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Abstract: As applications become more widespread there is an ever-increasing need to improve the
accuracy of ultrasound transducers, in order to detect at much finer resolutions. In comparison with
naturally occurring ultrasound systems the man-made systems have much poorer accuracy, and the
scope for improvement has somewhat plateaued as existing transducer designs have been iteratively
improved over many years. The desire to bridge the gap between the man-made and naturally
occurring systems has led to recent investigation of transducers with a more complex geometry, in
order to replicate the complex structure of the natural systems. These transducers have structures
representing fractal geometries, and these have been shown to be capable of delivering improved
performance in comparison with standard transducer designs. This paper undertakes a detailed
investigation of the comparative performance of a standard transducer design, and a transducer
based on a fractal geometry. By considering how these performances vary with respect to the key
system parameters, a robust assessment of the fractal transducer performance is provided.
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1. Introduction

Ultrasonic sensors are used for imaging in various fields of science and engineering, ranging
from fetal scanners [1-5] to non-destructive testing and evaluation of nuclear power stations [6-8].
Ultrasound transducers are the components which generate and detect sound waves, converting
electrical energy to mechanical energy (and vice versa) through vibrations induced on the
transducer [9]. The standard design for ultrasonic transducers, referred to here as the homogeneous
or Euclidean design, consists of one or more components configured in a periodic array [9,10].
Due to their regular geometry, these transducers can attain strong resonating performance at the
harmonics of the transducer; however, the range of frequencies around each harmonic which have
strong sensitivity—the bandwidth—can be limited. In contrast, many natural ultrasound systems can
transmit and receive ultrasound over a wide range of resonating frequencies, with species such as bats
and flies endowed with extremely sensitive transmission and reception sensitivities over exceptional
bandwidths [11-14]. It is noteworthy that these naturally occurring transduction systems display
complex geometries.

The structure of the paper is as follows: in Section 2, fractal transducers are introduced and the
mathematical model which describes the performance of these transducers is summarised in Section 3,
Section 4.1 investigates the performance of both the standard and fractal sensors as the material
parameters are varied, Section 4.2 investigates the performances over a range of geometrical design
parameters, Section 4.3 combines these to examine the transducer performance over a range of design
and material parameters, with discussion and conclusions provided in Sections 4.4 and 5, respectively.
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2. Fractal Transducer Design

The desire to bridge the gap between man-made and natural ultrasound systems has motivated
the investigation of fractal transducers [15,16]. Piezoelectric transducers produce sound waves through
vibrations of the piezoelectric materials from which they are composed. Whereas the homogeneous
geometry of the standard (Euclidean) device is characterised by a single length scale, the natural
systems exhibit a wide range of intricate geometries and often have resonators over a range of length
scales, providing the natural systems with a far broader frequency range [11-14,17]. Fractals are
mathematical structures constructed by iteratively repeating a governing geometrical pattern at each
scale [18,19]. Fractals therefore consist of a range of length scales, and provide a natural framework to
approximate the complex geometry of a natural ultrasound system. The Sierpinski gasket is a classical
example of a self-similar fractal, where the repeating pattern consists of four equilateral triangles
inside a larger equilateral triangle at each scale of this structure [20]. The Sierpinski gasket lattice (see
Figure 1) is the lattice counterpart of the Sierpinski gasket [21,22], and provides a structure which is
amenable to analysis. The performance of a fractal transducer with a geometry based on the Sierpinski
gasket lattice has been investigated previously [16], and the performance of this device compared with
a standard (Euclidean) device [23].

n=1 n=2 n=3
Figure 1. The first few generations of the Sierpinski gasket lattice SG(3).

3. Mathematical Model for the Fractal Transducer

Algehyne and Mulholland [23] derive and interrogate the governing equations for a transducer
with geometry defined by the Sierpinski gasket lattice. These derivations stem from consideration
of the general tensor equations for the lattice, which provides a 3D framework to model the global
dynamics of this transducer. This enables investigation of the transverse modes of the device, where
the electric field operates within the plane of the lattice and the displacement acts out of this plane.
The Sierpinski gasket lattice transducer is similar to a 1-3 connectivity composite transducer although
for simplicity it is composed of one material and the second phase, which is normally a polymer, is
just void space. The device has a single electrode on its top surface and a single electrode on its bottom
surface. It is therefore modelled as a one dimensional single element sensor; the internal microstructure
being homogenised using a renormalisation approach. The resulting characteristics of each mode of
transducer operation are given in the form of analytical expressions, which enables rapid calculation
of the transducer performance.

