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1. Introduction

The eikonal equations in spaces of different dimensions and different types have many
applications in the geometric optics, acoustics of inhomogeneous media, theoretical physics, etc. The
details on this theme can be found in [1–7] (see also the references therein).

Sheng, Guha and Gonzalez (see [8,9] and the references therein) proposed new effective methods
for solving many problems of computational optics.

The complete group classification of the eikonal equations for a two- and three-dimensional
nonhomogeneous medium is carried out in [1–4]. In those papers the exact solutions for equations
under investigation are also obtained.

In [5], a group classification of generalized eikonal equations was performed. The paper contains
a list of all non-equivalent (with respect to equivalence group) equations with symmetry extensions
of the kernel. New nonlinear equations of first-order with wide symmetry groups are found.

In [6], the method of propagating waves in multidimensional media is studied in order to find
cases of integrability in an explicit form of the eikonal equation.

Many important results conserning symmetry, reduction, and exact solutions of the eikonal
equations can be found in the monograph of Fushchych, Shtelen, and Serov [10].

In this paper, we consider the eikonal equation of the form as follows:(
∂u
∂x0

)2
−
(

∂u
∂x1

)2
−
(

∂u
∂x2

)2
−
(

∂u
∂x3

)2
= 1 (1)

where u = u(x), x = (x0, x1, x2, x3) ∈ M(1, 3).
In 1982, Fushchych and Shtelen [11] proved that the maximally extensive local (in sense of

Lie) invariance group of Equation (1) was the conformal group C(1, 4) of the (4 + 1) -dimensional
Poincaré-Minkowski space with the metric

s2 = x2
0 − x2

1 − x2
2 − x2

3 − u2, x4 = u (2)
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Some exact multiparametrical solutions of Equation (1) are obtained. A procedure of generating
new exact solutions from the known ones is also presented.

In [12], using subalgebras of rank 3 of the Lie algebra of the group C(1, 4), the ansatzes, which
reduce the eikonal equation to ODEs, were constructed. Taking into account the solutions of the
reduced equations, wide classes of exact solutions of the eikonal equation were found.

The Lie algebra of the group C(1, 4) contains, as subalgebras, the Lie algebras of the following
groups: Poincaré group P(1, 4), extended Poincaré group P̃(1, 4), and the optical group Opt(3) [13,14].

In [15], the subalgebras of rank 3 of the Lie algebra of the group Opt(3), which are nonequivalent
to subalgebras of the Lie algebra of the group P̃(1, 4), were used for symmetry reduction of the
Equation (1) to ODEs.

In [13], the symmetry reduction was made and some exact solutions for the eikonal equation
were constructed using subalgebras of the Lie algebra of the group P̃(1, 4).

In the papers [16–22], we studied the eikonal equation using the subgroup structure of the
proper orthochronous group P(1, 4). By using nonconjugate subalgebras of ranks 1, 2, and 3, we
performed the symmetry reduction of the Equation (1) to differential equations with less a number
of independent variables. Taking into account the solutions of the reduced equations, some invariant
solutions of the eikonal equation were constructed.

However, it turned out that the reduced equations, obtained with the help of nonconjugate
subalgebras of the Lie algebra of the group P(1, 4) of the given rank, were of different types. Let
us present some examples.

It is known that if we reduce nonlinear partial differential equations (PDEs) we obtain, as a rule,
nonlinear reduced equations. But, in the cases of the eikonal equation, Euler-Lagrange-Born-Infeld
equation, and Monge-Ampere equation in the space M(1, 3)×R(u) we obtained, in some cases, linear
ODEs instead of the nonlinear ODEs [16,21,22]. Here, and in what follows, R(u) is a real number axis
of the dependent variable u.

It is also known (see, for example [23,24]) that if we reduce PDEs using the nonconjugate
subalgebras with a given rank of the Lie algebras of their symmetry groups, we obtain, as a
rule, reduced equations with the same number of independent variables. However, in the case of
symmetry reduction of the nonlinear wave equation in the space M(1, 4) × R(u) we obtained, in
some cases, functional equations, ODEs, two- and three-dimensional PDEs instead of ODEs, two-,
three- and four-dimensional reduced PDEs, correspondingly [16,25].

Grundland, Harnad, and Winternitz [26] were the first to point out and investigate the
similar phenomenon.

Recently, Nikitin and Kuriksha [27,28] used the three-dimensional nonconjugate subalgebras
of the Lie algebra of the Poincaré group P(1, 3) for symmetry reductions of equations of axion
electrodynamics. They obtained four types of reductions. The results obtained cannot be explained
in the usual approach (using only the ranks or dimensions of the considered subalgebras).

It means that using only the rank of nonconjugate subalgebras of the Lie algebras of the
symmetry groups of the above mentioned equations under investigation, we cannot explain
differences in the properties of their reduced equations.

It is known that the nonconjugate subalgebras of the Lie algebra of the group P(1, 4) of the
same rank may have different structural properties. Therefore, in order to try to explain some of
the differences in the properties of the above mentioned reduced equations, we suggest to try to
investigate the relationship between structural properties of nonconjugate subalgebras of the same
rank of the Lie algebra of the group P(1, 4) and the properties of the reduced equations corresponding
to them.

In the present paper, we plan to present some of the results concerning the relationship between
the structural properties of three-dimensional nonconjugate subalgebras of the Lie algebra of the
group P(1, 4) and the types of symmetry reduction of the eikonal equation to ODEs.
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2. The Lie Algebra of the Group P(1, 4) and Its Nonconjugate Subalgebras

The group P(1, 4) is a group of rotations and translations of the five-dimensional Minkowski
space M(1, 4). This group has many applications in the theoretical and mathematical physics (see, for
example, [29,30]).

The Lie algebra of the group P(1, 4) is given by the 15 basis elements Mµν = −Mνµ

(µ, ν = 0, 1, 2, 3, 4) and Pµ(µ = 0, 1, 2, 3, 4), satisfying the commutation relations[
Pµ, Pν

]
= 0,

[
Mµν, Pσ

]
= gνσPµ − gµσPν (3)[

Mµν, Mρσ

]
= gµσ Mνρ + gνρ Mµσ − gµρ Mνσ − gνσ Mµρ (4)

where g00 = −g11 = −g22 = −g33 = −g44 = 1, gµν = 0, if µ 6= ν.
In the following, we will use new basis elements

G = M04, L1 = M23, L2 = −M13, L3 = M12 (5)

Pa = Ma4 −M0a, Ca = Ma4 + M0a, (a = 1, 2, 3) (6)

X0 =
1
2
(P0 − P4) , Xk = Pk (k = 1, 2, 3), X4 =

1
2
(P0 + P4) (7)

Let us consider the following representation for the Lie algebra of the group P(1, 4) :

P0 =
∂

∂x0
, P1 = − ∂

∂x1
, P2 = − ∂

∂x2
, P3 = − ∂

∂x3
(8)

P4 = − ∂

∂u
, Mµν = xµPν − xνPµ, x4 ≡ u (9)

It means that the group P(1, 4) acts on the space M(1, 3)× R(u). More details about this type of
representations can be found in [10,31,32].

In order to describe nonconjugate subalgebras of the Lie algebra of the group P(1, 4), we used a
method proposed by Patera, Winternitz, and Zassenhaus in [33].

The subgroup structure of the group P(1, 4) was studied in [34–38]. One of the nontrivial
consequences of the description of the non-conjugate subalgebras of the Lie algebra of the group
P(1, 4) is that the Lie algebra of the group P(1, 4) contains, as subalgebras, the Lie algebra of the
Poincaré group P(1, 3) and the Lie algebra of the extended Galilei group G̃(1, 3) [39], i.e., it naturally
unites the Lie algebras of the symmetry groups of relativistic and non-relativistic physics.

In the present work, we use the complete list of nonconjugate (up to P(1, 4) -conjugation)
subalgebras of the Lie algebra of the group P(1, 4) as given by Fushchich, Barannik, and Barannik
in [40].

Taking into account the complete classification of real structures of Lie algebras of a dimension
less or equal four obtained by Mubarakzyanov in [41], we classify all the three-dimensional
nonconjugate subalgebras of the Lie algebra of the group P(1, 4) into classes of isomorphic
subalgebras (see, [42]).

3. Results

In this section, we present the results obtained while studying the relationship between the
structural properties of the three-dimensional nonconjugate subalgebras of the Lie algebra of the
group P(1, 4) and those obtained through the symmetry reduction of the eikonal equation to ODEs.

