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Abstract: The nonlinear mathematical model for solute and fluid transport induced by the
osmotic pressure of glucose and albumin with the dependence of several parameters on the
hydrostatic pressure is described. In particular, the fractional space available for macromolecules
(albumin was used as a typical example) and fractional fluid void volume were assumed to be
different functions of hydrostatic pressure. In order to find non-uniform steady-state solutions
analytically, some mathematical restrictions on the model parameters were applied. Exact formulae
(involving hypergeometric functions) for the density of fluid flux from blood to tissue and the fluid
flux across tissues were constructed. In order to justify the applicability of the analytical results
obtained, a wide range of numerical simulations were performed. It was found that the analytical
formulae can describe with good approximation the fluid and solute transport (especially the rate of
ultrafiltration) for a wide range of values of the model parameters.
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1. Introduction

Peritoneal dialysis is a life saving treatment for chronic patients with end stage renal disease [1].
The peritoneal cavity, an empty space that separates bowels, abdominal muscles and other organs
in the abdominal cavity, is applied as a container for dialysis fluid, which is infused there through
a permanent catheter and left in the cavity for a few hours. During this time small metabolites
(urea, creatinine) and large molecules (e.g., albumin) diffuse from blood that perfuses the tissue
layers close to the peritoneal cavity to the dialysis fluid, and finally are removed together with the
drained fluid. The treatment cycle (infusion, dwell, drainage) is repeated several times every day. The
peritoneal transport occurs between dialysis fluid in the peritoneal cavity and blood passing down
the capillaries in the tissue surrounding the peritoneal cavity (see Figure 1, in which a symmetrical
structure of the tissue with respect to the cavity is assumed). Typically, many solutes are transported
from blood to dialyzate, but some solutes such as for example an osmotic agent (glucose), which
is present in a high concentration in dialysis fluid, are transported in the opposite direction, i.e., to
the blood.
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Figure 1. A simplified scheme of fluid and solute transport in peritoneal dialysis.

To the best of our knowledge, the first mathematical models for solute and fluid transport during
peritoneal dialysis were proposed in the 1980s [2–4]. However, a rigorous mathematical description
of fluid and solute transport between blood and dialysis fluid in the peritoneal cavity is still not
formulated fully yet (in spite of the well-known basic physical laws for such transport) because of
the complexity of the peritoneal transport. Recent mathematical and numerical studies introduced
new concepts on peritoneal transport and yielded a better description of particular processes such as
pure water transport, combined osmotic fluid flow and small solute transport, or water and proteins
transport [5–10].

In [11], a new mathematical model for fluid and solute transport in peritoneal dialysis was
constructed, which addresses the problem of a combined description of ultrafiltration to the peritoneal
cavity, absorption of the osmotic agent (glucose) from the peritoneal cavity and the leakage of
macromolecules (albumin) from the blood to the peritoneal cavity. The model is based on a
three-component nonlinear system of two-dimensional partial differential equations for fluid, glucose
and albumin transport with the relevant boundary and initial conditions. Under some assumptions
the model was simplified in order to obtain exact formulae for spatially non-uniform steady-state
solutions. As the result, the exact formulae for the fluid fluxes from blood to the tissue and across the
tissue are constructed. It should be stressed that the analytical results presented in [11] were derived
for the simplest profiles of the fractional fluid void volume ν (i.e., the volume occupied by the fluid in
the interstitium while the rest of the tissue being cells and macromolecules is not allowed for fluid
transport), namely ν is either a constant or a linear function with respect to the space variable x.

Here we go essentially further. Because experimental data (see, e.g., [12]) show that the fractional
fluid void volume depends on the hydrostatic pressure in a nonlinear way, one should assume
nonlinear profiles for ν. Moreover, the transportation of macromolecules (albumin is a typical example)
essentially differs from the water and glucose transportation because of their large size. Usually it
is taken into account by introducing a constant coefficient α in order to show that only a part of the
fractional fluid void volume is accessible for such macromolecules. To avoid such a simplification, we
introduce so-called fractional albumin volume νA, which (like ν) depends on the hydrostatic pressure;
however, it is not assumed that νA “ αν, as in previous studies[9,11].

In order to obtain some analytical formulae, we used some correctly-specified profiles νA and
ν, taking into account that both functions should be convex upwards along the main part of tissue
(or at least in a vicinity of the point x “ 0 where the most intensive transport occurs, see Figure 2).
Thus, exponential profiles for these functions were used because they are much closer to the profiles
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arising in experimental data than those studied in [11]. Under the same assumptions as in [11], new
exact formulae (involving hypergeometric functions) for the fluid fluxes from blood to the tissue and
across the tissue are constructed.

Figure 2. Graph of the function νpxq “ νmax ´ pνmax ´ νminqx (red curve) and graphs of the function
νpxq “ ν0 ´ ν1eαx for α “ 1.93 (green curve), α “ 3 (blue curve), α “ 6 (orange curve), and α “ 10
(black curve).

Analytical results are supplemented by numerical simulations for finding the albumin
concentration and the albumin clearance for the real experimental data. As a result, we have shown
that the albumin concentration within the tissue essentially depends on the function representing
the fractional albumin volume νA.

The obtained analytical results are compared to those obtained in [11] and checked for their
applicability for the description of transport during peritoneal dialysis. In particular, using numerical
simulations we established how the exact solutions found under pure mathematical assumptions
differ from numerical ones obtained without any additional assumptions. As a result, it is shown
that the analytical formulae obtained can describe the fluid and solute transport (especially the rate of
ultrafiltration) for a wide range of values of parameters arising in the model.

The paper is organized as follows. In Section 2, an extended mathematical model of glucose
and albumin transport in peritoneal dialysis is presented. In Section 3, new non-uniform steady-state
solutions of the model are constructed and their properties are investigated. In Section 4, these
solutions are tested for the real parameters that were taken from the references devoted to clinical
treatments of peritoneal dialysis. The results are compared to those derived via analytical formulae
in [11] and with numerical simulations obtained in [5,9,10]. Finally, we present some conclusions in
the last section.

