier Θ = 3H(t), where H is the Hubble function. The following new source term

J(4) = −
λ(41)

4Ψ2
0

{
(EkBk)

[
Θ− λ(40)

(
Θ̇+Θ2

)]
− λ(40)ΘD(EkBk)

}
(156)

appears in the right-hand side of the evolutionary Equation (59) for the pseudoscalar (axion) field.
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7. Model 5: Striction-Type Coupling Via a Scalar Dark Energy

7.1. A Prologue

The idea of interaction between electromagnetic field and scalar field ψ (dilaton) was realized
in the Field Theory at the same time as the idea of coupling between electromagnetic field and
pseudoscalar field φ (axion). There is a lot of papers (see, e.g., [96–98] for details and references),
in which the Lagrangian of electromagnetic field was extended as

1
4

FmnFmn →
1
4
[1+K(ψ)] FmnFmn (157)

whereK(ψ) is a scalar multiplier depending on the dilaton field and satisfying the conditionK(0) = 0.
Clearly, when the multiplier is a linear function of ψ, i.e., K(ψ) = ω0ψ (see, e.g., the work of
Bekenstein [96] concerning variations of the fine-structure constant), the additional term 1

4ω0ψFmnFmn

is the direct analog of the term 1
4φFmnF∗mn, which is basic for the axion electrodynamics. Electrodynamic

models with the Lagrangian (157) can be characterized by the induction tensor Hik = [1+K(ψ)] Fik,
thus these models correspond to the susceptibility tensor

χikmn(ψ) =
1
2
K(ψ)

(
gimgkn− gingkm

)
(158)

when we consider the action of the dilaton field on the electromagnetic filed as an influence of some
effective medium with ε = 1

µ = K(ψ). When we deal with scalar Ψ-representation of the Dark Energy,
there is a simple way to extend this version of the Maxwell-dilaton theory by introduction of the
gradient four-vector∇iΨ, of the velocity four-vector Ui and its covariant derivative, into the extended
Lagrangian. However, we do not intend to do it, since this way contains reasoning very similar
to the ones used for pseudoscalar (axion) field φ, and it would be simple repetition of calculations
given above. Below we use the medium representation of the Dark Energy, and in order to interpret
the result, we address to analogies from the classical electrodynamics of continuous media.

7.2. Electro-Striction and Magneto-Striction Induced by a Dark Energy

7.2.1. Extension of the Susceptibility Tensor

Let us consider the Dark Energy to be presented by the stress-energy tensor (11), by its time-like
eigen four-vector Ui attributed to the velocity four-vector, and by the pressure tensor Pik (see (12)).
Now we introduce a new term into the Lagrangian (see [99]):

L(5) =
1
4

Qikmnpq Ppq FikFmn (159)

linear in the pressure tensor and containing a six-indices tensor Qikmnpq, components of which
describe the electromagnetic response associated with electro-striction and magneto-striction.
The corresponding contributions into the induction and susceptibility tensors are, respectively

Hik
(5) = Qikmnpq Ppq Fmn , χikmn

(5) = Qikmnpq Ppq (160)

The tensor Qikmnpq can be decomposed similarly to the linear response tensor (32); for this purpose,
we introduce the following four-indices tensors

αim(pq) = 2QikmnpqUkUn , βls(pq) = −1
2

ηl
ikQikmnpqηs

mn

γlm(pq)=ηl
ikQikmnpqUn (161)
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The convolutions of these tensors with the pressure Ppq give the striction-type contributions to the

dielectric permittivity, εim
(5), to the magnetic impermeability,

(
µ−1)ls

(5), and magneto-electric cross-effect

tensor, νlm
(5), respectively. The tensor Qikmnpq possesses the following symmetries:

Qikmnpq = Qikmnqp = −Qkimnpq = −Qiknmpq = Qmnikpq (162)

Thus, the tensors αim(pq), βls(pq), γlm(pq) inherit the symmetry with respect to indices (pq).
Also, αim(pq) and βls(pq) are symmetric with respect to indices in the first pair, but γlm(pq) does not
possess the last symmetry.

7.2.2. Extension of the Gravity Field Equations

The stress-energy tensor T(5)
ik , calculated for the term L(5) can be written as follows:

T(5)
ik =

1
4

gikQabmnpqFabFmnPpq−
1
2

FabFmnPls
δ

δgik

(
Qabmnpq∆l

p∆s
q

)
+

+ QabmnpqFabFmnBikls∆
l
p∆s

q (163)

where the tensor Bikls is introduced using the variation derivative of the second order

Bikls ≡
1√−g

δ2

δgikδgls

[√
−g L(5)

]
(164)

We will illustrate the calculations of the variation derivatives below in the application to the
spatially isotropic model.

7.3. Application to a Spatially Isotropic Homogeneous Dark Energy

7.3.1. Reduction of the Susceptibility Tensor

When the electrodynamic system is spatially isotropic, we can put Pik = −P∆ik and decompose
the space-like tensors αim(pq), βim(pq) and γim(pq) using the metric, Kronecker deltas, Levi-Civita tensor
and the velocity four-vector only. These decompositions yield

αim(pq)=α(1)∆
im∆pq+α(2)(∆

ip∆mq+∆iq∆mp) (165)

βim(pq) = β(1)∆
im∆pq + β(2)(∆

ip∆mq +∆iq∆mp) γim(pq) = 0 (166)

Thus, when the medium is spatially isotropic, one deals with four independent coupling
parameters α(1), α(2), β(1), β(2). First two parameters characterize electro-striction induced by the
Dark Energy, the last two parameters relate to the DE-induced magneto-striction. With these formulas
we can reconstruct the tensor Qikmnpq as follows:

Qikmnpq =
1
2

[
α(1)∆

pq
(

gikmn−∆ikmn
)
+α(2)UlUs

(
giklpgmnsq+giklqgmnsp

)
+

+β(1)∆
pq∆ikmn− β(2)(η

ikpηmnq+ηikqηmnp)
]

(167)

SincePik =−P∆ik, only the four-indices tensor Qikmnpq∆pq appears in the electrodynamic equations.
Now we obtain that

Qikmn ≡ Qikmnpq∆pq =
1
2

αgikmn +
1
2
(β− α)∆ikmn (168)
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i.e., only two effective coupling constants

α = 3α(1) + 2α(2) , β = 3β(1) + 2β(2) (169)

are essential. Calculation of the total permittivity tensors of the spatially isotropic striction-active
medium yields

εim = ∆imε , ε = ε(0)− αP (170)

(µ−1)ab =
1
µ

∆ab ,
1
µ
=

1
µ(0)
− βP , νam = 0 (171)

The square of the refraction index of such medium is

n2 ≡ εµ =
n2
(0)− µ(0)αP

1− µ(0)βP
(172)

where n2
(0) ≡ ε(0)µ(0). With this refraction index we can find the phase and group velocities of the

electromagnetic waves in the striction-active medium

V(ph) ≡
1
n
=

√√√√ 1− µ(0)βP

n2
(0)− µ(0)αP

, V(gr) ≡
2n

(n2 + 1)
(173)

(Let us repeat that we use the system of units with c = 1).