In the paper, the symbol Aa
r,j denotes the jth Lie algebra of dimension r and a is a continuous

parameter for the algebra. It should be indicate that the notation Aa
r,j corresponds to those used in the

paper by Patera et al. [43]. In what follows, for the given specific Lie algebra, we write only nonzero
commutation relations [41,43].
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3.1. Lie Algebras of the Type 3A1

By 3A1 we denote the real Lie algebra of dimension three [44]. The Lie algebras of the type 3A1

are Abelian.
The Lie algebra of the group P(1, 4) contains 31 nonconjugate subalgebras of the type 3A1. Below,

we present the results obtained for those subalgebras.

3.1.1. Reductions to Algebraic Equations

The invariants of five subalgebras allow us to construct the ansatzes, which reduce the eikonal
equation to algebraic equations.

(1) 〈P1 − γX3, γ > 0〉 ⊕ 〈P2 − X2 − δX3, δ 6= 0〉 ⊕ 〈X4〉.
Ansatz:

x3(x0 + u)2 − (γx1 + x2δ− x3)(x0 + u)− γx1 = ϕ(ω), ω = x0 + u (10)

Reduced equation:
ω4 + 2ω3 + (γ2 + δ2 + 1)ω2 + 2γ2ω + γ2 = 0 (11)

Solution of the eikonal equation:

(x0 + u)4 + 2(x0 + u)3 + (γ2 + δ2 + 1)(x0 + u)2 + 2γ2(x0 + u) + γ2 = 0 (12)

(2) 〈P1 − γX3, γ > 0〉 ⊕ 〈P2 − X2〉 ⊕ 〈X4〉.
Ansatz:

x3(x0 + u)2 − (γx1 − x3)(x0 + u)− γx1 = ϕ(ω), ω = x0 + u (13)

Reduced equation:
(ω + 1)2(ω2 + γ2) = 0 (14)

Solutions of the eikonal equation:

u = −1− x0, (x0 + u)2 + γ2 = 0 (15)

(3) 〈P1〉 ⊕ 〈P2 − X2 − δX3, δ > 0〉 ⊕ 〈X4〉.
Ansatz:

x3(x0 + u)− x2δ + x3 = ϕ(ω), ω = x0 + u (16)

Reduced equation:
ω2 + 2ω + δ2 − 1 = 0 (17)

Solution of the eikonal equation:

(x0 + u)2 + 2(x0 + u) + δ2 + 1 = 0 (18)

As we see, the left hand sides of the Ansatzes (1)–(3) are polinomials in invariant ω = x0 + u.
The reduced equations are also polinomials in ω, but with the constant coefficients. The solutions
of the eikonal equation are also polinomials in variable x0 + u with the constant coefficients.

(4) 〈P1 − X3〉 ⊕ 〈P2〉 ⊕ 〈X4〉.
Ansatz:

x3 −
x1

x0 + u
= ϕ(ω), ω = x0 + u (19)

Reduced equation:
(1 + ω2)ω2 = 0 (20)
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Solutions of the reduced equation:

1 + ω2 = 0, ω = 0 (21)

Solutions of the eikonal equation:

1 + (x0 + u)2 = 0, u = −x0 (22)

(5) 〈P3 − X2〉 ⊕ 〈X1〉 ⊕ 〈X4〉.
Ansatz:

x2 −
x3

x0 + u
= ϕ(ω), ω = x0 + u (23)

Reduced equation:
(ω2 + 1)ω2 = 0 (24)

Solutions of the reduced equation:

ω2 + 1 = 0, ω = 0 (25)

Solutions of the eikonal equation:

(x0 + u)2 + 1 = 0, u = −x0 (26)

3.1.2. Reductions to Linear ODEs

The invariants of six subalgebras allow us to construct the ansatzes, which reduce the eikonal
equation to linear ODEs.

(1) 〈P1〉 ⊕ 〈P2〉 ⊕ 〈X3〉.
Ansatz:

x2
0 − x2

1 − x2
2 − u2 = ϕ(ω), ω = x0 + u (27)

Reduced equation:
ωϕ′ − ϕ = 0 (28)

Solution of the reduced equation:
ϕ(ω) = c1ω (29)

Solution of the eikonal equation:

x2
0 − x2

1 − x2
2 − u2 = c1(x0 + u) (30)

(2) 〈P3〉 ⊕ 〈X1〉 ⊕ 〈X2〉.
Ansatz:

x2
0 − x2

3 − u2 = ϕ(ω), ω = x0 + u (31)

Reduced equation:
ωϕ′ − ϕ = 0 (32)

Solution of the reduced equation:
ϕ(ω) = c1ω (33)
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Solution of the eikonal equation:

x2
0 − x2

3 − u2 = c1(x0 + u) (34)

(3) 〈P1〉 ⊕ 〈P2〉 ⊕ 〈P3〉.
Ansatz:

x2
0 − x2

1 − x2
2 − x2

3 − u2 = ϕ(ω), ω = x0 + u (35)

Reduced equation:
ωϕ′ − ϕ = 0 (36)

Solution of the reduced equation:
ϕ(ω) = c1ω (37)

Solution of the eikonal equation:

x2
0 − x2

1 − x2
2 − x2

3 − u2 = c1(x0 + u) (38)

Let us note, that in the cases (1)–(3) we obtained the same reduced equations.
(4) 〈P1〉 ⊕ 〈P2 − X2〉 ⊕ 〈X3〉.

Ansatz:
x2

0 − x2
1 − u2

x0 + u
−

x2
2

x0 + u + 1
= ϕ(ω), ω = x0 + u (39)

Reduced equation:
ϕ′(ω + 1)4ω4 = 0 (40)

Solutions of the reduced equation:

ϕ(ω) = c1, ω + 1 = 0, ω = 0 (41)

Solutions of the eikonal equation:

x2
0 − x2

1 − u2

x0 + u
−

x2
2

x0 + u + 1
= c1, u = −1− x0, u = −x0 (42)

(5) 〈P1〉 ⊕ 〈P2 − αX2, α > 0〉 ⊕ 〈P3 − γX3, γ 6= 0〉.
Ansatz:

2u +
x2

1
x0 + u

+
x2

2
x0 + u + α

+
x2

3
x0 + u + γ

= ϕ(ω), ω = x0 + u (43)

The reduced equation:
ω4(ω + γ)4(ω + α)4(ϕ′ − 1) = 0 (44)

Solutions of the reduced equation:

ω = 0, ω + γ = 0, ω + α = 0, ϕ(ω) = ω + c (45)

Solutions on the eikonal equation:

u = −x0, u = −x0 − γ, u = −x0 − α (46)

2u +
x2

1
x0 + u

+
x2

2
x0 + u + α

+
x2

3
x0 + u + γ

= x0 + u + c (47)
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(6) 〈P1〉 ⊕ 〈P2 − αX2, α > 0〉 ⊕ 〈P3〉.
Ansatz:

2u +
x2

1 + x2
3

x0 + u
+

x2
2

x0 + u + α
= ϕ(ω), ω = x0 + u (48)

The reduced equation:
ω4(ω + α)4(ϕ′ − 1) = 0 (49)

Solutions of the reduced equation:

ω = 0, ω + α = 0, ϕ(ω) = ω + c (50)

Solutions on the eikonal equation:

u = −x0, u = −x0 − α, 2u +
x2

1 + x2
3

x0 + u
+

x2
2

x0 + u + α
= x0 + u + c (51)

3.1.3. Reductions to Equations, Which Can Be Split on Two Linear ODEs

Taking into account the invariants of nine nonconjugate subalgebras, we constructed the
ansatzes, which reduced the eikonal equation to those, which could be split on two linear ODEs.