2. Mathematical Model

Here we present an extended version of the model of fluid and solute transport in peritoneal
dialysis derived previously in [11]. The model was developed in one spatial dimension with x “ 0
representing the boundary of the peritoneal cavity and x “ L representing the end of the tissue
surrounding the peritoneal cavity (see Figure 1). The model assumes the symmetrical structure of the
surrounding tissue with respect to the cavity and the homogenous spreading of the source within
the whole tissue as an approximation to the discrete structure of blood and lymphatic capillaries.
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The model also assumes that solutes are transported only within the interstitial fluid. Here we
extend the model in order to take into account the possible dependence of several parameters on
the hydrostatic pressure.

The mathematical description of transport processes within the tissue is based on the conservation
law expressing a local balance of fluid volume and solute mass. For incompressible fluid, the change
of volume may occur only due to the elasticity of the tissue. The fractional fluid void volume, i.e.,
the volume occupied by the fluid in the interstitium expressed per unit volume of the whole tissue,
is denoted by νpt, xq, and its time evolution is described as:

Bν

Bt
“ ´

BjU
Bx

` qU ´ ql (1)

where jUpt, xq is the volumetric fluid flux across the tissue (ultrafiltration), qUpt, xq is the density of
volumetric fluid flux from blood capillaries to the tissue, and ql ą 0 is a known function, which
depends on the hydrostatic pressure Ppt, xq and is the density of volumetric fluid flux from the tissue to
the lymphatic vessels. Typically the function qlpPq is assumed to be linear [9] or a positive constant [11].

The equation that describes the local changes of glucose amount in the tissue, νCG, is:

BpνCGq

Bt
“ ´

BjG
Bx

` qG, (2)

where CGpt, xq is the glucose concentration in the tissue, jGpt, xq is the glucose flux through the tissue,
and qGpt, xq is the density of the glucose flux from blood.

The equation that describes the local changes of albumin amount in the tissue, νACA, has
the form:

BpνACAq

Bt
“ ´

BjA
Bx

` qA, (3)

where CApt, xq, jApt, xq and qApt, xq correspond to the albumin concentration, albumin flux through
the tissue and albumin flux from blood, respectively. Here the function νApt, xq is introduced, which is
called the fractional albumin volume. The function νA takes into account an obvious fact that only
a part of the fractional fluid void volume ν is accessible for albumin because its molecular size is
much larger than the glucose molecular size [7,9], so that νA ă ν for @pt, xq P R` ˆ p0, Lq. Usually it
is assumed that νA “ αν (α ă 1). However, we believe that it is an essential simplification. In fact,
by introducing the coefficient α ă 1, one simply assumes that, having any minimal ν “ νmin, a part
of tissue is still accessible for such macromolecules. However, it is obvious that there exists a critical
value of ν, for which only glucose and small metabolites are transported within tissue, while large
molecules are completely blocked, i.e., α « 0. On the other hand, α « 1 provided the fractional void
volume is sufficiently large, i.e., ν « νmax. Thus, we replace αν by the function νA.

In order to specify the fluxes arising in Equations (1)–(3), we assume that the osmotic pressure
of glucose and the oncotic (this terminology is often used instead of “osmotic” for large proteins)
pressure of albumin are described by the van’t Hoff law. Thus, the volumetric fluid flux across the
tissue is generated by hydrostatic, osmotic and oncotic pressure gradients:

jU “ ´νK
BP
Bx
` σTGνKRT

BCG
Bx

` σTAνKRT
BCA
Bx

, (4)

where K is the hydraulic conductivity of the tissue that is assumed constant for simplicity(K may
also depend on the pressure P), R is the gas constant, T is absolute temperature, and σTG and σTA are
the Staverman reflection coefficients for glucose and albumin in the tissue, respectively. The density
of fluid flux from blood to the tissue is generated, according to the Starling law, by the hydrostatic,
osmotic and oncotic pressure differences between blood and tissue:

qU “ LpapPB ´ Pq ´ LpaσGRTpCGB ´ CGq ´ LpaσARTpCAB ´ CAq, (5)
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where Ppt, xq is the hydrostatic pressure, Lpa is the hydraulic conductance of the capillary wall, PB
is the hydrostatic pressure of blood, CGB and CAB are the glucose and albumin concentrations in
blood, and σG and σA are the Staverman reflection coefficients for glucose and albumin in the capillary
wall, respectively.

The glucose flux across the tissue is composed of a diffusive component (proportional to the
glucose concentration gradient) and a convective component (proportional to glucose concentration
and fluid flux):

jG “ ´νDG
BCG
Bx

` STGCG jU . (6)

where DG is the diffusivity of glucose in the tissue, STG “ 1´ σTG is the sieving coefficients of glucose
in the tissue [13].

The density of glucose flux between blood and the tissue consists of three components, namely a
diffusive component (proportional to the difference of the glucose concentration in blood, CGB, and
the glucose concentration in the tissue, CG), a convective component (proportional to the density of
fluid flow from the blood to the tissue, qU) and a component that represents lymphatic absorption of
solutes (proportional to the density of volumetric lymph flux, ql):

qG “ pGapCGB ´ CGq ` SGqUCG ´ qlCG. (7)

where pGa is the diffusive permeability of the capillary wall for glucose and SG “ 1´ σG is the sieving
coefficients of glucose in the capillary wall.

In a similar way, the albumin flux across the tissue, jApt, xq, and the density of albumin flux to the
tissue, qApt, xq, can be described as:

jA “ ´νADA
BCA
Bx

` STACA jU , (8)

qA “ pAapCAB ´ CAq ` SAqUCA ´ qlCA, (9)

where STA “ 1´ σTA and SA “ 1´ σA are the sieving coefficient of albumin in the tissue and in the
capillary wall, respectively, DA is the diffusivity of albumin in the tissue, and pAa is the diffusive
permeability of the capillary wall for albumin.