7.3.2. Reduction of the Striction Source in the Gravity Field Equations

For the spatially isotropic model the variation derivative δ
δgik

(
Qabmnpq∆l

p∆s
q

)
can be calculated

directly using the auxiliary formulas

δ∆pq

δgik = δ
(p
(i ∆q)

k) ,
δgabmn

δgik = δ
[a
(i g b]mn

k) + gab[m
(kδ

n]
i) (174)

δ∆abmn

δgik = δ
[a
(i ∆

b]mn
k) +∆ab[m

(kδ
n]
i) ,

δηabp

δgik =
1
2

[
ηabpgik − ε

abp
(iUk)

]
(175)

(see Appendix in [99]). As for the tensor Bikls, one can find the detailed calculations in [99]; it has
the form

Bikls =
1
4
(2W−P)UiUkUlUs +

1
4

W (UiUk∆ls +UlUs∆ik)− PU(l∆s)(kUi)−

− 1
4

P (∆ls∆ik+∆li∆ks+∆lk∆is) (176)

With these two contributions one can reconstruct T(5)
ik :

T(5)
ik = Qabmn Fab

{
P
[
−1

4
gikFmn +

1
2
(gimFkn + gkmFin)

]
+

1
8

UiUkFmn(W + P)
}

(177)

This contribution is linear in the state functions of the Dark Energy, P ≡ P(DE) and W ≡W(DE),
and is quadratic in the Maxwell tensor Fik.

7.3.3. An Illustration: Dark Epochs in the Universe History Caused by Striction-Type coupling

In [99] we considered three illustrations of the formula (172) in the framework of the model with
Archimedean type force acting on the DM particles in the DE reservoir (see [100–102] for details):
first, for the de Sitter-type solution with the cosmological constant Λ; second, for an anti-Gaussian
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solution, which describes a specific bounce in the Universe evolution; third, for a super-exponential
expansion of the Universe. For the first case the DE pressure is constant, P = −Λ, thus the refraction
index, phase and group velocities are constant; the Dark Epochs are absent. When the DE pressure
depends on time, it is more convenient to rewrite (172) as

n2(t) =
α

β

(
P− P(ε)

)
(

P− P(µ)
) , P(ε) ≡

ε(0)

α
, P(µ) ≡

1
µ(0)β

(178)

For an illustration, let both α and β be positive, and P(ε) > P(µ). Then the function n2(t) is
negative when P(µ) < P < P(ε). Again we deal with Dark Epochs, when the electromagnetic waves
can not propagate, but now the striction-type interaction with the Dark Energy is the origin of this
phenomenon. The function n2(t) can change the sign at the moment t = t∗, for which n2(t∗) = 0, or at
the moment t = t∗∗, when n2(t∗∗) = ∞. In the first case the DE pressure coincides with its critical value
P(ε), and V(ph)(t∗) = ∞, V(gr)(t∗) = 0. In the second case the DE pressure coincides with its critical
value P(µ), and V(ph)(t∗∗) = V(gr)(t∗∗) = 0. Clearly, the refraction index is constant, if P(ε) = P(µ), i.e.,
when n2

(0) =
α
β .

8. Model 6: Piezo-Type Coupling Via a Scalar Dark Energy

The piezo-electric and piezo-magnetic effects are well-known in classical electrodynamics of
anisotropic materials, in which the electric and magnetic fields, respectively, can appear under the
influence of pressure (strain) [55]. In the covariant electrodynamics of continua these effects can be
described by the Lagrangian

L(6) =
1
2
DikpqFik Ppq (179)

into which the Maxwell tensor and the pressure tensor enter linearly. The piezo-electric and
piezo-magnetic coefficients are encoded in the tensor Dikpq. The corresponding contributions into the
induction tensor

Hik
(6) = D

ikpqPpq (180)

does not contain Fik and has to be included into the total tensor of spontaneous polarization-magnetization.
The tensor Dikpq is symmetric with respect to the indices in the last pair pq, and is skew-symmetric
with respect to ik. Since the symmetric pressure tensor Ppq is orthogonal to the velocity four-vector Ui,
we deal with the coefficients, which satisfy the relationships

DikpqUp = 0 = DikpqUq (181)

Using the unit velocity four-vector Ui, we can decompose the tensor Dikpq as

Dikpq = di(pq)Uk − dk(pq)Ui − εik
lsU

shl(pq) (182)

where the piezo-electric coefficients di(pq) and piezo-magnetic coefficients hl(pq) are introduced by

di(pq) ≡ DikpqUk , hl(pq) ≡ 1
2

εls
ikD

ikpqUs (183)

Both these tensors are symmetric with respect to pq, and are orthogonal to Ui

di(pq)Ui=0=di(pq)Up , hl(pq)Ul=0=hl(pq)Up (184)

In general case, the DE influence can be characterized by 18 piezo-electric coefficients di(pq) and/or
by 18 piezo-magnetic coefficients hl(pq). When the Dark Energy is spatially isotropic, Dikpq = 0, i.e.,
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only in the framework of anisotropic cosmological models the DE-induced piezo-effect can be activated.
And finally, the tensor

T(6)
ik = 2DmnpqFmn

[
1
4

gikPpq+Bikls∆
l
p∆s

q

]
−FmnPls

δ

δgik

(
Dmnpq∆l

p∆s
q

)
(185)

is the piezo-contribution into the total stress-energy tensor (see [99] for details of calculations). It is
interesting to apply this formalism to the model of DE-induced piezo-magnetic effects in the Bianchi-I
anisotropic Universe with magnetic field; this work is in progress.

9. Model 7: Pyro-Type Coupling Via a Scalar Dark Energy

Classical pyro-electricity is the effect of polarization of a material under the influence of
temperature variation; similarly, one deals with effect of pyro-magnetism, if the magnetization appears
in the material with varying temperature. If the internal energy density E of a material is a function of
the temperature only, E(T), one can link the rates Ė and Ṫ by the relation Ė(T) = dE

dT Ṫ. In other words,
one can say that pyro-effects are the results of variation of the internal energy of pyro-active materials.

In cosmology, the energy density of the Dark Energy (treated as a fluid) also depends on time,
and we could speak about DE - induced pyro-electric and pyro-magnetic phenomena. Mathematically,
these phenomena can be described by the Lagrangian

L(7) =
1
2

πikFikDW (186)

linear in the Maxwell tensor and linear in the convective derivative of the DE energy density W ≡W(DE).
Similarly to the case with piezo-phenomena, we obtain that there is a contribution

Hik
(7) ≡ πikDW (187)

into the total tensor of spontaneous polarization-magnetization. The skew-symmetric tensor πik can
be represented as

πik = πiUk − πkUi − εik
mnµmUn (188)

thus introducing the pyro-electric πi and pyro-magnetic µm coefficients, which are orthogonal to Ui.
In general case there are three pyro-electric and three pyro-magnetic coefficients; in a spatially isotropic
medium all the pyro-coefficients vanish. The pyro-contribution into the total stress-energy tensor can
be written as

T(7)
ik =

[
1
2

gikFmnπmn−Fmn
δ

δgik πmn
]

DW+

+

[
W
(

1
2

gik +UiUk

)
− 2BiklsUlUs

]
∇j

[
U jFmnπmn

]
− 1

2
FmnπmnU(i∇k)W (189)

(see [99] for details of calculations). This contribution is non-vanishing for anisotropic cosmological
models, e.g., for the Bianchi-I model with magnetic field (the work on the corresponding application
also is in progress).