(1) 〈X1〉 ⊕ 〈X2〉 ⊕ 〈X4〉.
Ansatz:

x0 + u = ϕ(ω), ω = x3 (52)

Reduced equation:
(ϕ′)2 = 0 (53)

Solution of the reduced equation:
ϕ(ω) = c1 (54)

Solution of the eikonal equation:
u = c1 − x0 (55)

(2) 〈P1〉 ⊕ 〈P2 − X2〉 ⊕ 〈X4〉.
Ansatz:

x0 + u = ϕ(ω), ω = x3 (56)

Reduced equation:
(ϕ′)2 = 0 (57)

Solution of the reduced equation:
ϕ(ω) = c1 (58)

Solution of the eikonal equation:
u = c1 − x0 (59)

(3) 〈L3〉 ⊕ 〈X3〉 ⊕ 〈X4〉.
Ansatz:

x0 + u = ϕ(ω), ω = (x2
1 + x2

2)
1/2 (60)

Reduced equation:
(ϕ′)2 = 0 (61)
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Solution of the reduced equation:
ϕ(ω) = c1 (62)

Solution of the eikonal equation:
u = c1 − x0 (63)

(4) 〈P3〉 ⊕ 〈X1〉 ⊕ 〈X4〉.
Ansatz:

x0 + u = ϕ(ω), ω = x2 (64)

Reduced equation:
(ϕ′)2 = 0 (65)

Solution of the reduced equation:
ϕ(ω) = c1 (66)

Solution of the eikonal equation:
u = c1 − x0 (67)

(5) 〈L3〉 ⊕ 〈P3〉 ⊕ 〈X4〉.
Ansatz:

x0 + u = ϕ(ω), ω = (x2
1 + x2

2)
1/2 (68)

Reduced equation:
(ϕ′)2 = 0 (69)

Solution of the reduced equation:
ϕ(ω) = c1 (70)

Solution of the eikonal equation:
u = c1 − x0 (71)

(6) 〈P1〉 ⊕ 〈P2〉 ⊕ 〈X4〉.
Ansatz:

x0 + u = ϕ(ω), ω = x3 (72)

Reduced equation:
(ϕ′)2 = 0 (73)

Solution of the reduced equation:
ϕ(ω) = c1 (74)

Solution of the eikonal equation:
u = c1 − x0 (75)

Let us note that, in the cases (1)–(6), we obtained the same reduced equations. The solutions of
the eikonal equation are also the same.

(7) 〈G〉 ⊕ 〈X2〉 ⊕ 〈X1〉.
Ansatz:

(x2
0 − u2)1/2 = ϕ(ω), ω = x3 (76)

Reduced equation:
(ϕ′ − 1)(ϕ′ + 1) = 0 (77)
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Solutions of the reduced equation:

ϕ(ω) = εω + c1, ε = ±1 (78)

Solutions of the eikonal equation:

(x2
0 − u2)1/2 = εx3 + c1, ε = ±1 (79)

(8) 〈G〉 ⊕ 〈L3〉 ⊕ 〈X3〉.
Ansatz:

(x2
0 − u2)1/2 = ϕ(ω), ω = (x2

1 + x2
2)

1/2 (80)

Reduced equation:
(ϕ′ − 1)(ϕ′ + 1) = 0 (81)

Solutions of the reduced equation:

ϕ(ω) = εω + c1, ε = ±1 (82)

Solutions of the eikonal equation:

(x2
0 − u2)1/2 = ε(x2

1 + x2
2)

1/2 + c1, ε = ±1 (83)

(9) 〈P3 − 2X0〉 ⊕ 〈X1〉 ⊕ 〈X2〉.
Ansatz:

1
6
(x0 + u)3 + x3(x0 + u) + x0 − u = ϕ(ω), ω = (x0 + u)2 + 4x3 (84)

Reduced equation:
16(ϕ′)2 −ω = 0 (85)

Solutions of the reduced equation:

ϕ(ω) =
ε

6
ω3/2 + c1, ε = ±1 (86)

Solutions of the eikonal equation:

1
6
(x0 + u)3 + x3(x0 + u) + x0 − u =

ε

6

(
(x0 + u)2 + 4x3

)3/2
+ c1, ε = ±1 (87)

3.1.4. Reductions to Nonlinear ODEs

From the invariants of five nonconjugate subalgebras we constructed the ansatzes, which
reduced the eikonal equation to nonlinear ODEs.

(1) 〈G + αX3, α > 0〉 ⊕ 〈X1〉 ⊕ 〈X2〉.
Ansatz:

x3 − α ln(x0 + u) = ϕ(ω), ω = x2
0 − u2 (88)

Reduced equation:
4ω(ϕ′)2 + 4αϕ′ − 1 = 0 (89)
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Solutions of the reduced equation:

ϕ(ω) = ε(α2 + ω)1/2 − εαartanh
(α2 + ω)1/2

α
− α

2
ln(ω) + c1, ε = ±1 (90)

Solutions of the eikonal equation:

x3 − α ln(x0 + u) = ε(α2 + x2
0 − u2)1/2 − εαartanh

(α2 + x2
0 − u2)1/2

α
− α

2
ln(x2

0 − u2) + c1, ε = ±1 (91)

(2) 〈L3〉 ⊕ 〈P3 + C3〉 ⊕ 〈X0 + X4〉.
Ansatz:

(x2
3 + u2)1/2 = ϕ(ω), ω = (x2

1 + x2
2)

1/2 (92)

Reduced equation:
(1 + (ϕ′)2)ϕ2 = 0 (93)

Solutions of the reduced equation:

ϕ(ω) = iεω + c1, ε = ±1; ϕ = 0 (94)

Solutions of the eikonal equation:

(x2
3 + u2)1/2 = iε(x2

1 + x2
2)

1/2 + c1, ε = ±1; x2
3 + u2 = 0 (95)

(3) 〈L3 + α(X0 + X4), α > 0〉 ⊕ 〈X3〉 ⊕ 〈X4〉.
Ansatz:

x0 + u + α arctan
x2

x1
= ϕ(ω), ω = (x2

1 + x2
2)

1/2 (96)

Reduced equation:
ω2(ϕ′)2 + α2 = 0 (97)

Solutions of the reduced equation:

ϕ(ω) = iεα ln(ω) + c1, ε = ±1 (98)

Solutions of the eikonal equation:

x0 + u + α arctan
x2

x1
= i

εα

2
ln(x2

1 + x2
2) + c1, ε = ±1 (99)

(4) 〈P3 − 2X0〉 ⊕ 〈X1〉 ⊕ 〈X4〉.
Ansatz:

(x0 + u)2 + 4x3 = ϕ(ω), ω = x2 (100)

Reduced equation:
(ϕ′)2 + 16 = 0 (101)

Solutions of the reduced equation:

ϕ(ω) = 4iεω + c1, ε = ±1 (102)

Solutions of the eikonal equation:

(x0 + u)2 + 4x3 = 4iεx2 + c1, ε = ±1 (103)
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(5) 〈L3〉 ⊕ 〈−P3 + 2X0〉 ⊕ 〈2X4〉.
Ansatz:

(x0 + u)2 + 4x3 = ϕ(ω), ω = (x2
1 + x2

2)
1/2 (104)

Reduced equation:
(ϕ′)2 + 16 = 0 (105)

Solutions of the reduced equation:

ϕ(ω) = 4iεω + c1, ε = ±1 (106)

Solutions of the eikonal equation:

(x0 + u)2 + 4x3 = 4iε(x2
1 + x2

2)
1/2 + c1, ε = ±1 (107)

3.1.5. There Are No Reductions

From the invariants of remaining six nonconjugate subalgebras, it is impossible to construct the
ansatzes, which reduce the eikonal equation.

Below, we present those subalgebras as well as their invariants.

(1) 〈L3〉 ⊕ 〈X4 − X0〉 ⊕ 〈X3〉 : x0, (x2
1 + x2

2)
1/2;

(2) 〈L3〉 ⊕ 〈X0 + X4〉 ⊕ 〈X4 − X0〉 : x3, (x2
1 + x2

2)
1/2;

(3) 〈X1〉 ⊕ 〈X2〉 ⊕ 〈X4 − X0〉 : x0, x3;
(4) 〈X0〉 ⊕ 〈X1〉 ⊕ 〈X4〉 : x2, x3;
(5) 〈L3 + α(X0 + X4), α > 0〉 ⊕ 〈X3〉 ⊕ 〈X4 − X0〉 : (x2

1 + x2
2)

1/2, x0 + α arctan
x2

x1
;

(6) 〈L3 + αX3, α > 0〉 ⊕ 〈X0 + X4〉 ⊕ 〈X4 − X0〉 : (x2
1 + x2

2)
1/2, x3 + α arctan

x1

x2
.

3.2. Lie Algebras of the Type A2 ⊕ A1

[e1, e2] = e2 (108)

By A1 we denote the real Lie algebra of dimension one [44]. It is known that there are only
two different types of the real two-dimensional Lie algebras: decomposable A1 ⊕ A1 ≡ 2A1 and
indecomposable A2 [41]. The Lie algebras of the type 2A1 are Abelian. Bases elements (e1 and e2 ) of
the Lie algebras of type A2 satisfy the commutation relations: [e1, e2] = e2 [43]. The Lie algebras of
the type A2 are solvable ([41,43]).