Equations (1)–(3) together with Equations (4)–(9) for flows form a system of three nonlinear
second-order partial differential equations with five variables: ν, νA, P, CG and CA. Therefore, two
additional equations are needed in order to construct a well defined model. Using data from
experimental studies (see for the details [8]), we can obtain a constitutive equation describing how the
fractional fluid void volume ν depends on interstitial pressure, P. In the general case, this equation
has the form:

ν “ FpPq, (10)

where F is a monotonically non-decreasing bounded function with the limits: F Ñ νmin if P Ñ Pmin

and F Ñ νmax if P Ñ Pmax (particularly, one may take Pmin “ ´8, Pmax “ 8). Here νmin ă νmax and
νmax ă 1 are empirically measured constants. In the case of the fractional void volume for albumin νA,
we propose to use the similar formulae:

νA “ FApPq, (11)

where FA is another monotonically non-decreasing bounded function with the limits: FA Ñ νA min if
P Ñ Pmin and FA Ñ νA max if P Ñ Pmax. Obviously νA min ď νmin and νA max ď νmax.

Finally, boundary and initial conditions can be defined as follows. Since experimental data
and theoretical studies suggest that intraperitoneal pressure PD, glucose CGD and albumin CAD
concentrations in the peritoneal cavity are constant for some time period (see for the details [8–10]),
the constant Dirichlet conditions for the tissue layer in contact with the peritoneal cavity:
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x “ 0 : P “ PD, CG “ CGD, CA “ CAD (12)

can be taken. Boundary conditions on another boundary of the tissue layer of the width L are the zero
flux conditions

x “ L :
BP
Bx
“ 0,

BCG
Bx

“ 0,
BCA
Bx

“ 0. (13)

i.e., the tissue is impermeable at x “ L.
The initial conditions describe equilibrium within the tissue without any contact with

dialysis fluid:
t “ 0 : P “ P˚, CG “ C˚G, CA “ C˚A, (14)

where P˚, C˚G, and C˚A are some non-negative values, which have been specified in [11].
Note that Equations (1)–(11) can be: united into three nonlinear partial differential equations

(PDEs) for hydrostatic pressure Ppt, xq, glucose concentration CGpt, xq and albumin concentration
CApt, xq. Thus, these three PDEs together with boundary and initial Conditions (12)–(14) form
a nonlinear boundary-value problem.

3. Non-Uniform Steady-State Solutions of the Model

The time needed to approach the steady state is of the order of minutes for small solutes, such
as glucose. One increases for much larger solutes, especially for albumin. However, if we take into
account that patients are on continuously repeated treatment and that there are a few exchanges of
dialysis fluid per day, the transport system for large molecules after many exchanges is also close to
the steady state (see more detailed discussion e.g., in [14]). Thus, the solutions for the steady state
of the system should be considered as good approximations for real conditions in the tissue in this
clinical setting.

Firstly, we note that there is a special steady state of the tissue in its physiological state without
dialysis, and, therefore, no transport to the peritoneal cavity occurs. In this case, the boundary
conditions at x “ 0 given by Equation (12) are replaced by zero Neumann conditions, and the
steady-state solution can be easily found by solving the equations

qU ´ ql “ 0, qG “ 0, qA “ 0. (15)

This is a system of algebraic equations and in order to solve one, we only need to specify the
function qlpPq. In the general case, one obtains the spatially uniform steady-state concentrations of
glucose and albumin in the form:

C˚G “
pGa

pGa`σGqlpPq
CGB,

C˚A “
pAa

pAa`σAqlpPq
CAB,

(16)

where the hydrostatic pressure is a solution of the transcendent equation:

P´ PB `
1

Lpa
qlpPq “ RT

´ σ2
GqlpPq

pGa` σGqlpPq
`

σ2
AqlpPq

pAa` σAqlpPq

¯

. (17)

The equation can be explicitly solved for the simplest functions qlpPq only. For example, a cubic
equation is obtained in the case of the linear function ql “ ql0 ` ql0P; hence their roots can be derived.
Notably, setting ql “ 0, Equations (16) and (17) produce the constant steady-state

C˚G “ CGB, C˚A “ CAB, P˚ “ PB, (18)

which one expects to get without any mathematical modeling.
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However, a constant steady-state solution cannot describe fluid and solute transport in peritoneal
dialysis. Having in mind constructing non-uniform steady-state solutions, we transform the nonlinear
boundary-value problem presented above to an equivalent form by introducing non-dimensional
independent and dependent variables (except for ν and νA, those are non-dimensional variables) of
the form

x˚ “
x
L

, t˚ “
KPDt

L2 , (19)

ppt˚, x˚q “
P

PD
, upt˚, x˚q “

CG ´ CGB
CGD ´ GGB

, wpt˚, x˚q “
CA

CGD ´ GGB
. (20)

Thus, after rather simple calculations and taking into account Equations (4), (6) and (8), one
obtains Equations (1)–(3) in the form (hereafter upper index ˚ is omitted):

c
Bν

Bt
“
B

Bx

´νBp
Bx

¯

´ t0σ1
B

Bx

´νBu
Bx

¯

´ t0σ2
B

Bx

´νBw
Bx

¯

` t0pqU ´ qlq, (21)

Bpνuq
Bt ` σTGu0

Bν
Bt “ d1t0

B
Bx

´

νBu
Bx

¯

` STG
B
Bx

´

uνBp
Bx

¯

´STGt0σ1
B
Bx

´

uνBu
Bx

¯

´ STGt0σ2
B
Bx

´

uνBw
Bx

¯

`t0pSGu` u0pSG ´ STGqqqU ´ t0b1u´ t0σTGu0ql ,

(22)