10. Model 8: Dynamo-Optical Interactions Associated with Dark Energy

10.1. Irreducible Representation of Basic Quantities

The Lagrangian of this model does not contain the pseudoscalar (axion) field, and thus
dynamo-optical interactions of this type can be attributed to the coupling of electromagnetic field to
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the Dark Energy. As usual, we consider the Lagrangian, which includes terms linear and quadratic in
the Maxwell tensor.

L(8) =

[
1
2

AmnpqFpq +
1
4

XmnikpqFikFpq

]
∇mUn (190)

The contribution to the induction tensor is now of the form

Hik
(8) = Amnik∇mUn + Xmnikpq(∇mUn)Fpq (191)

Clearly, the first term in (191) contributes into the spontaneous polarization-magnetization tensor
Hik

(8) = Amnik∇mUn; the second terms gives the susceptibility tensor χ
ikpq
(8) = Xmnikpq∇mUn.

As it was shown in [103], generally, the tensor Amnik contains only two independent
coupling constants

Amnik = π(8)g
iknlUmUl − µ(8)∆

ikmn

giknl ≡ gingkl − gilgkn , ∆ikmn ≡ ∆im∆kn − ∆in∆km (192)

With this tensor Amnik, the spontaneous polarization four-vector

P i
(8) ≡ H

ik
(8)Uk = π(8)DUi (193)

is proportional to the acceleration four-vector DUi, the only true four-vector, which can be formed
using ∇iUk, ∆ik, ηikm and Ui. Searching for Mi we can find only one natural pseudo four-vector,
ωi =−2ω∗ikUk; one can check directly that with given Amnik the spontaneous magnetization four-vector

Mi
(8) ≡ H

∗ik
(8)Uk = µ(8)ε

ikpqUkωpq (194)

is proportional to ωi, the angular velocity of the medium rotation.
The tensor Xlsikmn is reconstructed in [103] as follows:

Xlsikmn =
1
2

(
α(81)−

1
3

α(86)

)
∆ls
(

gikmn − ∆ikmn
)
+

1
4

α(86)UpUq

[
giklpgmnsq + gmnlpgiksq

]
+

+
1
2

(
γ(81)−

1
3

γ(86)

)
∆ls∆ikmn − 1

2
γ(86) ηik(lηs)mn − ν(8)U

l
{

∆iks[mUn] + ∆mns[iUk]
}

(195)

The corresponding contributions into the dielectric permittivity, magnetic impermeability and
magneto-electric tensor read

εik
(8) = ∆ikα(81)Θ + α(86)σ

ik ,
(

µ−1
)ik

(8)
= ∆ikγ(81)Θ+γ(86)σ

ik , ν
pm
(8) = ν(8)η

pmlDUl (196)

Let us emphasize that the vorticity tensor does not appear in Xlsikmn due to the symmetry of
this tensor.

10.2. An Illustration: Dynamo-Optical Interactions with Dark Energy Provoked by Gravitational pp-Waves

As an illustration, let us consider again the pp-wave symmetric space-time with the metric (90)
(see Section 3.3). Let us assume, that before the gravitational wave incoming (u < 0) the spatially
isotropic electrodynamic medium was characterized by permittivity parameters ε and µ, the electric
field was absent, and the constant magnetic field was orthogonal to the direction of the gravitational
pp-wave propagation. For this metric and for the velocity four-vector Ui = δi

0, the acceleration
four-vector and the vorticity tensor are equal to zero, DUi = 0, ωik = 0. The expansion scalar is
equal to

Θ =

√
2 L′(u)

L
(197)
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and the shear tensor can be written as

σk
i =

Θ
2

(
1
3

∆k
i − δ1

i δk
1

)
+

β′√
2

(
δ2

i δk
2−δ3

i δk
3

)
(198)

Since the acceleration and vorticity are absent for such a velocity field, the coupling constants
π(8), µ(8) and ν(8) become the hidden parameters of the model (see (193), (194) and (196)). As it was
shown in [104], for this configuration the longitudinal (with respect to the propagation direction of the
gravitational waves) components of the electric and magnetic fields remain vanishing. The transversal
components happen to be deformed.

10.2.1. Exact Solutions for the Transversal Electric and Magnetic Fields

Transversal magnetic field dynamo-optically interacting with DE in the field of gravitational
pp-wave generates the transversal electric field:

E2(u) =
B3(0)
∆(+)

{
1
µ

(
1−e−2β

)
−e−2β

[√
2L′

L

(
γ(81)+

1
6

γ(86)

)
− β′√

2
γ(86)

]}
(199)

E3(u) = −B2(0)
∆(−)

{
1
µ

(
1− e2β

)
− e2β

[√
2L′

L

(
γ(81) +

1
6

γ(86)

)
+

β′√
2

γ(86)

]}
(200)

Clearly, the electric field components vanish at the initial moment, E2(0) = 0 and E3(0) = 0.
The magnetic field is deformed:

B2(u) =
L2B2(0)

∆(−)

{(
εe2β − 1

µ

)
+ e2β

[√
2L′

L

(
α(81) +

1
6

α(86)

)
− β′√

2
α(86)

]}
(201)

B3(u) =
L2B3(0)

∆(+)

{(
εe−2β − 1

µ

)
+ e−2β

[√
2L′

L

(
α(81) +

1
6

α(86)

)
+

β′√
2

α(86)

]}
(202)

The denominators in the formulas (199)–(202)

∆(+)(u) ≡ L2

{(
ε− 1

µ

)
+

1√
2

β′(α(86)+γ(86)) +

√
2L′

L

[
(α(81)−γ(81)) +

1
6
(α(86)−γ(86))

]}
(203)

∆(−)(u) ≡ L2

{(
ε− 1

µ

)
− 1√

2
β′(α(86)+γ(86)) +

√
2L′

L

[
(α(81)−γ(81)) +

1
6
(α(86)−γ(86))

]}
(204)

can take zero values at some moments of the retarded time (say, u∗), thus providing the anomalies in
the responses of the electromagnetic field.