The Lie algebra of the group P(1, 4) contains 10 nonconjugate subalgebras of the Type A2 ⊕ A1.
Below, we present the results obtained for those subalgebras.

3.2.1. Reductions to Equations, Which Can Be Split on Two Linear ODEs

Taking into account the invariants of two nonconjugate subalgebras, we constructed the
ansatzes, which reduced the eikonal equation to those, which could be split on two linear ODEs.

(1) 〈−G, P3〉 ⊕ 〈X1〉.
Ansatz:

(x2
0 − x2

3 − u2)1/2 = ϕ(ω), ω = x2 (109)

Reduced equation:
(ϕ′ − 1)(ϕ′ + 1)ϕ2 = 0 (110)
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Solutions of the reduced equation:

ϕ(ω) = εω + c1, ϕ = 0, ε = ±1 (111)

Solutions of the eikonal equation:

(x2
0 − x2

3 − u2)1/2 = εx2 + c1, x2
0 − x2

3 − u2 = 0, ε = ±1 (112)

(2) 〈−G, P3〉 ⊕ 〈L3〉.
Ansatz:

(x2
0 − x2

3 − u2)1/2 = ϕ(ω), ω = (x2
1 + x2

2)
1/2 (113)

Reduced equation:
(ϕ′ − 1)(ϕ′ + 1)ϕ2 = 0 (114)

Solutions of the reduced equation:

ϕ(ω) = εω + c1, ϕ = 0, ε = ±1 (115)

Solutions of the eikonal equation:

(x2
0 − x2

3 − u2)1/2 = ε(x2
1 + x2

2)
1/2 + c1, x2

0 − x2
3 − u2 = 0, ε = ±1 (116)

3.2.2. Reductions to Nonlinear ODEs

From the invariants of five nonconjugate subalgebras we constructed the ansatzes, which
reduced the eikonal equation to non-linear ODEs.

(1) 〈− (G + αX2) , P3, α > 0〉 ⊕ 〈X1〉.
Ansatz:

x2 − α ln(x0 + u) = ϕ(ω), ω = (x2
0 − x2

3 − u2)1/2 (117)

Reduced equation:
ω
(

ω(ϕ′)2 + 2αϕ′ −ω
)
= 0 (118)

Solutions of the reduced equation:

ω = 0, ϕ(ω) = ε(α2 + ω2)1/2 − εαartanh
α

(α2 + ω2)1/2 − α ln(ω) + c1, ε = ±1 (119)

Solutions of the eikonal equation:
x2

0 − x2
3 − u2 = 0 (120)

x2 − α ln(x0 + u) = ε(x2
0 − x2

3 − u2 + α2)1/2

− εαartanh
α

(x2
0 − x2

3 − u2 + α2)1/2

− α

2
ln(x2

0 − x2
3 − u2) + c1

ε = ±1 (121)

(2) 〈− 1
λ

L3 − G, 2X4, λ > 0〉 ⊕ 〈X3〉.
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Ansatz:
ln(x0 + u) + λ arctan

x1

x2
= ϕ(ω), ω = (x2

1 + x2
2)

1/2 (122)

Reduced equation:
ω2(ϕ′)2 + λ2 = 0 (123)

Solutions of the reduced equation:

ϕ(ω) = iελ ln(ω) + c1, ε = ±1 (124)

Solutions of the eikonal equation:

ln(x0 + u) + λ arctan
x1

x2
= i

ελ

2
ln(x2

1 + x2
2) + c1, ε = ±1 (125)

(3) 〈− (G + αX2) , X4, α > 0〉 ⊕ 〈X1〉.
Ansatz:

x2 − α ln(x0 + u) = ϕ(ω), ω = x3 (126)

Reduced equation:
(ϕ′)2 + 1 = 0 (127)

Solutions of the reduced equation:

ϕ(ω) = iεω + c1, ε = ±1 (128)

Solutions of the eikonal equation:

x2 − α ln(x0 + u) = iεx3 + c1, ε = ±1 (129)

(4) 〈− (G + αX3) , X4, α > 0〉 ⊕ 〈L3 + βX3, β > 0〉.
Ansatz:

x3 − α ln(x0 + u) + β arctan
x1

x2
= ϕ(ω), ω = (x2

1 + x2
2)

1/2 (130)

Reduced equation:
ω2(ϕ′)2 + ω2 + β2 = 0 (131)

Solutions of the reduced equation:

ϕ(ω) = iε(ω2 + β2)1/2 − iεβartanh
β

(ω2 + β2)1/2 + c1, ε = ±1 (132)

Solutions of the eikonal equation:

x3 − α ln(x0 + u) + β arctan
x1

x2
= −iεβartanh

β

(x2
1 + x2

2 + β2)1/2
+ iε(x2

1 + x2
2 + β2)1/2 + c1 (133)

ε = ±1 (134)

(5) 〈− (G + αX3) , X4, α > 0〉 ⊕ 〈L3〉.
Ansatz:

x3 − α ln(x0 + u) = ϕ(ω), ω = (x2
1 + x2

2)
1/2 (135)
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Reduced equation:
(ϕ′)2 + 1 = 0 (136)

Solutions of the reduced equation:

ϕ(ω) = iεω + c1, ε = ±1 (137)

Solutions of the eikonal equation:

x3 − α ln(x0 + u) = iε(x2
1 + x2

2)
1/2 + c1, ε = ±1 (138)

3.2.3. There Are No Reductions

From the invariants of remaining three nonconjugate subalgebras, it is impossible to construct
the ansatzes, which reduce the eikonal equation.

Below, we present those subalgebras as well as their invariants.

(1) 〈−G, X4〉 ⊕ 〈X1〉 : x2, x3;
(2) 〈−G, X4〉 ⊕ 〈L3〉 : x3, (x2

1 + x2
2)

1/2;
(3) 〈−G, X4〉 ⊕ 〈L3 + αX3, α > 0〉 : (x2

1 + x2
2)

1/2, x3 + α arctan
x1

x2
.

3.3. Lie Algebras of the Type A3,1

[e2, e3] = e1 (139)

Lie algebras of the type A3,1 are nilpotent [43].
The Lie algebra of the group P(1, 4) contains 17 nonconjugate subalgebras of the type A3,1.

Below, we present the results obtained for those subalgebras.

3.3.1. Reductions to Algebraic Equations

Taking into account the invariants of seven nonconjugate subalgebras, we constructed the
ansatzes, which reduced the eikonal equation to algebraic equations.

(1) 〈4X4, P1 − X2 − γX3, P2 + X1 − µX2 − δX3, γ > 0, δ 6= 0, µ > 0〉.
Ansatz:

x3(x0 + u)2 − (γx1 + x2δ− µx3)(x0 + u) + (δ− γµ)x1 − x2γ + x3 = ϕ(ω), ω = x0 + u (140)

Reduced equation:

ω4 + 2µω3 + (γ2 + µ2 + δ2 + 2)ω2 + 2µ(γ2 + 1)ω + (γµ− δ)2 + γ2 + 1 = 0 (141)

Solution of the eikonal equation:

(x0 + u)4 + 2µ(x0 + u)3 + (γ2 + µ2 + δ2 + 2)(x0 + u)2 + 2µ(γ2 + 1)(x0 + u) + (γµ− δ)2 + γ2 + 1 = 0 (142)

(2) 〈4X4, P1 − X2 − γX3, P2 + X1 − µX2, γ > 0, µ > 0〉.
Ansatz:

x3(x0 + u)2 − (γx1 − µx3)(x0 + u)− γµx1 − x2γ + x3 = ϕ(ω), ω = x0 + u (143)
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Reduced equation:

ω4 + 2µω3 + (γ2 + µ2 + 2)ω2 + 2µ(γ2 + 1)ω + γ2(µ2 + 1) + 1 = 0 (144)

Solution of the eikonal equation:

(x0 + u)4 + 2µ(x0 + u)3 + (γ2 + µ2 + 2)(x0 + u)2 + 2µ(γ2 + 1)(x0 + u) + γ2(µ2 + 1) + 1 = 0 (145)