The full process which gives rise to the analytical forms of the Sierpinski gasket lattice transducer
operating characteristics is detailed in Algehyne and Mulholland [23] and is omitted here for brevity;
however, the approach is summarised here for completeness. The wave velocity in the piezoelectrically
stiffened material can be expressed as cr = /ur/pr, where ur = caa(1+ e§4/ (e11€44)) is the
piezoelectrically stiffened shear modulus, pr is the density in the piezoelectric material, and c44, €24,
and &1 are, respectively, elements of the stiffness tensor, the piezoelectric tensor and the permittivity
tensor in the constitutive piezoelectric equations [24]. The ratio of the cross-sectional area of
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each edge of the Sierpinski gasket transducer to the length of the edge is denoted by ¢ at each
generation level, the capacitance of the transducer is then Cy = eq1/(2" — 1) and the parameter
q=q" = i27(cr(2" —1)/L) " f is the scaled frequency f at fractal generation level 7. The electrical
load parametersa = Zp/(Zo+ Zp) and b = ZoZp/(Zy + Zp) combine the parallel electrical impedance
load, Zp, and the series electrical impedance load, Zy. The mechanical impedance is given by
Z; = prc &L/ (2" — 1) for the load on the front face of the transducer, Zg = ppcplL/(2" — 1) for the
backing material, and Zr = ppcrgL/ (2" — 1) for the transducer. The density is denoted p and the
wave velocity is denoted ¢, with the subscripts L, B and T representing the front load, backing layer
and piezoelectric material of the transducer, respectively.

A finite element methodology is employed by Algehyne and Mulholland [23], which gives rise
to the Green’s transfer matrix, G, representing the Laplace transform of the vertex displacement
throughout the Sierpinski gasket lattice when a unit impulse is applied. Exploiting the symmetries of
the lattice reduces the Green’s transfer matrix to the pivotal elements
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for any i,j,k € {1,m,N} such that j # k, where N = 3" is the total number of vertices in the
Sierpinski gasket lattice of generation level n, and m represents the vertex labelled (N + 1)/2.
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This methodology is then employed as the basis for a renormalisation approach [21,25-28], and
the recursive relations required to populate Equations (1)-(4) are defined as
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fori,j,k € {1,m,N} such that j # k. The matrix G = (A(")~1 and at the first generation level
Al(jl) = aif i = j and B otherwise, where & = 4 + (842/5) and B = —2/3 + 114°/30.

A one dimensional spatial domain is added to the model at the top electrode (the front face) of the
fractal design transducer in order to model the presence of a mechanical load. In a similar way another
domain is added at the other electrode to model the transducer backing material. In transmission mode
a voltage is applied to the transducer across the electrodes and the resulting displacement of the device
produces a force in the front face mechanical load. The ratio of that force to the applied voltage is the
transmission sensitivity. In reception mode an incoming mechanical wave is modelled in the front face
mechanical load which then causes the transducer to vibrate. The ratio of the resulting voltage that
is generated across the electrodes to this applied force is defined as the reception sensitivity. Both of
these sensitivities are functions of the frequency of the applied voltage/force and so the associated
sensitivity spectra can be plotted. Note that a similar approach is taken for the model of the standard
(Euclidean) transducer. Algehyne and Mulholland [23] demonstrate for the fractal transducer design
that the non-dimensionalised transmission sensitivity ¢ is given by
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and the non-dimensionalised reception sensitivity ¢ is given by
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where F is the force on the boundary of the transducer, V is the applied voltage and { = exs/€11.
In Equations (9) and (10), the electrical impedance, Zp, is given by
*Co