BpνAwq
Bt “ d2t0

B
Bx

´

νABw
Bx

¯

` STA
B
Bx

´

wνBp
Bx

¯

´STAt0σ1
B
Bx

´

wνBu
Bx

¯

´ STAt0σ2
B
Bx

´

wνBw
Bx

¯

`t0SAwqU ´ t0b2w´ t0w0pb2 ´ qlq,

(23)

where
qU “ β

´

1
t0
pp0 ´ pq ` σGσ1

σTG
u` σAσ2

σTA
pw´w0q

¯

, β “
LpaL2

K ,

σ1 “ σTGKRT CGD´GGB
L2 , σ2 “ σTAKRT CGD´GGB

L2 ,
d1 “

DG
L2 , d2 “

DA
L2 ,

b1 “ pGa` ql , b2 “ pAa` ql ,
u0 “

CGB
CGD´GGB

, w0 “
CAB

CGD´GGB
, p0 “

PB
PD

t0 “
L2

KPD
, w˚ “ w´w0,

(24)

Now we want to find the steady-state solutions of Equations (21)–(23) satisfying the boundary
Conditions (12) and (13). They take the form:

x “ 0 : p “ 1, u “ 1, w “
CAD

CGD ´ GGB
(25)

x “ 1 :
Bp
Bx
“ 0,

Bu
Bx
“ 0,

Bw
Bx

“ 0. (26)

for the non-dimensional variables. In order to find the steady-state solutions, Equations (21)–(23)
should be reduced to the system of ordinary differential equations (ODEs):

1
t0

d
dx

´νdp
dx

¯

´ σ1
d

dx

´νdu
dx

¯

´ σ2
d

dx

´νdw
dx

¯

` qU ´ ql “ 0, (27)

d1
d

dx

´νdu
dx

¯

`
STG
t0

d
dx

´uνdp
dx

¯

´ STGσ1
d

dx

´uνdu
dx

¯

´ STGσ2
d

dx

´uνdw
dx

¯

` pSGu` u0pSG ´ STGqqqU ´ b1u´ σTGu0ql “ 0,
(28)
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d2
d

dx

´νAdw
dx

¯

`
STA
t0

d
dx

´

pw´w0qνdp
dx

¯

´ STAσ1
d

dx

´

pw´w0qνdu
dx

¯

´ STAσ2
d

dx

´

pw´w0qνdw
dx

¯

` pSAw´ STAw0qqU ´ b2pw´w0q ´ σTAw0ql “ 0.
(29)

Unfortunately, the non-linear system of ODEs (27)–(29) is still very complex and cannot be
integrated in the case of arbitrary coefficients, i.e., it seems to be impossible to find non-uniform
steady-state solutions. Thus, one may look for the correctly-specified coefficients, for which this system
can be simplified. It was noted in [11] that the relations:

SA “ STA, SG “ STG (30)

lead to an essential (this means that automatically σG “ σTG, σA “ σTA) simplification of this system.
Using Assumption (30), one arrives at the semi-coupled system of ODEs:

1
β

d
dx

´

ν
dqU
dx

¯

“ qU ´ ql (31)

jU “
L
β

dqU
dx

(32)

to find the functions qU and jU provided the functions ν and ql are known. Since the functions
qU and jU are expressed via p, u and w and its first-order derivatives, boundary Conditions (25) and
(26) take the form:

x “ 0 : qU “ β
´ 1

t0
pp0 ´ 1q ` σ1 ` σ2

CAD ´ CAB
CGD ´ GGB

¯

(33)

x “ 1 :
BqU
Bx

“ 0, jU “ 0. (34)

However ν and ql depend on the pressure ppxq, which is also unknown function, and therefore
we need to to use the function F from Formula (10). Since the function Fpppxqq is decreasing
(with respect to x!) provided ppxq is a spatially non-uniform steady-state solution, the function
νpxq is also a decreasing function from νp0q “ νmax till νp1q “ νmin. Therefore, fixing an appropriate
function νpxq and finding the function qlppq “ F´1pνpxqq (F´1 is an inverse function to F), one obtains
ODE (31) in the form:

1
β

d
dx

´

νpxq
dqU
dx

¯

“ qU ´ F´1pνpxqq (35)

The simplest case occurs when ql “ constant and the function is the linear function of the form

νpppxqq ” νpxq “ νmax ´ pνmax ´ νminqx, x P r0, 1s. (36)

This case was examined in [11]. While the assumption about the constant density ql of flux from
the tissue to the lymphatic vessels is quite reasonable, experimental data say that the function νpxq
describing the fractional fluid void volume is more complicated. In particular, this function should be
convex upwards (at least in a vicinity of the point x “ 0). Here we consider exponential profiles for
νpxq of the form:

νpxq “ ν0 ´ ν1eαx (37)

where
ν0 “

νmaxeα ´ νmin
eα ´ 1

, ν1 “
νmax ´ νmin

eα ´ 1

in order to obtain νmin and νmax for x “ 1 and x “ 0 respectively. Obviously Formula (37) produces
a wide range of profiles depending on values of the positive parameter α (see Figure 2).
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Substituting (37) into (31), we obtain the linear second-order ODE with variable coefficients:

pν0 ´ ν1eαxq
d2q
dx2 ´ αν1eαx dq

dx
´ βq “ 0, (38)

where q “ qU ´ ql .
Here we obtain two forms of its solutions in explicit form. The first one can be expressed via

elementary functions while the second involves hypergeometric functions.
Let us construct the first one, which can be derived for a specific value of the parameter α only.