(3) 〈4X4, P1 − X2, P2 + X1 − µX2 − δX3, δ > 0, µ 6= 0〉.
Ansatz:

x3(x0 + u)2 − (x2δ− µx3)(x0 + u) + δx1 + x3 = ϕ(ω), ω = x0 + u (146)

Reduced equation:

ω4 + 2µω3 + (δ2 + µ2 + 2)ω2 + 2µω + δ2 + 1 = 0 (147)

Solution of the eikonal equation:

(x0 + u)4 + 2µ(x0 + u)3 + (δ2 + µ2 + 2)(x0 + u)2 + 2µ(x0 + u) + δ2 + 1 = 0 (148)

(4) 〈4X4, P1 − X2, P2 + X1 − δX3, δ > 0〉.
Ansatz:

x3(x0 + u)2 − x2δ(x0 + u) + δx1 + x3 = ϕ(ω), ω = x0 + u (149)

Reduced equation:
(ω2 + 1)(ω2 + δ2 + 1) = 0 (150)

Solutions of the eikonal equation:

(x0 + u)2 + 1 = 0, (x0 + u)2 + δ2 + 1 = 0 (151)

(5) 〈4X4, P1 − X2 − βX3, P2 + X1, β > 0〉.
Ansatz:

x3(x0 + u)2 − βx1(x0 + u)− βx2 + x3 = ϕ(ω), ω = x0 + u (152)

Reduced equation:
(ω2 + 1)(ω2 + β2 + 1) = 0 (153)

Solutions of the eikonal equation:

(x0 + u)2 + 1 = 0, (x0 + u)2 + β2 + 1 = 0 (154)

As we see, the left hand sides of the Ansatzes (1)–(5) are polinomials in invariant ω = x0 + u.
The reduced equations are also polinomials in variable ω, but with the constant coefficients.
The solutions of the eikonal equation are also polinomials in variable x0 + u with the
constant coefficients.

(6) 〈4X4, P1 − X2, P2 + X1 − µX2, µ 6= 0〉.
Ansatz:

x3(x0 + u)2 + µx3(x0 + u) + x3 = ϕ(ω), ω = x0 + u (155)

Reduced equation:
(ω2 + µω + 1)2 = 0 (156)
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Solution of the eikonal equation:

u = −1
2

(
µ + (µ2 − 4)1/2

)
− x0 (157)

(7) 〈2µX4, P3 − X2, X1 + µX3, µ > 0〉.
Ansatz:

x2 −
x3 − µx1

x0 + u
= ϕ(ω), ω = x0 + u (158)

Reduced equation:
ω2(ω2 + µ2 + 1) = 0 (159)

Solutions of the reduced equation:

ω = 0, ω2 + µ2 + 1 = 0 (160)

Solutions of the eikonal equation:

u = −x0, (x0 + u)2 + µ2 + 1 = 0 (161)

3.3.2. Reductions to Equations, Which Can Be Split on Two Linear ODEs

Taking into account the invariants of five nonconjugate subalgebras, we constructed the ansatzes,
which reduced the eikonal equation to those, which could be split on two linear ODEs.

(1) 〈2µX4, P3, X1 + µX3, µ > 0〉.
Ansatz:

x0 + u = ϕ(ω), ω = x2 (162)

Reduced equation:
(ϕ′)2 = 0 (163)

Solution of the reduced equation:
ϕ(ω) = c1 (164)

Solution of the eikonal equation:
u = c1 − x0 (165)

(2) 〈2X4, P3 − L3, X3〉.
Ansatz:

x0 + u = ϕ(ω), ω = (x2
1 + x2

2)
1/2 (166)

Reduced equation:
(ϕ′)2 = 0 (167)

Solution of the reduced equation:
ϕ(ω) = c1 (168)

Solution of the eikonal equation:
u = c1 − x0 (169)

(3) 〈2X4, P3 − X1, X3〉.
Ansatz:

x0 + u = ϕ(ω), ω = x2 (170)
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Reduced equation:
(ϕ′)2 = 0 (171)

Solution of the reduced equation:
ϕ(ω) = c1 (172)

Solution of the eikonal equation:
u = c1 − x0 (173)

(4) 〈−2αX4, L3 + αX3, P3, α > 0〉.
Ansatz:

x0 + u = ϕ(ω), ω = (x2
1 + x2

2)
1/2 (174)

Reduced equation:
(ϕ′)2 = 0 (175)

Solution of the reduced equation:
ϕ(ω) = c1 (176)

Solution of the eikonal equation:
u = c1 − x0 (177)

(5) 〈4X4, P1 − X2, P2 + X1〉.
Ansatz:

x0 + u = ϕ(ω), ω = x3 (178)

Reduced equation:
(ϕ′)2 = 0 (179)

Solution of the reduced equation:
ϕ(ω) = c1 (180)

Solution of the eikonal equation:
u = c1 − x0 (181)

Let us note that, in the cases (1)–(5), we obtained the same reduced equation. The solutions of
the eikonal equation are also the same.

3.3.3. Reductions to Nonlinear ODEs

From the invariants of four nonconjugate subalgebras, we constructed the ansatzes, which
reduced the eikonal equation to nonlinear ODEs.

(1) 〈2µX4, P3 − 2X0, X1 + µX3, µ > 0〉.
Ansatz:

(x0 + u)2 + 4x3 − 4µx1 = ϕ(ω), ω = x2 (182)

Reduced equation:
(ϕ′)2 + 16(µ2 + 1) = 0 (183)

Solutions of the reduced equation:

ϕ(ω) = 4iε(µ2 + 1)1/2ω + c1, ε = ±1 (184)
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Solutions of the eikonal equation:

u = 2
(

iεx2

√
µ2 + 1 + µx1 − x3 + c1

)1/2
− x0, ε = ±1 (185)

(2) 〈2X4, P3 − L3 − 2αX0, X3, α > 0〉.
Ansatz:

2α arctan
x1

x2
− x0 − u = ϕ(ω), ω = (x2

1 + x2
2)

1/2 (186)

Reduced equation:
ω2(ϕ′)2 + 4α2 = 0 (187)

Solutions of the reduced equation:

ϕ(ω) = 2iεα ln(ω) + c1, ε = ±1 (188)

Solutions of the eikonal equation:

u = 2α arctan
x1

x2
+ iεα ln(x2

1 + x2
2)− x0 + c1, ε = ±1 (189)

(3) 〈−2βX4, L3 + βX3, P3 − 2X0, β > 0〉.
Ansatz:

β arctan
x1

x2
+

1
4
(x0 + u)2 + x3 = ϕ(ω), ω = (x2

1 + x2
2)

1/2 (190)

Reduced equation:
ω2(ϕ′)2 + ω2 + β2 = 0 (191)

Solutions of the reduced equation:

ϕ(ω) = iε
√

ω2 + β2 − iεβartanh
β√

ω2 + β2
+ c1, ε = ±1 (192)

Solutions of the eikonal equation:

β arctan
x1

x2
+

1
4
(x0 + u)2 = iε

√
x2

1 + x2
2 + β2− iεβartanh

β√
x2

1 + x2
2 + β2

− x3 + c1, ε = ±1 (193)

(4) 〈2X4, P3, X3〉.
Ansatz:

x2 = ϕ(ω1, ω2), ω1 = x0 + u, ω2 = x1. (194)

Reduced equation:
ϕ2

2 + 1 = 0 (195)

Solution of the reduced equation:

ϕ(ω1, ω2) = iω2 + f (ω1) (196)

where f is an arbitrary function.

Solution of the eikonal equation:
x2 = ix1 + f (x0 + u) (197)
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where f is an arbitrary function.

3.3.4. There Are No Reductions

From the invariants of remaining one nonconjugate subalgebra, it is impossible to construct the
ansatz, which reduces the eikonal equation.

Below, we present the subalgebra as well as its invariants.

〈2X4, P3 − 2X0, X3〉 : x1, x2 (198)

3.4. Lie Algebras of the Type A3,2

[e1, e3] = e1, [e2, e3] = e1 + e2 (199)

The Lie algebras of the type A3,2 are solvable [41,43].
The Lie algebra of the group P(1, 4) contains three nonconjugate subalgebras of the type A3,2.

Below, we present the results obtained for those subalgebras.

3.4.1. Reductions to Nonlinear ODEs

From the invariants of two nonconjugate subalgebras, we constructed the ansatzes, which
reduced the eikonal equation to nonlinear ODEs.