Ze(fin) = (coj;ng) (1 n ﬁ(m —l—(Tz)), (11)

with

) _ (1,qé)_l(fﬂgn)(lfq%)_lG,%)+17’S171)(1*Q%)_1(G$n)1+c$2])+1)’ (12)

Zr
o = (1—q(Zs/Z7)) i (G = GIY), (13)
and
o= (1—q(2./Z7)) P (-G — G +2G6M). (14)

In Equation (9) the electrical impedance of the transducer (Zg) has to be of a similar order of
magnitude as the lumped circuit electrical impedance b. Tuning the electrical circuit in this way ensures
that there is efficient transfer of electrical energy to the device when it is operating in transmission
mode. The electrical impedance is affected by the structure of the fractal geometry via the terms oy
and o, that appear in Equation (11). Therefore, the second term in the brackets in Equation (11) has to
be of order one. For a given piezoelectric material the material parameters are fixed but there remains
freedom in the design parameters ¢ and A, (which affects the capacitance Cp) to create this desired
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balance. When it is operating in reception mode, this tuning of the electrical impedances in the circuit
ensures that the circuit is then sensitive to the changes in the electrical impedance of the transducer
due to the mechanical vibrations. In Equation (10) both terms inside the large brackets must be of order
one so that the vibrations of the device (conveyed by the terms ¢y and o3 in Equations (13) and (14))
have a marked effect upon the reception sensitivity. It is a relatively simple matter to identify a sensible
choice of these parameters to design a sensitive transducer.

As outlined in Section 1, the motivation for investigating fractal transducers is to improve
the operational performance of man-made transducers by providing higher amplitude sensitivities
and a wider frequency range at which the transducer can attain high sensitivity. In Algehyne and
Mulholland [23] the performance of a fractal ultrasonic transducer with geometry based on the
Sierpinski gasket lattice at generation level 3 was compared with a standard (Euclidean) homogeneous
design. By appropriate choices of the design parameters a fair comparison can be made between
the fractal and the standard transducer design. This comparison focuses on the behaviour of the
transducers around the thickness mode of operation. The standard design consists of a rectangular
block of piezoelectric material of vertical thickness L that is polarised in this vertical direction. This is
then electroded top and bottom where the area of each electrode is A,. A well-established linear systems
model (one dimensional model) is used to predict the operating characteristics of this device [9,10]
and so the length scale L dictates the resulting resonance frequency. Normally such transducers are 1-3
connectivity composites but to keep the analysis as simple as possible a single phase of piezoelectric
material is used in this paper. The fractal device consists of a Sierpinski Gasket whose overall side
length is also L. Positioning the electrodes as discussed above ensures that the distance between the
electrodes for this device is also L, and that the area of each electrode footprint is A,. The device is
composed of a single piezoelectric material whose polarisation is again aligned with the electrodes,
and the renormalisation approach [21,25-28] as outlined above derives a one-dimensional model to
predict the behaviour of this fractal device.

The models for the fractal transducer and the standard (Euclidean) transducer are therefore
both one dimensional in space, and since both devices are resonating structures of thickness L
then this length scale dictates the frequency at which the devices operate most efficiently. In three
dimensions there will be some cross-talk between the pillars that make up the Sierpinksi gasket
design and so there will be motion in all three directions and not just in the thickness direction;
however, the one-dimensional transducer model will only capture this motion in a single direction.
Additionally, since the transducer models are one dimensional then the acoustic field in the spatial
domain at the front face of the transducers is one dimensional. As such the models presented in this
paper cannot comment on the directivity pattern of the beam that each device creates. The same
material was used for the front face material for both the fractal and the standard design; loss was not
incorporated into this material model. A lossy material was used for the backing material and again
the same material parameters were used for both designs.