10.2.2. Explicit Example of Anomaly

For the illustration of anomaly, we consider the function ∆(+)(u) for the Petrov metric with

L2 = cos ku · cosh ku , 2β = log
[

cos ku
cosh ku

]
(205)

(see [105]). Since now we deal with the explicit functions

Θ(u) =
√

2L′

L
=

k√
2
(tanh ku− tan ku) , Θ(0) = 0 (206)
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β′(u) = − k
2
(tanh ku + tan ku) , β′(0) = 0 (207)

one can state the following: first, ∆(+)(0) =
(

ε− 1
µ

)
> 0; second,

∆(+)

( π

2k

)
= − cosh

π

2

[
(α(81)−γ(81)) +

1
3
(2α(86)+γ(86))

]
(208)

When ku = π
2 we obtain that L = 0, i.e., the metric degenerates, and we have to deal with the

admissible interval 0 ≤ u < π
2k . Clearly, if the coupling parameters are linked by the inequality

1
3(2α(86)+γ(86)) > γ(81) − α(81), we obtain that ∆(+)

(
π
2k
)
< 0. This means that the function ∆(+)(u),

which starts with positive value at u = 0 and finishes with negative value at u = π
2k , takes zero value

inside the admissible interval at the moment u = u∗∗. The component E2 of the electric field is infinite
at this moment, while the component E3 remains finite.

11. Model 9: Non-Minimal Coupling of Photons to the Dark Fluid

11.1. Mathematical Aspects of the Model

11.1.1. The Lagrangian

One speaks about non-minimal coupling between some fields, when the interaction Lagrangian
£(interaction) contains the Riemann tensor Ri

kmn and/or its convolutions, Ricci tensor Rik and Ricci
scalar R. The story of elaboration of the theory of non-minimal coupling deserves a special review;
here we mention only the theory on non-minimal coupling of the electromagnetic field to gravity,
and do it only in the context of photon interactions with the Dark Fluid. For this particular task we
consider the following contribution into the Lagrangian:

L(9) =
1
4
RikmnFikFmn+

1
4

χikmn
(Axion)φ FikF∗mn−

1
2

η(1)Fik∇iφ Rkn∇nφ−1
2

η(A)Rφ2 (209)

The tensorRikmn

Rikmn = q1Rgikmn + q2<ikmn + q3Rikmn (210)

contains three coupling parameters q1, q2 and q3 in front of tensors

gikmn ≡ 1
2
(gimgkn−gingkm) (211)

<ikmn ≡ 1
2
(Rimgkn−Ringkm+Rkngim−Rkmgin) (212)

and Rikmn, respectively (in this Section we put the multiplier 1
2 in definition of gikmn, keeping in

mind historical motives). The quantity Rikmn can be indicated as a non-minimal three-parameter
susceptibility tensor [33]. The quantity χikmn

(Axion) is given by

χikmn
(Axion)=Q1Rgikmn+Q2<ikmn+Q3Rikmn (213)

with coupling constants Q1, Q2 and Q3. This part of the Lagrangian describes the non-minimal
interaction of the electromagnetic field with gravitation, mediated by the coupling to the axionic
Dark Matter. The term with the coupling constant η(1) in front, is linear in the Maxwell tensor; the last
term does not contain Fik. Standardly, the tensorsRikmn and χikmn

(Axion), are skew-symmetric with respect
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to transpositions in the pairs of the indices ik and mn. In addition, one can see that Rikmn = Rmnik.
As for the tensor χikmn

(Axion), we require that it is symmetric with respect to dualization procedure

∗χikmn
(Axion) = χ∗ikmn

(Axion) ⇐ · ⇒
∗χ∗ikmn

(Axion) = −χikmn
(Axion) (214)

Since

∗g∗ikmn = −gikmn (215)
∗<∗ikmn = <ikmn − Rgikmn (216)

∗R∗ikmn = −Rikmn + 2<ikmn − Rgikmn (217)

one can conclude that the symmetry condition (214) leads to the restriction Q2 + Q3 = 0.

11.1.2. Contributions into the Master Equations of Electromagnetic Field

For the model with the interaction Lagrangian (209), the contribution into the induction tensor is

Hik
(9) = −η(1)∇[iφ Rk]n∇nφ +RikmnFmn + χikmn

(Axion)φ F∗mn (218)

The first term forms the contribution into the spontaneous polarization-magnetization tensor

Hik
(9) = −η(1)∇[iφ Rk]n∇nφ (219)

The second and third terms relate to the non-minimal susceptibility tensor

χikmn
(9) = Rikmn + φχ∗ikmn

(Axion) (220)

which gives the following permittivity and cross-effect tensors:

εim
(9) = ∆im + 2

[
Rikmn + φχ∗ikmn

(Axion)

]
UkUn (221)

(µ−1)pq(9) = ∆pq −
1
2

ηpik

[
Rikmn + φχ∗ikmn

(Axion)

]
ηmnq (222)

ν m
p (9)

= ηpik

[
Rikmn + φχ∗ikmn

(Axion)

]
Un (223)

These tensors depend on five effective non-minimal coupling parameters q1, q2, q3, Q1, Q3.

11.1.3. Contributions into the Master Equation for the Pseudoscalar Field

The non-minimally modified equation for the pseudoscalar field

∇m

[(
gmn+<mn

(A)

)
∇nφ

]
+
[
V′(φ2)+η(A)R

]
φ = − 1

4Ψ2
0

F∗mn

(
Fmn+χikmn

(A) Fik

)
(224)

contains three new elements. First, we obtain the additional term

J(9) = −
1

4Ψ2
0

χikmn
(Axion)FikF∗mn (225)

in the right-hand side of this equation. Second, the tensor g̃mn = gmn + <mn
(A)

with

<mn
(A) ≡

1
2

η(1)

(
FmlRn

l + FnlRm
l

)
(226)



Symmetry 2016, 8, 56 34 of 48

plays the role of effective metric for pseudoscalar waves (see [86–88] for details). Third, the term η(A)R
describes the curvature induced contribution to the square of effective mass of the pseudoscalar field.

11.1.4. Non-Minimal Extension of the Gravity Field Equations

Non-minimal contributions into the right-hand side of the gravity field equations are very
sophisticated; we can represent them in the following form:

T(9)
ik = q1T(91)

ik + q2T(92)
ik + q3T(93)

ik +

(
Q1−

1
2

Q3

)
T(94)

ik + Q3T(95)
ik + η(1)T

(96)
ik + η(A)T

(97)
ik (227)

where the listed contributions to the stress-energy tensor read

T(91)
ik =

1
2

[
∇i∇k − gik∇l∇l

]
[FmnFmn]− RFimF m

k −
1
2

FmnFmn
(

Rik−
1
2

Rgik

)
(228)

T(92)
ik = −1

2
gik

[
∇m∇l

(
FmnFl

n

)
− RlmFmnFl

n

]
− Fln (RilFkn + RklFin)−

1
2
∇m∇m (FinF n

k ) +

+
1
2
∇l

[
∇i

(
FknFln

)
+∇k

(
FinFln

)]
−RmnFimFkn (229)

T(93)
ik =

1
4

gikRmnlsFmnFls−
3
4

Fls (F n
i Rknls+F n

k Rinls)−
1
2
∇m∇n [F n

i F m
k + F n

k F m
i ] (230)