(1) 〈2βX4, P3, G + αX1 + βX3, α > 0, β > 0〉.
Ansatz:

x1 − α ln(x0 + u) = ϕ(ω), ω = x2 (200)

Reduced equation:
(ϕ′)2 + 1 = 0 (201)

Solutions of the reduced equation:

ϕ(ω) = iεω + c1, ε = ±1 (202)

Solutions of the eikonal equation:

x1 − α ln(x0 + u) = iεx2 + c1, ε = ±1 (203)

(2) 〈2αX4, λP3,
1
λ

L3 + G +
α

λ
X3, α > 0, λ > 0〉.

Ansatz:
ln(x0 + u) + λ arctan

x1

x2
= ϕ(ω), ω = (x2

1 + x2
2)

1/2 (204)

Reduced equation:
ω2(ϕ′)2 + λ2 = 0 (205)

Solutions of the reduced equation:

ϕ(ω) = iελ ln(ω) + c1, ε = ±1 (206)

Solutions of the eikonal equation:

ln(x0 + u) + λ arctan
x1

x2
= iε

λ

2
ln(x2

1 + x2
2) + c1, ε = ±1 (207)
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3.4.2. There Are No Reductions

From the invariants of remaining one nonconjugate subalgebra, it is impossible to construct the
ansatz, which reduces the eikonal equation.

Below, we present the subalgebra as well as its invariants.

〈2αX4, P3, G + αX3, α > 0〉 : x1, x2 (208)

3.5. Lie Algebras of the Type A3,3

[e1, e3] = e1, [e2, e3] = e2 (209)

The Lie algebras of the type A3,3 are solvable [41,43].
The Lie algebra of the group P(1, 4) contains five nonconjugate subalgebras of the type A3,3.

Below, we present the results obtained for those subalgebras.

3.5.1. Reductions to Equations, Which Can Be Split on Two Linear ODEs

Taking into account the invariants of one nonconjugate subalgebra, we constructed the ansatz,
which reduced the eikonal equation to those, which could be split on two linear ODEs.

〈P1, P2, G〉 (210)

Ansatz:
(x2

0 − x2
1 − x2

2 − u2)1/2 = ϕ(ω), ω = x3 (211)

Reduced equation:
(ϕ′ − 1)(ϕ′ + 1)ϕ2 = 0 (212)

Solutions of the reduced equation:

ϕ(ω) = εω + c, ε = ±1, ϕ = 0 (213)

Solutions of the eikonal equation:

(x2
0 − x2

1 − x2
2 − u2)1/2 = εx3 + c1, ε = ±1, x2

0 − x2
1 − x2

2 − u2 = 0 (214)

3.5.2. Reductions to Nonlinear ODEs

From the invariants of three subalgebras, we constructed the ansatzes, which reduced the eikonal
equation to nonlinear ODEs.

(1) 〈P1, P2, G + αX3, α > 0〉.
Ansatz:

x3 − α ln(x0 + u) = ϕ(ω), ω = x2
0 − x2

1 − x2
2 − u2 (215)

The reduced equation:
4ω
(

ϕ′
)2

+ 4αϕ′ − 1 = 0 (216)

Solutions of the reduced equation:

ϕ(ω) = ε(α2 + ω)1/2 − iεα arctan
(α2 + ω)1/2

iα
− α

2
ln ω + c, ε = ±1 (217)
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Solutions of the eikonal equation:

x3 − α ln(x0 + u) =ε(x2
0 − x2

1 − x2
2 − u2 + α2)1/2 − iεα arctan

(x2
0 − x2

1 − x2
2 − u2 + α2)1/2

iα
−

− α

2
ln(x2

0 − x2
1 − x2

2 − u2) + c, ε = ±1

(2) 〈P3, X4,
1
λ

L3 + G, λ > 0〉.

Ansatz:
ln(x0 + u) + λ arctan

x1

x2
= ϕ(ω), ω = (x2

1 + x2
2)

1/2 (218)

Reduced equation:
ω2(ϕ′)2 + λ2 = 0 (219)

Solutions of the reduced equation:

ϕ(ω) = iελ ln(ω) + c, ε = ±1 (220)

Solutions of the eikonal equation:

ln(x0 + u) + λ arctan
x1

x2
= iε

λ

2
ln(x2

1 + x2
2) + c, ε = ±1 (221)

(3) 〈P3, X4, G + αX1, α > 0〉.
Ansatz:

x1 − α ln(x0 + u) = ϕ(ω), ω = x2 (222)

Reduced equation:
(ϕ′)2 + 1 = 0 (223)

Solutions of the reduced equation:

ϕ(ω) = iεω + c, ε = ±1 (224)

Solutions of the eikonal equation:

x1 − α ln(x0 + u) = iεx2 + c1, ε = ±1 (225)

3.5.3. There Are No Reductions

From the invariants of remaining one nonconjugate subalgebra, it is impossible to construct the
ansatz, which reduces the eikonal equation.

Below, we present the subalgebra as well as its invariants.

〈P3, X4, G〉 : x1, x2 (226)

3.6. Lie Algebras of the Type A3,4

[e1, e3] = e1, [e2, e3] = −e2 (227)

The Lie algebras of the type A3,4 are solvable [41,43].
The Lie algebra of the group P(1, 4) contains four nonconjugate subalgebras of the type A3,4.
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3.6.1. There Are No Reductions

From the invariants of all four nonconjugate subalgebras, it is impossible to construct the
ansatzes, which reduce the eikonal equation.

Below, we present those subalgebras as well as their invariants.

(1) 〈X4, X0, G〉: x1, x2, x3;

(2) 〈X0, −X4, − 1
λ

L3 − G, λ > 0〉: x3, (x2
1 + x2

2)
1/2;

(3) 〈X0, X4, − (G + αX1) , α > 0〉: x2, x3;

(4) 〈X0, X4, − L3

λ
− G− α

λ
X3, α > 0, λ > 0〉 : (x2

1 + x2
2)

1/2, x3 + α arctan
x1

x2
.

3.7. Lie Algebras of the Type Aa
3,5

[e1, e3] = e1, [e2, e3] = ae2, (0 < |a| < 1) (228)

The Lie algebra of the group P(1, 4) contains no nonconjugate subalgebras of the type Aa
3,5.

3.8. Lie Algebras of the Type A3,6

[e1, e3] = −e2, [e2, e3] = e1 (229)

The Lie algebras of the type A3,6 are solvable [41,43].
The Lie algebra of the group P(1, 4) contains 18 nonconjugate subalgebras of the type A3,6.
Below, we present the results obtained for those subalgebras.

3.8.1. Reductions to Linear ODEs

The invariants of four subalgebras allow us to construct the ansatzes, which reduce the eikonal
equation to linear ODEs.

(1) 〈P1 − X1, P2 − X2, −P3 + L3〉.
Ansatz:

x2
1 + x2

2
x0 + u + 1

+
x2

3
x0 + u

+ 2u = ϕ(ω), ω = x0 + u (230)

Reduced equation:
ω4(ω + 1)4(ϕ′ − 1) = 0 (231)

Solutions of the reduced equation:

ω + 1 = 0, ω = 0, ϕ(ω) = ω + c1 (232)

Solutions of the eikonal equation:

u = −1− x0, u = −x0,
x2

1 + x2
2

x0 + u + 1
+

x2
3

x0 + u
+ 2u = x0 + u + c1 (233)

(2) 〈P1, −P2, − (L3 + αX3) , α > 0〉.
Ansatz:

x2
0 − x2

1 − x2
2 − u2 = ϕ(ω), ω = x0 + u (234)

Reduced equation:
ωϕ′ − ϕ = 0 (235)
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Solution of the reduced equation:
ϕ(ω) = cω (236)

Solution of the eikonal equation:

x2
0 − x2

1 − x2
2 − u2 = c(x0 + u) (237)

(3) 〈X1, −X2, P3 − L3〉.
Ansatz:

x2
0 − x2

3 − u2 = ϕ(ω), ω = x0 + u (238)

Reduced equation:
ωϕ′ − ϕ = 0 (239)

Solution of the reduced equation:
ϕ(ω) = c1ω (240)

Solution of the eikonal equation:

x2
0 − x2

3 − u2 = c1(x0 + u) (241)

(4) 〈P1, P2, −P3 + L3〉.
Ansatz:

x2
0 − x2

1 − x2
2 − x2

3 − u2 = ϕ(ω), ω = x0 + u (242)

Reduced equation:
ωϕ′ − ϕ = 0 (243)

Solution of the reduced equation:
ϕ(ω) = c1ω (244)

Solution of the eikonal equation:

x2
0 − x2

1 − x2
2 − x2

3 − u2 = c1(x0 + u) (245)

3.8.2. Reductions to Equations, Which Can Be Split on Two Linear ODEs

Taking into account the invariants of seven nonconjugate subalgebras, we constructed the
ansatzes, which reduced the eikonal equation to those, which could be split on two linear ODEs.