In fact, a particular solution of Equation (38) has been found in the form qpart “ e´αx, provided α is the
solution of the transcendental equation:

α2 νmax

β
“

eα ´ 1
eα ´

νmin
νmax

. (39)

In particular, using the parameter values presented in Table 1 (see Section 4), we have calculated
that α « 1.93. Using this particular solution, we obtain the general solution:

qU “ c1e´αx ` c2pν0e´αx lnpν0 ´ ν1eαxq ` ν1q ` ql . (40)

via the well-known formula.
Substituting (40) into (32), the fluid flux:

jU “ ´
ν0 ´ ν1eαx

β

´

c1αe´αx ` c2ν0α
´

e´αx ln pν0 ´ ν1eαxq `
ν1

ν0 ´ ν1eαx

¯¯

(41)

has been calculated. The constants c1 and c2 can be specified using the boundary
Conditions (33) and (34), namely:

c1 “ κ
q0 ´ ql

κ` ν0 ln pνo ´ ν1q ` ν1
, c2 “

q0 ´ ql
κ` ν0 ln pνo ´ ν1q ` ν1

, (42)

where:

q0 “ β

ˆ

1
t0
pp0 ´ 1q ` σ1 ` σ2p1´w0q

˙

,

κ “ ´ν0 ln pν0 ´ ν1eαq ´
ν0ν1eα

ν0 ´ ν1eα
.

The exact solution of Equation (38) for an arbitrary value of the parameter α can be found as
follows. The transformation (see e.g., [15]) ξ “ ´ν1eαx, ω “ qξ´k, where k is the root of the quadratic
equation ν0α2k2 ´ β “ 0, leads to the equation:

ξpξ ` ν0qω
2
ξξ ` p2pk` 1qξ ` ν0p2k` 1qqw1ξ ` kpk` 1qω “ 0. (43)

The substitution ξ “ ´ν0z leads to the hypergeometric equation:

zpz´ 1qω2zz ` pp2k` 2qz´ p2k` 1qqω1z ` kpk` 1qω “ 0. (44)

It is well-known that the general solution of Equation (44) has the form:

ω “ c1Fpk, k` 1, 2k` 1; zq ` c2z´2kFp´k,´k` 1,´2k` 1; zq, (45)

where Fp¨, ¨, ¨; ¨q is the hypergeometric function. Turning back to the original notations, we obtain the
following formula for the density of fluid flux from blood to the tissue:
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qU “ c1ekαxF
ˆ

k, k` 1, 2k` 1;
ν1

ν0
eαx

˙

` c2e´kαxF
ˆ

´k,´k` 1,´2k` 1;
ν1

ν0
eαx

˙

` ql ,
(46)

where k “ 1
α

c

LpaL2

Kν0
.

Substituting (46) into (32) and using the known properties of hypergeometric functions
(see e.g., [16]), the fluid flux of the form:

jU “
Kν

LpaL

´

c1

´

kαekαxFpk, k` 1, 2k` 1;
ν1

ν0
eαxq

`
ν1

ν0

kpk` 1q
2k` 1

αepk`1qαxFpk` 1, k` 2, 2k` 2;
ν1

ν0
eαxq

¯

` c2

´

´kαe´kαxFp´k,´k` 1,´2k` 1;
ν1

ν0
eαxq

`
ν1

ν0

´kp´k` 1q
´2k` 1

αep´k`1qαxFp´k` 1,´k` 2,´2k` 2;
ν1

ν0
eαxq

¯¯

(47)

is obtained. Hereafter, the following notations are used:

f1 “ Fpk, k` 1, 2k` 1;
ν1

ν0
q

f2 “ Fp´k,´k` 1,´2k` 1;
ν1

ν0
q

f3 “ Fpk, k` 1, 2k` 1;
ν1

ν0
eαq

f4 “ Fpk` 1, k` 2, 2k` 2;
ν1

ν0
eαq

f5 “ Fp´k,´k` 1,´2k` 1;
ν1

ν0
eαq

f6 “ Fp´k` 1,´k` 2,´2k` 2;
ν1

ν0
eαq

(48)

h1 “ kαe´kαx f3 `
ν1

ν0

kp´k` 1q
´2k` 1

αep´k`1qα f4

h2 “ kαekαx f5 `
ν1

ν0

kpk` 1q
2k` 1

αepk`1qα f6

(49)

Unknown constants c1 and c2 can be specified using the boundary Conditions (33) and (34); hence
the formulae:

c1 “
h1pq0 ´ qlq

h1 f1 ` h2 f2
, c2 “

h2pq0 ´ qlq

h1 f1 ` h2 f2
(50)

were obtained.
Thus, we have found the formulae for qU and jU , which present the exact solution of

ODEs (26) and (32) and the boundary Conditions (33) and (34). In other words, the exact formulae for
non-uniform steady-state solutions describing the fluid flux across the tissue, jU , and the fluid flux
from blood to the tissue, qU , during peritoneal dialysis are constructed.

Having these formulae, the concentrations of glucose and albumin in the tissue can be found by
solving linear second-order ODEs:

d1
d

dx

´

pν0 ´ ν1eαxq
du
dx

¯

´
SG
L

jUpxq
du
dx
´ ppGa` σGqlqu´ σGu0ql “ 0, (51)

d2
d

dx

´

νApxq
dw
dx

¯

´
SA
L

jUpxq
dw
dx
´ ppAa` σAqlqw` pAaw0 “ 0, (52)

taking into account the boundary Conditions (25) and (26). Here the function νA should be
prescribed according to (11) (see Section 5 for details); the functions qU and jU are defined by
Formulae (40) and (41). Note that Equations (51) and (52) can be easily constructed using ODEs (28)
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and (29), restrictions (30) and relations (31) and (32), i.e., these ODEs have the same structure for
arbitrary given functions qU and jU .

Finally, hydrostatic pressure ppxq is easily obtained provided the glucose concentration upxq and
the albumin concentration wpxq are known using the first formula in (24).

4. Numerical Results and Their Application for Peritoneal Dialysis without the
Albumin Transport

Here we present numerical results based on the formulae derived in Section 3. Our aims are to
compare the results with those obtained earlier and to check whether they are applicable for describing
the fluid-glucose-albumin transport in peritoneal dialysis. The parameters used in the formulae were
mostly taken from [11] and are presented in Table 1.