T(94)
ik ≡ 1

2

[
∇i∇k−gik∇l∇l

] [
φ
∗
FmnFmn

]
− 1

2
Rikφ

∗
FmnFmn (231)

T(95)
ik ≡ −1

2
∇m∇n

[
φ

( ∗
F n

i Fk
m+

∗
F n

k Fi
m
)]

+
1
4

φ
∗
Fmn

(
FilRl

kmn+FklRl
imn

)
(232)

T(96)
ik ≡ 1

2
gik

(
Rl

n−∇l∇n

)
(Fnm∇mφ∇lφ) +

1
2

Rl
n∇lφ (F n

i ∇kφ+F n
k ∇iφ) +

+
1
4
∇l∇l [∇mφ (Fm

i∇kφ+Fm
k∇iφ)] +

1
4
∇l [∇i (F m

k ∇mφ∇lφ)+∇k (F m
i ∇mφ∇lφ)] +

+
1
4
∇m [∇i (Fmn∇kφ∇nφ)+∇k (Fmn∇iφ∇nφ)] +

+
1
2

Fmn (Rin∇kφ+Rkn∇iφ)∇mφ +
1
2
(Rm

i Fn
k+Rm

k Fn
i )∇mφ∇nφ (233)

T(97)
ik = (∇i∇k − gik∇m∇m)φ2−

(
Rik−

1
2

Rgik

)
φ2 (234)

Only the last term does not contain the Maxwell tensor.

11.2. Three Illustrations of the Non-Minimal Model

11.2.1. Cosmological Dark Epochs Produced by Interacting DM and DE

In the framework of non-minimal Einstein-Maxwell theory applied to the isotropic cosmological
FLRW model, the square of an effective refraction index can be found as follows (see [93]):

n2(t) =
1− 2(3q1+2q2+q3)

ä
a − 2(3q1+q2)

( ȧ
a
)2

1− 2(3q1+q2)
ä
a − 2(3q1+2q2+q3)

( ȧ
a
)2 (235)
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For the illustration, we study the model, for which Rikmngimgkn ≡ R = 0; it is possible when
6q1 + 3q2 + q3 = 0. Then we consider a scale factor a(t) presented by a stretched exponential function

a(t) = a0 exp{(Γt)ν} (236)

where Γ and ν are some constants. Such a function was introduced by Kohlrausch [106] in 1854. If ν = 1
the function (236) coincides with the standard de Sitter exponent, if we put H0 = Γ. If ν = 2 we deal
with an anti-Gaussian function studied in [100] as an exact solution of a model with Archimedean-type
interaction between DE and DM. The stretched exponent was used in [19] in the context of generalized
Chaplygin gas models. When the scale factor is described by (236), and 6q1 + 3q2 + q3 = 0, we obtain
immediately that

n2(t) =
(Γt)2−ν + ν(ν−1)Γ2Q̄
(Γt)2−ν − ν(ν−1)Γ2Q̄

, Q̄ ≡ 2(3q1+q2) (237)

Clearly, for the de Sitter law, ν= 1, the refraction index is equal to one n2(t) ≡ 1; there are
no Dark Epochs. For the late-time Universe evolution the refraction index in vacuum has to
take (asymptotically) the value n = 1. One can see from (237) that the function n2(t) tends to
one asymptotically at t → ∞, only when ν < 2. For 1 < ν < 2, either the numerator (for Q̄ < 0),
or denominator (for Q̄ > 0) can take zero values. For instance, if Q̄ is positive, n2 < 0 during the
interval 0 < t < t∗, where t∗ = 1

Γ [ν(ν−1)Γ2Q̄]
1

2−ν . At t = t∗ the refraction index is infinite, the phase and
group velocities are equal to zero; the moment t = t∗ is the finishing point of a Dark Epoch started at
t = 0.

11.2.2. Example of Regular Static Solution with Spherical Symmetry

Non-minimal coupling of photons to the gravity field is shown to form regular and quasi-regular
field configurations (see, e.g., [107–111]). When we deal with an electrically charged (with the total
charge Q) spherically symmetric object (star, monopole, black hole, etc.) with the metric (142), it is
useful to operate with the dimensionless radial variable x = r

rQ
, where rQ ≡

√
G|Q|. In [108] we have

found the exact explicit solution to the master equations of non-minimal model for the case, when 2|q1| = r2
Q;

the corresponding solution for the radial electric field is of the form:

E(x) =
Q

2r2
Q(1+ x2)

[
1− x2 +

√
x4 + 2x2 + 5

]
(238)

This solution has the standard Coulombian asymptote E(r)→ Q
r2 at r→ ∞. In the center, at r = 0,

E(0) = Q
r2
Q

(
√

5+1)
2 , i.e., we deal with the solution regular at the center, the value E(0) being proportional

to the so-called “golden section” φ ≡
√

5+1
2 . The metric function σ(x) also is found explicitly

σ(x) = exp

{
− 3+ (1− x2)

√
x4 + 2x2 + 5+ x4

2(1+ x2)2

}
(239)

Asymptotic value of this function is σ(∞) = 1; the value at the center is finite σ(0) = exp{−(1+φ)}.
The second metric function, N(x), is found in quadratures

N(x) =
1

2xσ(x)

∫ x

0
dξ σ(ξ)

[
ξ2 + 3−

√
ξ4 + 2ξ2 + 5

]
(240)

Clearly, N(∞) = 1 and N(0) = 3−
√

5
2 , so that 1− N(0) = 1

φ ≡ φ − 1. The solutions for the
metric functions σ(r) and N(r) are regular at the center. The curvature scalars diverge at the center,
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the singularity at the center is a mild one, it is a conical singularity. The asymptotic mass M of the
object is presented by the integral

M =
|Q|

4
√

G

∫ ∞

0
dξ

[
1

σ(ξ)
− ξ

σ′(ξ)

σ2(ξ)
− 1

2
σ(ξ)

(
ξ2 + 3−

√
ξ4 + 2ξ2 + 5

)]
(241)

Numerical calculations give the value M ' 0.442 |Q|√
G

. This is the illustration of the hypothesis that
the non-minimal coupling of the electric field to the self-gravity field can eliminate the singularity at
the center of the object.