(1) 〈X1, −X2, − (L3 + 2X4)〉.
Ansatz:

x0 + u = ϕ(ω), ω = x3 (246)

Reduced equation:
(ϕ′)2 = 0 (247)

Solution of the reduced equation:
ϕ(ω) = c1 (248)

Solution of the eikonal equation:
u = c1 − x0 (249)
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(2) 〈P1, P2, L3 + 2X4〉.
Ansatz:

x0 + u = ϕ(ω), ω = x3 (250)

Reduced equation:
(ϕ′)2 = 0 (251)

Solution of the reduced equation:
ϕ(ω) = c1 (252)

Solution of the eikonal equation:
u = c1 − x0 (253)

(3) 〈X1, X2, L3 +
1
2
(P3 + C3)〉.

Ansatz:
(x2

3 + u2)1/2 = ϕ(ω), ω = x0 (254)

Reduced equation:
(ϕ′ − 1)(ϕ′ + 1)ϕ2 = 0 (255)

Solutions of the reduced equation:

ϕ(ω) = εω + c1, ε = ±1, ϕ = 0 (256)

Solutions of the eikonal equation:

(x2
3 + u2)1/2 = εx0 + c, ε = ±1, x2

3 + u2 = 0 (257)

(4) 〈−X1, X2, −L3 −
λ

2
(P3 + C3), 0 < λ < 1〉.

Ansatz:
(x2

3 + u2)1/2 = ϕ(ω), ω = x0 (258)

Reduced equation:
(ϕ′ − 1)(ϕ′ + 1)ϕ2 = 0 (259)

Solutions of the reduced equation:

ϕ(ω) = εω + c1, ε = ±1, ϕ = 0 (260)

Solutions of the eikonal equation:

(x2
3 + u2)1/2 = εx0 + c1, ε = ±1, x2

3 + u2 = 0 (261)

(5) 〈−X1, X2, − (L3 + λG) , λ > 0〉.
Ansatz:

(x2
0 − u2)1/2 = ϕ(ω), ω = x3 (262)

Reduced equation:
(ϕ′ − 1)(ϕ′ + 1) = 0 (263)

Solutions of the reduced equation:

ϕ(ω) = εω + c1, ε = ±1 (264)
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Solutions of the eikonal equation:

(x2
0 − u2)1/2 = εx3 + c1, ε = ±1 (265)

(6) 〈X1, −X2, − (L3 + αX3) , α > 0〉.
Ansatz:

u = ϕ(ω), ω = x0 (266)

Reduced equation:
(ϕ′ − 1)(ϕ′ + 1) = 0 (267)

Solutions of the reduced equation:

ϕ(ω) = εω + c1, ε = ±1 (268)

Solutions of the eikonal equation:

u = εx0 + c1, ε = ±1 (269)

(7) 〈X1, −X2, P3 − L3 − 2αX0, α > 0〉.
Ansatz:

(x0 + u)3 + 6αx3(x0 + u) + 6α2(x0 − u) = ϕ(ω), ω = (x0 + u)2 + 4x3α (270)

Reduced equation:
4(ϕ′)2 − 9ω = 0 (271)

Solutions of the reduced equation:

ϕ(ω) = εω3/2 + c, ε = ±1 (272)

Solutions of the eikonal equation:

(x0 + u)3 + 6αx3(x0 + u) + 6α2(x0 − u) = ε
(
(x0 + u)2 + 4αx3

)3/2
+ c1, ε = ±1 (273)

3.8.3. Reductions to Nonlinear ODEs

From the invariants of three nonconjugate subalgebras, we constructed the ansatzes, which
reduced the eikonal equation to nonlinear ODEs.

(1) 〈X1, −X2, −L3 −
1
2
(P3 + C3)− α(X0 + X4), α > 0〉.

Ansatz:
α arctan

x3

u
− x0 = ϕ(ω), ω = (x2

3 + u2)1/2 (274)

Reduced equation:
ω4
(

ω2(ϕ′)2 −ω2 + α2
)
= 0 (275)

Solutions of the reduced equation:

ω = 0, ϕ(ω) = ε
√

ω2 − α2 − iεαartanh
iα√

ω2 − α2
+ c, ε = ±1 (276)
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Solutions of the eikonal equation:

x2
3 + u2 = 0, α arctan

x3

u
− x0 = ε

√
x2

3 + u2 − α2 − iεαartanh
iα√

x2
3 + u2 − α2

+ c, ε = ±1 (277)

(2) 〈X1, X2, L3 +
λ

2
(P3 + C3) + α(X0 + X4), α > 0, 0 < λ < 1〉.

Ansatz:
α arctan

x3

u
− λx0 = ϕ(ω), ω = (x2

3 + u2)1/2 (278)

Reduced equation:
ω4
(

ω2(ϕ′)2 − λ2ω2 + α2
)
= 0 (279)

Solutions of the reduced equation:

ω = 0, ϕ(ω) = ε
√

λ2ω2 − α2 − iεαartanh
iα√

λ2ω2 − α2
+ c, ε = ±1 (280)

Solutions of the eikonal equation:

α arctan
x3

u
− λx0 = ε

√
λ2(x2

3 + u2)− α2 − iεαartanh
iα√

λ2(x2
3 + u2)− α2

+ c

ε = ±1, x2
3 + u2 = 0

(3) 〈X1, X2, L3 + λG + αX3, α > 0, λ > 0〉.
Ansatz:

λx3 − α ln(x0 + u) = ϕ(ω), ω = (x2
0 − u2)1/2 (281)

Reduced equation:
ω(ω(ϕ′)2 + 2αϕ′ − λ2ω) = 0 (282)

Solutions of the reduced equation:

ω = 0, ϕ(ω) = ε
√

λ2ω2 + α2 − εαartanh
α√

λ2ω2 + α2
− α ln(ω) + c1, ε = ±1. (283)

Solutions of the eikonal equation:
x2

0 − u2 = 0 (284)

λx3 − α ln(x0 + u) = ε
√

λ2(x2
0 − u2) + α2 − εαartanh

α√
λ2(x2

0 − u2) + α2
− α

2
ln(x2

0 − u2) + c1 (285)

ε = ±1 (286)

3.8.4. Reductions to PDEs

From the invariants of two nonconjugate subalgebras, we constructed the ansatzes, which
reduced the eikonal equation to PDEs.

(1) 〈X1, X2, L3〉.
Ansatz:

u = ϕ(ω1, ω2), ω1 = x0, ω2 = x3 (287)

Reduced equation:
ϕ2

1 − ϕ2
2 − 1 = 0 (288)
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Solutions of the reduced equation:

ϕ(ω1, ω2) = ε
√

c2
2 + 1 ω1 + c2ω2 + c1 + c2, ε = ±1 (289)

Solutions of the eikonal equation:

u = ε
√

c2
2 + 1 x0 + c2x3 + c1 + c2, ε = ±1 (290)

(2) 〈P1, P2, L3〉.
Ansatz:

x3 = ϕ(ω1, ω2), ω1 = x0 + u, ω2 = x2
0 − x2

1 − x2
2 − u2 (291)

The reduced equation:
4ω2 ϕ2

2 + 4ω1 ϕ1 ϕ2 − 1 = 0 (292)

Solutions of the reduced equation:

ϕ(ω1, ω2) = c1 ln ω1 − ε(ω2 + c2
1)

1/2 + iεc1 arctan

√
ω2 + c2

1

ic1
− c1

2
ln ω2 + c2, ε = ±1 (293)

Solutions on the eikonal equation:

x3 = c1 ln(x0 + u)− ε(x2
0 − x2

1 − x2
2 − u2 + c2

1)
1/2

+ iεc1 arctan

√
x2

0 − x2
1 − x2

2 − u2 + c2
1

ic1

− c1

2
ln(x2

0 − x2
1 − x2

2 − u2) + c2

ε = ±1 (294)

As we see, in the above two cases, the reduced equations are PDEs. The reason is that the
subalgebras corresponding to them have the rank two. Therefore, they have three invariants. As
a rule, the ansatzes, which can be constructed with the help of those invariants, reduce the eikonal
equation to PDEs.