Table 1. Parameters of the model used for numerical analysis of peritoneal transport. The values of
parameters are taken from (Waniewski et al. 2007; Stachowska-Pietka et al. 2007); Cherniha et al. 2014).

Parameter Name Parameter Symbol, Value and Unit

Minimal fractional void volume νmin “ 0.17

Maximal fractional void volume νmax “ 0.35

Staverman reflection coefficient for glucose σTG varies from 0 to 0.05

Sieving coefficient of glucose in tissue STG “ 1´ σTG

Staverman reflection coefficient for albumin σTA varies from 0.05 to 0.5

Sieving coefficient of albumin in tissue STA “ 1´ σTA

Hydraulic permeability of tissue K “ 5.14 ¨ 10´5 cm2 ¨min´1 ¨mmHg´1

Gas constant times temperature RT “ 18 ¨ 103 mmHg ¨mmol´1 ¨mL

Width of tissue layer L “ 1.0 cm

Hydraulic permeability of capillary wall LPa “

times density of capillary surface area 7.3 ¨ 10´5 min´1 ¨mmHg´1

Volumetric fluid flux to lymphatic vessels ql “ 0.26 ¨ 10´4 min´1

Diffusivity of glucose in tissue divided by νmin DG “ 12.11 ¨ 10´5 cm2 ¨min´1

Diffusivity of albumin in tissue divided by νmin DA “ 1.62 ¨ 10´5 cm2 ¨min´1

Permeability of capillary wall for glucose pGa “

times density of capillary surface area 3.4 ¨ 10´2 min´1

Permeability of capillary wall for albumin pAa “

times density of capillary surface area 6 ¨ 10´5 min´1

Glucose concentration in blood CGB “ 6 ¨ 10´3 mmol ¨mL´1

Albumin concentration in blood CAB “ 0.6 ¨ 10´3 mmol ¨mL´1

Glucose concentration in dialysate CGD “ 180 ¨ 10´3 mmol ¨mL´1

Albumin concentration in dialysate CAD “ 0

Hydrostatic pressure of blood PB “ 15 mmHg

Hydrostatic pressure of dialysate PD varies from 3 to 12 mmHg

In order to compare the numerical results obtained here with those for osmotic peritoneal transport
derived earlier, in which albumin transport was not considered, we neglect the oncotic pressure as
a driving fluid force across the tissue, i.e., we put the Staverman reflection coefficients for albumin
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σTA “ σA “ 0. This means that the fluid flux across the tissue, jU , and the fluid flux from blood to the
tissue, qU (see Formulae (4) and (5)), do not depend on the albumin concentration, i.e., CA “ CAB “ 0.
Especially we pay attention to the fluid flux jUpt, 0q (ultrafiltration flow ), which describes the net
exchange of fluid between the tissue and the peritoneal cavity across the peritoneal surface and
therefore shows the efficiency of removal of water during peritoneal dialysis. The assessment of
ultrafiltration flow is very important from a practical point of view because low values of this flow
in some patients indicate that some problems with osmotic fluid removal have occurred, which may
finally result in the failure of the therapy [17]. Note that the ultrafiltration flow values calculated below
under restrictions σTA “ 0 will be larger than without this restriction (the sign of the last term in (4) is
opposite to the previous one because oncotic and osmotic pressures act in the opposite directions).

Because of the unsolved problem of the values for Staverman reflection coefficients, which cannot
be directly measured (see [18] for details), we concentrated on the coefficient σG, namely to establish
how peritoneal transport depends on values of σG. All of the other parameters were fixed and are
listed in Table 1. However, taking into account that the hydrostatic pressure of dialyzate PD may
essentially vary (depending on individual characteristics of patients), we have done also numerical
simulations in order to estimate the impact of this parameter.

Having the function qU and the function jU , the concentration of glucose u in the tissue can be
found by numerically solving the linear ODE (51) , finally the hydrostatic pressure p is obtained using
the first formula in (24).

The results are presented in Figure 3 (all of the curves presented in the paper were constructed
using the package Maple 17). As one may note three different values of the Staverman reflection
coefficient σG were used. Figure 3 presents the spatial distributions of the steady-state density of
the fluid flux from blood to the tissue qU and the fluid flux across the tissue jU , calculated using
Formulae (46)–(50). Negative values of jU indicate that the net fluid flux occurs across the tissue
towards the peritoneal cavity. Therefore it corresponds to the water removal by ultrafiltration. The
monotonically decreasing (with the distance from the peritoneal surface) function qUpxq and the
monotonically increasing function jUpxq are in agreement with the experimental data and previously
obtained numerical results for the models that took into account only the glucose transport (see for the
details [5,10] and the references cited therein).

Figure 3. The fluid fluxes from blood to tissue qU (in min´1) and across tissue jU (in min´1¨cm) and
the glucose concentration C (in mmol¨mL´1) as functions of distance from peritoneal cavity x (in cm)
for ν “ ν0 ´ ν1e10x, σTG “ 0.001 (red curve), σTG “ 0.002 (green curve), and σTG “ 0.01 (black curve).
σTA “ 0.0 and PD “ 12 mmHg.

Moreover, we noted that the values of the fluxes qU and jU obtained here slightly differ from
those obtained in [11] for the same parameters and the linear profile (36). In particular, using the value
of the fluid flux jU at the point x “ 0, one may calculate the ultrafiltration flow. Total fluid outflow
from the tissue to the cavity (ultrafiltration), calculated assuming that the surface area of the contact
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between dialysis fluid and peritoneum is equal to 5ˆ 103 cm2 (a typical value for this surface [19]),
is 1.0, 1.6 and 6.0 mL/min for the the Staverman reflection coefficients 0.001, 0.002 and 0.01, respectively.
Thus, the ultrafiltration is about 5% higher than the one obtained in [11]. Obviously, this difference is a
consequence of the profile change for the fractional void volume (see Figure 2).