Figures 2 and 3 demonstrate the comparative performance of each type of transducer in
transmission and reception modes of operation, for the piezoelectric material PZT-5H and with
equivalent design characteristics. The fractal transducer design is shown to produce the desired
behaviour with multiple resonance frequencies in each mode, ranging from approximately 2.3-2.9 MHz
for the transmission mode. It is clear that the fractal transducer achieves a higher maximum amplitude
for both transmission and reception modes of transducer operation; however, the spiked peaks
evident in the fractal transducer sensitivity spectrum for each operating mode result in poorer
bandwidth performance.
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Figure 2. Non-dimensionalised transmission sensitivity (Equation (9)) versus frequency for the SG(3)
lattice transducer at fractal generation level n = 3 (dashed line). The non-dimensionalised transmission

sensitivity of the standard (Euclidean) transducer is plotted for comparison (full line). Parameter values
are given in Auld [29] for PZT-5H.
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Figure 3. Non-dimensionalised reception sensitivity (Equation (10)) versus frequency for the SG(3)
lattice transducer at fractal generation level n = 3 (dashed line). The non-dimensionalised reception

sensitivity of the standard (Euclidean) transducer is plotted for comparison (full line). Parameter values
are given in Auld [29] for PZT-5H.

It is also of interest to examine the pulse-echo mode of transducer operation, where a single
device transmits a signal and then receives the response. The amplitude at a given frequency for this
mode of operation is defined here as the minimum of the transmission amplitude and the reception
amplitude, where each sensitivity amplitude is normalised with respect to the maximum amplitude

recorded in that mode of operation. The pulse-echo sensitivity at frequency f for Sierpinski gasket
lattice transducer at fractal generation level # is then defined as

6(f;n) = min (‘ plfin) ’,’ Pfin) D (15)

maxs(p(f;n))|"| maxg(¢(f;n))

Figure 4 compares the performance of each type of transducer in pulse-echo mode of operation,
where both transducers are normalised (the denominators in Equation (15)) with respect to the
maximum amplitude of the fractal transducer sensitivity. The transducer performance in pulse-echo
mode is shown to be comparable to the performances displayed in Figures 2 and 3, with the fractal
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transducer achieving a larger maximum amplitude and more peaks of high performance than the
standard (Euclidean) transducer.
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Figure 4. Non-dimensionalised pulse-echo sensitivity (Equation (15)) versus frequency for the SG(3)
lattice transducer at fractal generation level n = 3 (dashed line). The non-dimensionalised pulse-echo
sensitivity of the standard (Euclidean) transducer is plotted for comparison (full line). Parameter values
are given in Auld [29] for PZT-5H.

4. Investigating the Robustness of Transducer Performance

For fractal transducers to be widely utilised by the ultrasonic community further evidence of the
efficacy of these devices is required, and the advantages of employing a fractal transducer design in
place of a standard transducer design must be demonstrated beyond the single scenario portrayed in
Figures 2—4. This paper provides an investigation of transducer performance under a range of scenarios.
In the first instance, the transducer performance is investigated as the material parameters are varied
from the values given in Algehyne and Mulholland [23]; see Section 4.1. In Section 4.2 the second
stream of investigation explores the impact on the transducer performance as the design parameters
are varied. This investigation therefore explores the situation where the maximum performance is
desired from a transducer which is constructed from a pre-selected (and accurately characterised)
piezoelectric material. Section 4.3 goes on to combine both scenarios to investigate the performance of
various alternatives for the design of each transducer when the piezoelectric material parameters span
a range of values. Finally, discussion is provided in Section 4.4.

In the investigations which follow, the generation level of the Sierpinski gasket lattice transducer
is set to three to provide a level of intricacy which could realistically be manufactured, and the
piezoelectric material PZT-5H is considered to be the material of each transducer as this is commercially
available and widely used in practice [30]. The performance of each transducer is measured in
terms of the maximum gain (sensitivity), and the bandwidth to obtain a detailed understanding of
the different aspects of the transducers performance. The maximum gain indicates the strongest
possible response of the transducer and the bandwidth indicates the range of frequencies around
this gain at which the transducer can still achieve acceptable performance. To ensure that a fair
comparison was made between the two different designs (and indeed between different parameter
settings within a single style of design) the decibel level at which the bandwidth was calculated at
was kept fixed. This approach therefore mimics the real life situation whereby a transducer operator
wants to know the range of frequencies that the transducer can operate at; that is, the frequencies at
which it has a higher sensitivity than the noise level. The analytical expressions derived by Algehyne
and Mulholland [23] for the sensitivity of the fractal transducer in transmission and reception modes,
given by Equations (9) and (10), enable rapid calculation of the transducer performance, and provide a
means to perform detailed analysis under the various parameter settings in tractable computation time.
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4.1. Transducer Performance with Uncertainty in the Key Material Parameters