11.2.3. Example of Regular Solution with pp-Wave Symmetry

Now we consider a non-minimal pp-wave model, i.e., the model for which the metric functions
L and β, the axion field φ, the electromagnetic field potentials A2 and A2 are the functions of the
retarded time only (see [112] for details). Let us put L(u) ≡ 1. In the standard theory of the gravity
wave propagation there are no solutions with constant background factor L(u); moreover, the moment
u = u∗ exists, for which L(u∗) = 0, i.e., the metric degenerates. The solution with L ≡ 1 can be
indicated as the regular one, since det(gik) = −L4 ≡ −1 and it can not vanish. For given solution for L,
the equation for β reduces to

−2
κ

(
β′
)2
[
1+κη(A)φ

2
]
=
(
φ′
)2
+η(A)

(
φ2
)′′

+
(
A′2e−β

)2
+
(
A′3eβ

)2
(242)

where the prime denotes the derivative with respect to the retarded time u. When η(A) = 0 there are no
real solutions of this equation, but such a possibility appears in the non-minimal case. We consider
only one example of the exact regular models, it is characterized by

φ = φ0 , A2(u) = A2(0)eβ(u) , A3(u) = A3(0)e−β(u) (243)

and is possible, when η(A) < 0 and

κφ2
0 |η(A)| = 1+

κ

2

[
A2

2(0) +A2
3(0)

]
(244)

For this specific solution the function β(u) is arbitrary, and we suggested to use the periodic
finite function

β(u) =
1
2

β(max)(1− cos 2λu) , β(0) = 0 , β′(0) = 0 (245)

The metric for this non-minimal model is regular and periodic

ds2=2dudv−
{

exp
[
2β(max) sin2 λu

]
(dx2)2+ exp

[
−2β(max) sin2 λu

]
(dx3)2

}
(246)

the potentials of the electromagnetic field and their derivatives are also periodic and regular. One can
state that this regularity became possible due to non-minimal interaction of photons with the Dark
Fluid via DM constituent.

12. Model 10: Electromagnetic Interactions Induced by the Dark Fluid in a Plasma with
Cooperative Field

The Model 10 describes the example of indirect coupling of photons to the Dark Fluid, mediated
by an ordinary matter, containing electric charges. For the illustration we have chosen the collisionless
relativistic multi-component plasma, which is electro-neutral as a whole. We assume that the
plasma particles interact by cooperative electromagnetic field (the so-called Vlasov field), and this
cooperative electromagnetic field is non-minimally coupled to the DM component of the Dark Fluid.
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Mathematically, we use the axionic extension of the Einstein-Maxwell-Vlasov model (see [81,113–115]
for details).

12.1. Axionic Extension of the Einstein-Maxwell-Vlasov Model

12.1.1. The Extended Kinetic Equation

The kinetic equation for a relativistic collisionless Vlasov’s plasma can be written as follows:

pi

m(a)

[
∂

∂xi−Γk
il p

l ∂

∂pk

]
f(a)+

∂

∂pk

[
Fk
(a) f(a)

]
= 0 (247)

Here the quantities f(a) are the distribution functions of the particles of the sort (a); pi is the
momentum four-vector of the particle with the mass m(a). The term Fk

(a) denotes a force acting on the
charged particle in the axionically active plasma. This force splits into the standard Lorentz force linear
in the particle momentum four-vector, and the forceRi

(a) induced by the axion field

F i
(a) =

1
m(a)

[
e(a)F

i
sps +Ri

(a)

]
(248)

According to the kinetic theory the electric current four-vector Ji contains the linear combination
of first moments of the distribution functions

Ji = ∑
(a)

e(a)
∫

dPf(a) pi (249)

The quantity e(a) is the electric charge of the particle of the sort (a); dP =
√−g d4p is the invariant

integration volume in the momentum four-dimensional space. The stress-energy tensor of the particles
is presented by the second moment of the distribution function

T ik = ∑
(a)
T ik
(a) = ∑

(a)

∫
dPf(a)p

ipk (250)

The particle momentum four-vector is normalized (gikpipk = m2
(a)), thus the trace of the

stress-energy tensor

T = ∑
(a)
T(a) = gikT ik = ∑

(a)
m2
(a)

∫
dPf(a) (251)

is presented by the moment of zero order.

12.1.2. Extended Non-Minimal Equations of Axion Electrodynamics

The cooperative electromagnetic field in plasma, which is described by the Maxwell tensor Fik
entering the force Fk

(a) (see (248)), satisfies the electrodynamic equations in the integro-differential form

∇k

{
η(1)∇mφRm[i∇k]φ+ Fik +RikmnFmn + φ

[ ∗
Fik + χikmn

(Axion)

∗
Fmn

]}
=

= −4π ∑
(a)

e(a)
∫

dPf(a) pi (252)

As it was in the Model 9, the left-hand side of this equation includes terms describing the
non-minimal mechanism of the Dark Fluid coupling to photons. The electric current in the right-hand
side of the Equation (252) describes the coupling mediated by the electrically neutral plasma.
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12.1.3. Extended Equation for the Pseudoscalar Field

The non-minimally extended master equation for the pseudoscalar φ takes now the form

∇m

[(
ξgmn+<mn

(A)

)
∇nφ

]
+
[
m2
(A)+V′(φ2)+η(A)R

]
φ =

= − 1
Ψ2

0

∑
(a)

∫
dPf(a)G(a)+

1
4

∗
Fmn

(
Fmn+χikmn

(A) Fik

) (253)

where ξ = ±1; <mn
(A)

and χikmn
(A)

are given by (226) and (213), respectively. The pseudoscalar source

J = ∑
(a)

∫
dPf(a)G(a) (254)

can be modeled by the pseudoscalar quantity G(a), which admits the decomposition

G(a) = α(a)φ+ β(a)p
k∇kφ+ γ(a)p

kFm
k∇mφ+ ... (255)

The phenomenological coefficients in this decomposition can be reconstructed using the
compatibility conditions.

12.1.4. Extended Gravity Field Equations and Reconstruction of the Effective Force Using the
Compatibility Conditions

The extension of the master equations for the gravitational field can be made by adding the source
term (250), where f(a) are the solutions of the corresponding kinetic equations (247) with the forces
containing Fik, the solution to the electrodynamic equations (252). According to the Bianchi identities,
the total stress-energy tensor of the non-minimally interacting system is divergence-free. Since the
divergence of the stress-energy tensor of plasma particles can be calculated as

∇kT ik=∑
(a)

m(a)

∫
dPf(a)F i

(a) (256)

one can check directly (see [81]) that the compatibility conditions are reduced to the relationships

∑
(a)

∫
dPf(a)

[
Ri

(a)−G(a)∇
iφ
]
= −∇kT(DE)ik (257)

In other words, the additional force Ri
(a), which acts on the plasma particles due to the Dark

Fluid influence, can be divided into two parts. First, the contribution of the axionic Dark Matter is
predetermined by the structure of the quantity G(a) decomposed as (255). Second, the contribution of
the Dark Energy is connected with the structure of the term∇kT(DE)ik.

For an illustration, we consider below the case, when the force is orthogonal to the particle
four-momentum, thus providing the particle mass conservation:

Ri
(a) =

[
δi

k (psps)− pipk

]
ν(a)Bk , Ri

(a)pi ≡ 0 (258)

where ν(a) are phenomenological constants. The unknown four-vector Bk can be reconstructed as

Bk = S̃k
l

[
J∇lφ−∇mT(DE)lm

]
= S̃k

l

[
J∇lφ− (D +Θ) (UlW(DE))−∇mP lm

]
(259)
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where J is represented by (254) with (255), and S̃k
l is reciprocal to S i

k:

S̃ i
kS

k
l = δi

l , S i
k ≡

[
δi

k Sm
m − Si

k

]
, Si

k = ∑
(a)

ν(a)T i
k(a) (260)

Thus, the compatibility conditions are satisfied, the model as a whole is self-consistent, and the
ponderomotive force, which acts on the plasma particles from the Dark Fluid, is describes by (258)
with (259) and (260).