Figure 3 also presents the spatial distributions of the glucose concentration in the tissue (see the
right picture) depending on the values of σTG. The interstitial glucose concentration CG decreases
rapidly with the distance from the peritoneal surface to the constant steady-state value of C˚G (see
Formula (15) in [11]) independently of the σTG values. This remains in agreement with the previous
results obtained in [5,11].

Because the assumption about the equality of the reflection coefficients in the tissue and in the
capillary wall, which demonstrates an interesting specific symmetry in the equations, can be too
restrictive for practical applications of the derived formulae, one needs to provide some additional
justification. As it follows from the biophysical interpretation of these coefficients, the inequality
σTG ă σCG takes place instead of (30). Having this in mind, we have done numerical simulations
in order to define a domain, in which the formulae obtained can be applied for the calculation of
ultrafiltration during peritoneal dialysis. In order to define this domain we have calculated qU and jU
using the values of parameters from Table 1, however without restrictions (30). The results are partly
presented in Figure 4.

Figure 4. The phase planes, showing the regions in which the analytic and numerical solutions differ
by less than 10%, for the hydrostatic pressures PD “ 12 mmHg (left); PD “ 7.5 mmHg (center) and
PD “ 3 mmHg (right).

The phase plane for the variables σTG and σCG pictured in Figure 4(left) shows the domain, in
which the difference between ultrafiltration derived via Formulae (47)–(50) and one calculated without
restrictions (30) by numerical simulations is less than 10% (it was assumed that such exactness is
reasonable for practical applications). The phase planes pictured in Figure 4(center, right) show how
this domain depends on dialyzate pressures, which usually vary from 3 mmHg–12 mmHg. The phase
plane in center shows the domain obtained for the dialyzate pressure PD “ 7.5 mmHg, while the plane
on the right presents the domain for the lowest admissible pressure PD “ 3 mmHg. Thus, one may
conclude that the assumption about the equality of the reflection coefficients in the tissue and in the
capillary wall provides good approximation for the case of nonequal coefficients if their values are
within the respective domains. However, depending on the values of the dialyzate pressure these
domains can be either larger (for low pressures) or smaller (for high pressures).

5. Numerical Results and Their Application for Peritoneal Dialysis

Here we present numerical results based on the formulae derived in Section 3 under the condition
that the albumin transport plays an important role in the transport process between the tissue and the
peritoneal cavity. Our aims are to estimate the role the fractional albumin volume νA in this process
(when the stationary phase occurs i.e., the steady-state solutions describe the fluid-solute transport)
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and to compare the results obtained with some experimental data. In order to do this, we fix the
following large value of the Staverman reflection coefficients for albumin: σTA “ σA “ 0.5.

As was explained in Section 2, we assume that the function νA depends on the space variable x in
a more complicated way than it is usually assumed, i.e., νA “ γν (γ ă 1) [9,11]. Here we take:

νApxq “ νA0 ´ νA1eαAx (53)

where:
νA0 “

νAmaxeαA ´ νAmin
eαA ´ 1

, νA1 “
νAmax ´ νAmin

eαA ´ 1

in order to obtain νAmin and νAmax for x “ 1 and x “ 0, respectively. The fractional fluid void volume
νpxq is still assumed of the form (37). In the numerical results presented here, we take αA “ 1, α “ 5,
νAmin “ 0.01, νAmax “ νmax. This means that a critical value of ν, for which only glucose and small
metabolites are transported within tissue, while large molecules are completely blocked, is close to
νmin, while the fractional void volume ν “ νmax is sufficiently large in order to allow the albumin
transport in the same way as small metabolites are transported.

We remind the reader that the standard assumption is νA “ γν (γ ă 1). Now we want to show that
the results obtained for two different ways of the function νA prescription can be essentially different.

First of all, we need to specify the constant γ, because the coefficients arising in (53) are already
given. Taking into account that the formulae for νA and ν reflect the tissue elasticity (during peritoneal
transport), the part of the whole tissue allowing the albumin transportation should be a fixed number,
hence

şL
0 νApxqdx “ constant. Thus, using Formulae (37) and (53), the correctly-specified value γ

should be calculated as follows:

γ “
I1

I2
, I1 “

ż L

0
νApxqdx, I2 “

ż L

0
νpxqdx, (54)

and, as a result, one obtains γ « 2{3. The graphs of the functions given by Formulae (37), (53) and
νA “

2
3 ν is presented in Figure 5. All of the other parameters were fixed and are listed in Table 1.

Figure 5. Graphs of the functions νpxq “ ν0 ´ ν1e5x (brown curve), νApxq “ νA0 ´ νA1ex (green curve)
and νApxq “ 2

3 νpxq (red curve).
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Because of the reasons explained in Section 4, we concentrated on different values of the coefficient
σG. Namely, we want to establish how the albumin concentration and the albumin clearance from the
tissue depend on the values of σTG and the profile of νA. It should be noted that the fluid flux from
blood to the tissue qU and the fluid flux across the tissue jU do not depend on the albumin transport
parameters (see Formulae (40) and (41)); hence these fluxes can be still found in the same way as above
(see Section 4).

Figure 6 presents the spatial distributions of the albumin concentration in the tissue depending
on the values of σTG. These curves were obtained by the numerical simulation of ODE (52) with the
boundary Conditions (25) and (26). The interstitial albumin concentration CA increases rapidly with
the distance from the peritoneal surface to the constant steady-state value of C˚A (see Formula (15)
in [11]). One easily notes that the albumin concentration is essentially smaller in the case of νA (53)
than in the case νA “

2
3 ν, provided the values of σTG are small. This essential difference occurs in the

tissue layer, which has the width 0.1´ 0.4 cm (depending on the σG value). However, both profiles of
the albumin concentration practically coincide for large values of σTG ě 0.01. Analogous simulations
have been done for a wide range of parameters arising in Formulae (37), (53) and (54), and the results
were similar. Thus, we conclude that the fractional albumin volume νA cannot be assumed as a linear
function of ν (at least for small values of the Staverman reflection coefficients for glucose and large
ones for albumin).