This section explores the impact of uncertainty in the material parameter values on transducer
performance. It can be seen from Section 3 that the piezoelectric material can be described by six
parameters of interest. We denote this set of material parameters as pyr = {ca4, €24, €11, 07, Zp, Z0 },
and define Py as the corresponding set where each element is treated as a random variable. The
expected values of this set, E[Py], are defined as being equivalent to the corresponding advertised
parameter values for the piezoelectric material PZT-5H, and are shown in Table 1. Each element of Py,
is modelled as a normal distribution with mean value equivalent to the corresponding value of E[Py],
and for consistency the standard deviation is set to 10% of the mean value of each parameter.

Table 1. Expected parameter values for PZT-5H (see Auld [29]), and geometrical parameters for the
transducer design.

Parameter description Symbol Magnitude Dimensions
Element of the stiffness tensor Ca4 2.3 x 1010 N-m—2
Element of the piezoelectric tensor €4 17 C-m2
Element of the permittivity tensor €11 1.51 x 10~8 C(V-m)~!
Density of the piezoelectric material oT 7500 kg:m~3
Parallel electrical impedance load Zp 1000 Q
Series electrical impedance load Zy 50 Q
Length of transducer L 1 mm
Ratio of cross-sectional area to edge length ¢ 0.4 m

In Figures 5 and 6 all parameters in the set of material parameters are treated as random variables,
such that the set of material parameters are defined as p); = Py;. The transmission, reception and
pulse-echo sensitivities for the fractal transducer and the standard Euclidean transducer are compared
for both performance measures discussed above. It is clear from Figures 2—4 that the level of the noise
threshold will have a substantial impact on transducer performance, and so a range of noise levels
are investigated. The response of each transducer is simulated for 500 realisations of the uncertain
material parameters, and the distribution of performance values from these simulations are presented
as a box plot.

Figure 5 demonstrates that the fractal transducer achieves a higher maximum gain in transmission,
reception and pulse-echo modes. As can be expected, there is relatively little variation between the
responses at different noise floor levels. The median value for the gain of the fractal transducer (the
line in the middle of each rectangle) is consistently 30%—-40% above that for the standard Euclidean
transducer. In comparison with the regular response pattern of the standard Euclidean design, the
complex pattern for the fractal transducer shown in Figures 2—4 gives rise to substantially more
uncertainty (indicated by the larger length of the rectangles) regarding the maximum gain that is
attained; however, the range of values observed for the fractal transducer (indicated by the vertical
lines) is clearly superior to the range observed for the standard Euclidean design. Figure 6 compares
the bandwidth range achieved by each transducer for transmission, reception and pulse-echo modes
and various levels of noise threshold. The median bandwidth obtained by the fractal transducer
is consistently higher than the standard Euclidean design in transmission mode. The degree of
uncertainty in the bandwidth performance is generally comparable between both types of transducer,
and the bandwidths decrease with increasing noise floor level as expected. A similar situation is shown
for pulse-echo mode, with the fractal transducer consistently obtaining higher median bandwidths than
the standard Euclidean design. In this case the standard Euclidean design shows less uncertainty in the
bandwidth performance than the fractal transducer, however, the inter-quartile range of bandwidths
(indicated by the frequencies which each rectangle spans) covers substantially higher frequencies
for the fractal transducer, indicating that in the majority of cases the fractal transducer has obtained
a superior bandwidth. In reception mode, however, the standard Euclidean design outperforms
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the fractal design in terms of median bandwidth at low noise levels with a larger distribution of
performance values.
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Figure 5. Comparison of the distribution of the maximum gain at various noise levels for the Sierpinski
gasket lattice transducer at fractal generation level n = 3 and the standard (Euclidean) transducer, as
all key material parameters are subjected to a random perturbation: (a) for the transmission sensitivity;