12.2. First Application: Propagation of Electromagnetic Waves in an Axionically Active Ultrarelativistic
Plasma Non-Minimally Coupled to Gravity in a de Sitter Background

12.2.1. Dispersion Relations

Based on approach standard for the plasma theory, we consider the state of plasma perturbed by
a local variation of electric charge, assuming that the distribution function obtains a small variation
f(a) → f (0)

(a)+δ f(a), and, assuming that the cooperative electromagnetic field was vanishing in the
unperturbed state (in the isotropic homogeneous de Sitter cosmological background). Then, as it was
shown in [114], the dispersion relation for longitudinal electric waves in axionically active plasma
non-minimally coupled to gravity is extended as follows:

ε||(Ω, kα) = −2K1 (261)

where the new non-minimal parameter

K1 ≡ −H2(6q1+3q2+q3) (262)

appears in the right-hand side of this equation, with the Hubble constant H and non-minimal coupling
constants q1, q2, q3 (see (210) for the susceptibility tensorRikmn). The longitudinal dielectric permittivity

ε|| ≡ 1+
4π

k2 ∑
(a)

e2
(a)

∫ d3q kαqα

(qΩ− kβqβ)
·

d f (0)
(a)

dq
(263)

is the function of complex frequency Ω = ω + iγ, and of components of a real wave three-vector kα.
Since the illustration is prepared for the ultrarelativistic plasma, we assume that the particle energy is
given by q, defined by q2 = −qαqα via the particle three momentum qα.

The dispersion relation for transversal electromagnetic waves in axionically active plasma
non-minimally coupled to gravity can be written in the form

[
ε⊥+2K1−

(1+2K1)k2

Ω2

][(
ε⊥+2K1−

(1+2K1)k2

Ω2

)2

− ν2(1+2K2)
2k2

Ω4

]
= 0 (264)

where a new non-minimal constant

K2 ≡ −2H2(3Q1−Q3) (265)

contains the non-minimal coupling constants Q1, Q2 entering the susceptibility tensor χikmn
(Axion) (213).

The transversal permittivity scalar ε⊥ is given by the integral

ε⊥ ≡ 1+
2π

k ∑
(a)

e2
(a)

∫ qd3q
(qΩ− kβqβ)

[
k
Ω
−

kβqβ

kq

]
·

d f (0)
(a)

dq
(266)
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and the parameter ν is proportional to the time derivative of the axion field. The dispersion relation
for longitudinal electric waves does not contain information about axion field; only transversal
electromagnetic waves are influenced by the axionic Dark Matter.

12.2.2. Non-Minimal Coupling of Transversal Plasma Waves to a Stationary Axionic Dark Matter

When the Dark Matter is stationary, φ̇ = 0, thus ν = 0 and dispersion relations (264) reduce to

ε⊥− 1 = (1+2K1)

(
k2

Ω2 − 1
)

(267)

When 1 + 2K1 ≥ 0 (clearly, the classical case K1 = 0 is also included), there are no solutions of (267)
with ω < k (see [113,114] for details). This means that in such stationary Dark Matter the transversal
electromagnetic waves propagate with phase velocity exceeding the speed of light in vacuum, ω

k > 1;
these are running waves without damping. When 1 + 2K1 < 0, or in other words 6q1 + 3q2 + q3 >

1
2H2 ,

there exist the solution with ω
k < 1; the transversal electromagnetic waves move with phase velocity

less than the speed of light in vacuum, thus the resonant interaction with co-moving charged particles
is possible, and the Landau damping leads to the wave attenuation (see [113,114]).

12.2.3. Non-Minimal Coupling of Transversal Plasma Waves to a Non-stationary Axionic Dark Matter

Let us consider the non-minimal cosmological model, for which the trace of the susceptibility
tensorRikmn vanishes, i.e., 6q1 + 3q2 + q3 = 0, and thus K1 = 0. We introduce the notation p ≡ ν(1 + 2K2),
and consider the dispersion equation for the transversal electromagnetic waves in plasma

ε⊥ =
k2± pk

Ω2 (268)

Plus and minus in this formula relate to the transversal electromagnetic waves with left-hand and
right-hand polarization rotation, respectively. In this sense, when p 6= 0, we deal with an axionically
active plasma, which produces the effect of optical activity in plasma, similar to the optical activity
effect in axionic vacuum [116]. As it was shown in [114], the phase velocity of transversal waves can
be less than speed of light in vacuum, ω

k < 1, when

1 >
p
k
>

3
2k2r2

(D)

(269)

where the Debye radius r(D) is defined standardly as

1
r2
(D)

=
4π

3 ∑
(a)

e2
(a)N(a)

kBT(a)
(270)

with the charge e(a), number density N(a) and temperature T(a), indicated by the sort index (a) (kB is
the Boltzmann constant).

12.3. Second Application: Cosmological Electric Field Induced by Axionic Dark Matter in a Bianchi-I Model
with Magnetic Field

The second application of the Einstein-Maxwell-Vlasov-axion model relates to the Bianchi-I
anisotropic homogeneous cosmological model with local rotational isotropy; for this purpose we use
the metric

ds2 = dt2− a2(t)(dx12
+ dx22

)− c2(t)dx32
(271)
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and consider the scale factors a(t) and c(t) to be functions of cosmological time t. We assume that
the axion field, as well as the parallel electric and magnetic fields inherit the space-time symmetry:
these quantities depend on time only, B3(t) 6= 0 and E3(t) 6= 0.

Especial interest to this model is motivated by the following reasoning. The magnetic field Bi

in the non-stationary axionic environment (φ̇ 6= 0) is known to produce electric field Ei parallel to
the magnetic one, and the proportionality coefficient is linear in the axion field (see, e.g., [85,115]).
The corresponding pseudoscalar EiBi, which forms the electromagnetic source in the right-hand side
of the master equation for the axion field (253), happens to be linear in φ and quadratic in the initial
magnetic field. This means that the backreaction of the electromagnetic field on the axion field can
be described in terms of effective pseudoscalar mass. Let us illustrate this sentence by the master
equations obtained in [85] for the Bianchi-I model:

F12(t) = F12(0) , F30(t) =
F12

a2(t)c(t)
φ(t) (272)

The corresponding physical components of the magnetic B(t) and electric E(t) fields are given by

B(t) ≡
√

F12F12 =
F12

a2(t)
, E(t) ≡

√
−F30F30 =

F12φ(t)
a2(t)

= B(t)φ(t) (273)

and the master equation for the axion field takes the form

φ̈+

(
2ȧ
a
+

ċ
c

)
φ̇+ φ

[
m2
(A)±

F2
12

Ψ2
0a4

]
= 0 (274)

The sign plus in the Equation (274) relates to a canonic axionic Dark Matter, while the sign
minus appears, when the Dark Matter is phantom-like, or in other words, it can be described by the
Lagrangian with negative kinetic part. In the first case, the square of effective pseudoscalar mass