Figure 6. The albumin concentration CA (in mmol ¨mL´1) as a function of distance from the peritoneal
cavity x (in cm) for νA “ νA0 ´ νA1ex(green curves) and νApxq “ 2

3 νpxq (red curves) in the cases
σTG “ 0.002 (left), σTG “ 0.003 (center) and σTG “ 0.005 (right). σTA “ σA “ 0.5 and PD “ 12 mmHg.

The albumin clearance is an important characteristic of dialysis and the rate of the albumin
clearance is defined by the albumin flux across the tissue, jApt, xq. This rate can be calculated in a
similar way to the total fluid outflow (ultrafiltration), and

ClA “
5 ¨ 103|jAp0q|

CAB
, rClAs “ mL{min

where 5 ¨ 103 cm2 is the surface area of the contact between dialysis fluid and peritoneum [9], and the
function jApxq is defined by (8) and is negative (similarly to jUp0q) at a vicinity of point x “ 0 (the
albumin concentration CApxq and the fluid flux jUpxq are already known).

The albumin clearance rates ClA and the ultrafiltration rates U f for different values of the
coefficient σG are presented in Table 2. As it is well-known from experimental data ClA ă U f , so
that the results are plausible. Moreover, the albumin clearance rates ClA are growing when the
coefficient σG is increasing, and this again corresponds to the experimental data. However, one notes
that the values of ClA are too high comparing to some experimental data [20], in which the rates
ClA “ 0.05´ 0.10 mL{min were measured. We assume that there are two main reasons leading to the
above contradiction: (i) the fractional albumin volume νA can be essentially smaller than the one
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presented in Figure 5; (ii) the mathematical assumption (30) is too restrictive. In order to examine these
reasons, one needs to do many numerical simulations and to provide a detailed analysis of the results
obtained. We plan to do this in a forthcoming paper.

Table 2. The albumin clearance and ultrafiltration in peritoneal dialysis. All of the values of the
parameters are taken from Table 1 and σA “ σTA “ 0.5.

Staverman Reflection Ultrafiltration Albumin

Coefficients σG “ σTG U f Clearance ClA

0.001 0.12 mL{min 0.10 mL{min

0.002 0.61 mL{min 0.24 mL{min

0.003 1.155 mL{min 0.44 mL{min

0.005 2.24 mL{min 0.88 mL{min

0.010 4.97 mL{min 1.99 mL{min

0.015 7.69 mL{min 3.11 mL{min

6. Conclusions

In this paper, the mathematical model for fluid transport in peritoneal dialysis, which was
proposed in [11], was further studied and generalized. The model is based on a three-component
nonlinear system of two-dimensional partial differential equations and the relevant boundary and
initial conditions.

In order to show that the transportation of macromolecules (albumin is a typical example)
essentially differs from the water and glucose transportation because of their large size we have
introduced a new notion, fractional albumin volume νA, which (like ν) depends on the hydrostatic
pressure P; however, it is not assumed that νA “ αν, as in previous studies. It should be noted that
such a generalization means that so called effective diffusivities νDG and νADA are some independent
functions of the hydrostatic pressure (generally speaking, the diffusivities DG and DA can also be some
functions of the pressure P).

To find non-uniform steady-state solutions, the model was reduced to the boundary-value problem
for a non-linear ODE system. It turns out that the system obtained can be essentially simplified under
assumptions (30) about the equality of the Staverman reflection coefficients in the tissue and in the
capillary wall, which demonstrates an interesting specific symmetry in the governing equations of
the model. In order to obtain exact solutions in an explicit form, the exponential profiles for the
fractional fluid void volume were used, which are much closer to the profiles arising in experimental
data than the linear profiles used in [11]. As a result, the exact formulae (involving both elementary
and hypergeometric functions) for the density of fluid flux from blood to the tissue and the fluid flux
across the tissue were constructed.

New analytical results are compared to those obtained earlier and checked for their applicability
for the description of transport during peritoneal dialysis. In Section 4, we have done this assuming
the water and glucose transport and neglecting the albumin transport. In particular, we have shown
that values of ultrafiltration calculated using new formulae are higher than those obtained earlier
(for the same parameters but for linear profiles for the fractional fluid void volume ν); therefore they
seem to be more plausible. However, one cannot directly compare these ultrafiltration values with
experimental data because the Staverman reflection coefficients cannot be directly measured.

Using numerical simulations we established how the exact solutions found under pure
mathematical assumption (about the equality of the Staverman reflection coefficients) differ from those
numerically constructed without this assumption. In particular, we have shown that the assumption
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about this equality leads to the correct values of ultrafiltration provided these coefficients belong to a
correctly-specified domain. Moreover, it was proven that the size of the domain essentially depends
on the values of dialyzate pressure. Thus, the exact solutions obtained can be applied for a wide range
of parameters arising in experimental data for peritoneal transport.

In Section 5, the albumin transport was taken into account using very high values of the Staverman
reflection coefficients for albumin. This means that the albumin transport is an important component
in solute transport. We have shown that the albumin concentration profiles are essentially different if
one calculates those by a standard way, i.e., assuming that νA “ γν (γ ă 1), and by the introduction
of the notion of the fractional albumin volume, i.e., the function νA does not depend linearly on ν,
but is defined by the Formula (11). The relevant simulations have been done for different values of
the Staverman reflection coefficients. As a result, one may claim that the above mentioned profiles
coincide only for large values of σTG.

We have also calculated the albumin clearance ClA and the ultrafiltration rates U f (two very
important characteristics of the peritoneal dialysis) in order to estimate the applicability of the
results. The results obtained are qualitatively plausible, however quantitative rates of the albumin
clearance are essentially higher than those arising in experimental studies. We aim to study possible
reasons elsewhere.
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