3.8.5. There Are No Reductions

From the invariants of remaining two nonconjugate subalgebras, it is impossible to construct the
ansatzes, which reduce the eikonal equation.

Below, we present those subalgebras as well as their invariants.

(1) 〈−X3, X4 − X0, − L3

λ
− 1

2
(P3 + C3) , 0 < λ < 1〉 : x0, (x2

1 + x2
2)

1/2;

(2) 〈X3, X4 − X0,
L3

λ
+

1
2
(P3 + C3) +

α

λ
(X0 + X4), α > 0, 0 < λ < 1〉 : (x2

1 + x2
2)

1/2,

α arctan
x1

x2
− x0.

3.9. Lie Algebras of the Type Aa
3,7

[e1, e3] = ae1 − e2, [e2, e3] = e1 + ae2, (a > 0). a = c : (295)

The Lie algebras of the type Aa
3,7 are solvable [41,43].
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The Lie algebra of the group P(1, 4) contains two nonconjugate subalgebras of the type Aa
3,7.

Below, we present the results obtained for those subalgebras.

3.9.1. Reductions to Equations, Which Can Be Split on Two Linear ODEs

Taking into account the invariants of one nonconjugate subalgebra, we constructed the ansatz,
which reduced the eikonal equation to those, which could be split on two linear ODEs.

〈P1, P2, L3 + λG, λ > 0〉 (296)

Ansatz:
(x2

0 − x2
1 − x2

2 − u2)1/2 = ϕ(ω), ω = x3 (297)

Reduced equation:
(ϕ′ − 1)(ϕ′ + 1)ϕ2 = 0 (298)

Solutions of the reduced equation:

ϕ(ω) = εω + c1, ε = ±1, ϕ = 0 (299)

Solutions of the eikonal equation:

(x2
0 − x2

1 − x2
2 − u2)1/2 = εx3 + c1, ε = ±1, x2

0 − x2
1 − x2

2 − u2 = 0 (300)

3.9.2. Reductions to Nonlinear ODEs

From the invariants of one nonconjugate subalgebra, we constructed the ansatz, which reduced
the eikonal equation to nonlinear ODEs.

〈P1, P2, L3 + λG + αX3, α > 0, λ > 0〉 (301)

Ansatz:
λx3 − α ln(x0 + u) = ϕ(ω), ω = x2

0 − x2
1 − x2

2 − u2 (302)

The reduced equation:
4ω
(

ϕ′
)2

+ 4αϕ′ − λ2 = 0 (303)

Solutions of the reduced equation:

ϕ(ω) = ε(λ2ω + α2)1/2 − iεα arctan

√
λ2ω + α2

iα
− α

2
ln ω + c, ε = ±1 (304)

Solutions of the eikonal equation:

λx3 − α ln(x0 + u) = ε(λ2(x2
0 − x2

1 − x2
2 − u2) + α2)1/2

− iεα arctan

√
λ2(x2

0 − x2
1 − x2

2 − u2) + α2

iα

− α

2
ln(x2

0 − x2
1 − x2

2 − u2) + c

ε = ±1

3.10. Lie Algebras of the Type A3,8

[e1, e3] = −2e2, [e1, e2] = e1, [e2, e3] = e3 (305)

The Lie algebras of the type A3,8 are semisimple [43].
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The Lie algebra of the group P(1, 4) contains one nonconjugate subalgebra of the type A3,8.
Below, we present the results obtained for this subalgebra.

3.10.1. Reductions to PDEs

From the invariants of one nonconjugate subalgebra, we constructed the ansatz, which reduced
the eikonal equation to PDEs.

〈P3, G, −C3〉 (306)

Ansatz:
(x2

0 − x2
3 − u2)1/2 = ϕ(ω1, ω2), ω1 = x1, ω2 = x2 (307)

Reduced equation:
ϕ2(ϕ2

1 + ϕ2
2 − 1) = 0 (308)

Solutions of the reduced equation:

ϕ(ω1, ω2) = 0, ϕ(ω1, ω2) = ε
√

1− c2
2 ω1 + c2ω2 + c1 + c2, ε = ±1 (309)

Solutions of the eikonal equation:

x2
0 − x2

3 − u2 = 0, (x2
0 − x2

3 − u2)1/2 = ε(1− c2
2)

1/2x1 + c2x2 + c1 + c2, ε = ±1 (310)

As we see, the reduced equation is PDEs. As above, the reason is that the corresponding
subalgebra has rank two.

3.11. Lie Algebras of the Type A3,9

[e1, e2] = e3, [e2, e3] = e1, [e3, e1] = e2 (311)

The Lie algebras of the type A3,9 are semisimple [43].
The Lie algebra of the group P(1, 4) contains two nonconjugate subalgebras of the type A3,9.

Below, we present the results obtained for those subalgebras.

3.11.1. Reductions to Equations, Which Can Be Split on Two Linear ODEs

Taking into account the invariants of one nonconjugate subalgebra, we constructed the ansatz,
which reduced the eikonal equation to those, which could be split on two linear ODEs.

〈−1
2

(
L3 +

1
2
(P3 + C3)

)
,

1
2

(
L2 +

1
2
(P2 + C2)

)
,

1
2

(
L1 +

1
2
(P1 + C1)

)
〉 (312)

Ansatz:
(x2

1 + x2
2 + x2

3 + u2)1/2 = ϕ(ω), ω = x0 (313)

Reduced equation:
(ϕ′ − 1)(ϕ′ + 1)ϕ2 = 0 (314)

Solutions of the reduced equation:

ϕ(ω) = εω + c1, ε = ±1, ϕ = 0 (315)

Solutions of the eikonal equation:

(x2
1 + x2

2 + x2
3 + u2)1/2 = εx0 + c1, ε = ±1, x2

1 + x2
2 + x2

3 + u2 = 0 (316)
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3.11.2. Reductions to PDEs

From the invariants of one nonconjugate subalgebra, we constructed the ansatz, which reduced
the eikonal equation to PDEs.

〈−L3, −L2, −L1〉 (317)

Ansatz:
u = ϕ(ω1, ω2), ω1 = x0, ω2 = (x2

1 + x2
2 + x2

3)
1/2 (318)

Reduced equation:
ϕ2

1 − ϕ2
2 − 1 = 0 (319)

Solutions of the reduced equation:

ϕ(ω1, ω2) = ε
√

c2
2 + 1 ω1 + c2ω2 + c1 + c2, ε = ±1 (320)

Solutions of the eikonal equation:

u = ε(c2
2 + 1)1/2x0 + c2(x2

1 + x2
2 + x2

3)
1/2 + c1 + c2, ε = ±1 (321)

As we see, the reduced equation is PDEs. As above, the reason is that the corresponding
subalgebra has rank two.

4. Conclusions

The relationship is studied between the structural properties of three-dimensional nonconjugate
subalgebras of the Lie algebra of the group P(1, 4) and the types of the symmetry reductions of the
eikonal equation to ODEs.

Below, we present some consequences resulting from that relationship.

• Reductions to algebraic equations are induced by some subalgebras of the types 3A1, A3,1;
• Reductions to linear ODEs are induced by some subalgebras of the types 3A1, A3,6;
• Reductions to equations, which can be split on two linear ODEs, are induced by some

subalgebras of the types 3A1, A2 ⊕ A1, A3,1, A3,3, A3,6, Aa
3,7, A3,9;

• Reductions to nonlinear ODEs are induced by subalgebras of the type A3,2 as well as by some
subalgebras of the types 3A1, A2 ⊕ A1, A3,1, A3,3, A3,6, Aa

3,7;
• Reductions to PDEs are induced by subalgebras of the type A3,8 as well as by some subalgebras

of the types A3,6, A3,9;
• From invariants of subalgebras of the type A3,4 as well as of some subalgebras of the types 3A1,

A2 ⊕ A1, A3,1, A3,2, A3,3, A3,6, we cannot construct ansatzes reducing the eikonal equation;
• There are no nonconjugate subalgebras of the Lie algebra of the group P(1, 4) of the type A3,5.

Author Contributions: The results obtained by Volodymyr Fedorchuk could be found in the subsections 3.1
and 3.2. The results obtained by Vasyl Fedorchuk were presented in the subsections 3.3–3.11.
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