M2
(A) = m2

(A) +
F2

12
Ψ2

0a4
(275)

is positively defined, and evolution of the axion field is characterized by a quasi-oscillatory regime.
For the second case there exists a situation, when the quantity

m2
(A)−

F2
12

Ψ2
0a4

= −ζ2 (276)

is negative, and thus the axionic field grows in an inflationary-type manner (see [85]).
The growing electric field inevitably polarizes the multi-component plasma, and one can

expect that cooperative Vlasov’s electric field in plasma will counteract the external axionically
induced electric field. This counteraction produces a new oscillatory regime with another set of
eigen-frequencies. Indeed, the Maxwell equation for the electric field E(t) can be reduced to the
equation for the potential A3(t):

Ä3 + Ȧ3

(
2ȧ
a
− ċ

c

)
+Ω2

LA3 = F12φ̇
( c

a2

)
(277)

where F30 = 1
c2(t) Ȧ3. The quantity ΩL is the Langmuir frequency in the relativistic plasma;

its non-relativistic analog is

Ω2
L = 4π ∑

(a)

e2
(a)N(a)

m(a)
(278)
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Combined with the modified equation for the axion field

φ̈+

(
2ȧ
a
+

ċ
c

)
φ̇+m2

(A)φ = Ȧ3
F12

Ψ2
0a2c

(279)

the Equation (277) gives the set of equations for electro-axionic oscillations. The spectrum of these
oscillations is studied in details in [115]. Here we would like to display only two important details.
First, the equation describing the frequency Ω of the electro-axionic oscillations is given by the
following biquadratic equation:

Ω4−Ω2
(

Ω2
L +m2

(A)−Ω2
B

)
+m2

(A)Ω
2
L = 0 (280)

where the auxiliary constant Ω2
B =

F2
12

a4(t0)Ψ2
0

is introduced. Second, using the so-called combination frequencies:

Ω± ≡ ΩL±m(A) (281)

we can write the real solutions of this biquadratic equation as

Ω = ±1
2

[√
Ω2

+−Ω2
B±

√
Ω2
−−Ω2

B

]
(282)

The presented roots are real, when Ω2
B < Ω2

−.
To sum up the results, one can say that the discussed model describes the interaction of the

following quartet: first, the anisotropic homogeneous cosmological gravitational field; second the
axionic Dark Matter; third, the global Longitudinal Magneto-Electric Cluster; fourth, the cooperative
Vlasov’s electric field in plasma. It is a sophisticated four-level interaction, and it is interesting that
an oscillatory regime in this system is possible, the frequencies of which are presented by (282).

13. Conclusions

The main idea of this work is to show that the cosmic Dark Fluid can be considered as
an electromagnetically active medium, which indirectly affects on electromagnetic fields of all types.
There are many excellent reviews (see Introduction and references therein), which are focused on
detailed description of cosmological aspects of evolution of the Dark Energy and Dark Matter coupled
by the gravitational field. Also, one can find many reviews describing properties of uncharged particles,
which (hypothetically) form the Dark Matter (axions, axion-like particles, WIMPs, etc.). The presented
review is focused on electrodynamic aspects of the Dark Fluid evolution, and thus supplements
mentioned surveys. In other words, our goal is to look on the problem of the Dark Matter and Dark
Energy identification from the point of view of response of an electromagnetic field on the Dark
Fluid influence.

Based on description of 10 models of coupling of electromagnetic fields and Dark Fluid, we can
formulate three typical consequences of such interactions.

1. The axionic Dark Matter, the first (pseudoscalar) constituent of the Dark Fluid, provides the
global physical system to become the chiral one. One can distinguish three symptoms of chirality
provided by the Dark Fluid.

(i) The first symptom of chirality is the effect of optical activity of the axionically active vacuum,
plasma, dielectric media. This effect reveals itself in a polarization rotation of running and
standing electromagnetic waves.

(ii) The second symptom of chirality is the generation of specific Longitudinal Magneto-Electric
Clusters. The term “Longitudinal” means that due to the coupling to the axionic Dark
Matter, the magnetic field generates an electric field parallel to the initial magnetic field.
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This effect is typical for the axion electrodynamics, but does not appear in the standard
Faraday-Maxwell electrodynamics. The Longitudinal Magneto-Electric Clusters are shown
to appear in models for anisotropic cosmology, in static models with spherical symmetry,
in models with pp-wave symmetry. Such axionically produced Longitudinal Clusters can
appear (e.g., in the Earth Ionosphere) as specific oscillations, in which time-depending
magnetic and electric fields are collinear.

(iii) The third symptom of chirality is connected with a specific contribution into the dynamo-optical
phenomena, activated by the axionic Dark Matter. Such effects can appear, when the
Dark Fluid moves non-uniformly, and the pseudoscalar (axion) field is non-stationary
or inhomogeneous.

2. The second typical consequence of photon coupling to the Dark Fluid is the generation of
anomalous response of electrodynamic systems, in appropriate physical conditions. We have
shown that the interaction of axionic Dark Matter with initially constant magnetic field in the
field of gravitational waves, produces anomalously amplified electric field. Anomalies can appear
in anisotropic expanding Universe with magnetic field, as well as, a static anomaly can be formed
in the vicinity of axionic monopoles and stars.

3. In the cosmological context, the interaction of photons with Dark Fluid can organize specific Dark
Epochs in the Universe history, during which the effective refraction index of the cosmic medium
becomes an imaginary quantity. This means that electromagnetic waves can not propagate during
such Dark Epochs, and the corresponding electromagnetic energy-information transfer is stopped.
We have shown that the formation of Dark Epochs can be caused by both constituents of the
Dark Fluid: by the axionic Dark Matter (e.g., in the model of gradient-type extension of axion
electrodynamics), and by the non-stationary Dark Energy (e.g., in the model of striction-type
activity, and in the model of Archimedean-type coupling to the Dark Matter).

To conclude, we would like to emphasize that the results described in the review have a status of
theoretical findings. The question arises: is there experimental information available that can allow
us to select one, two or three of these 10 models, and to indicate them as preferable for the Dark
Fluid Electrodynamics? We think that a part of the necessary information already exists, but is still
in a hidden form. For instance, if the Universe indeed has passed through dark epochs, the CMB
data accumulated in the WMAP archive (see, e.g., [117]) can contain fingerprints of such events;
we believe that a special procedure of data processing could reveal these fingerprints of the Dark Energy
influence, thus providing constraints for the coupling constants listed in the review. Long-term records
of variations of the electric and magnetic fields in the Earth Ionosphere give another source of hidden
information about the coupling of photons to the axionic Dark Matter. In [118] one can find first
results of the corresponding data processing aimed to verify the predictions about axionically induced
magneto-electric oscillations in the Earth Ionosphere (see [71] for details). New information about
phenomenological parameters, appeared in the Dark Fluid electrodynamics, can be obtained in
experiments concerning the axionically induced spin precession (see, e.g., [119–121].
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