(b) for the reception sensitivity; and (c) for the pulse-echo sensitivity. Parameter values are given in
Auld [29] for PZT-5H.
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Figure 6. Comparison of the distribution of the bandwidth at various noise levels for the Sierpinski
gasket lattice transducer at fractal generation level n = 3 and the standard (Euclidean) transducer, as
all key material parameters are subjected to a random perturbation: (a) for the transmission sensitivity;
(b) for the reception sensitivity; and (c) for the pulse-echo sensitivity. Parameter values are given in
Auld [29] for PZT-5H.
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These investigations are continued in Figures 7 and 8, where a more detailed comparison
between the two transducer designs is provided by focusing on a single level of noise threshold.
From Figure 6a,b, the bandwidths of both transducers in both transmission and reception modes of
operation are roughly comparable for a noise floor level of 30 dB (see Figure 2), and this is therefore
used as the level for the noise threshold in Figures 7a,b and 8a,b. For the pulse-echo mode a noise floor
level of —45 dB is used for the comparison as both transducers obtain reasonable bandwidth at this
threshold, with performance starting to degrade (through more uncertain bandwidth performance) at
higher noise floor levels, as shown in Figure 6¢c. As with Figures 5 and 6, all material parameters in the
set pp are treated as random variables. The transducers are examined in each mode of operation, and
the distribution of the two performance measures over 500 simulations is shown in each case. For the
levels of noise threshold investigated, the fractal transducer consistently outperforms the standard
Euclidean design for each performance measure in each mode of operation. For the maximum gain,
the fractal transducer exhibits a larger range over higher values in Figure 7a,b (transmission and
reception modes, respectively), and higher values over a tighter range in Figure 7c (pulse-echo mode).
In particular the standard (Euclidean) design achieves a relatively low gain in transmission mode and
pulse-echo mode. In terms of bandwidth, Figure 8a,b demonstrate that the fractal transducer has a
smaller range in both transmission and reception modes of operation, and covers higher bandwidth
values. Furthermore, the distribution of bandwidth values for the standard Euclidean design is almost
uniform in each case (discounting a peak at the lowest frequency-bin in the histogram), indicating that
there is comparable probability of achieving any level of bandwidth in the range shown. Figure 8c
shows that in pulse-echo mode the fractal transducer design obtains higher bandwidths than the
standard Euclidean design in the majority of cases; however, in approximately 10% of cases the fractal
transducer obtains a comparatively low bandwidth.

4.2. Transducer Performance under Various Design Regimes

The second stream of investigation is identifying the best geometrical design parameters available
for the transducer, for a fixed set of material parameters. Both the fractal and the standard Euclidean
transducers can be characterised by two key design parameters: the side length of the transducer,
L, and the design ratio, {. In Figures 9 and 10, the transmission sensitivity performance of both
the fractal and the standard Euclidean transducers are calculated across ranges of these key design
parameters. Each design parameter is explored over a range of £50% of the baseline value in steps of
2%, where the baseline value is defined in Table 1. Performance is again measured using two metrics:
maximum gain and the bandwidth of frequency responses above a fixed noise threshold. In Figure 9a,
the maximum gain obtained by the fractal transducer in each design configuration is calculated, and a
response surface is shown. There are two ridges of relatively high performance, with a main ridge
extending from lower values of L and ¢ to higher values of L and ¢, and a smaller ridge with L and ¢
increasing from a region of mid-high L values and low ¢ values. Numerous peaks along each ridge of
high performance indicate focused regions of extremely high performance. The maximum gain of the
standard Euclidean transducer is shown in Figure 9b to gradually decrease as the value of { increases,
and steadily increase as L increases subject to several step changes in performance. In Figure 10, the
bandwidth of the fractal transducer is shown to be relatively insensitive to changes in the design ratio,
¢, whereas the standard Euclidean transducer shows a gradual decrease in bandwidth with increasing
¢. Both types of transducer demonstrate an overall decrease in bandwidth with increasing side length,
L; however, the standard Euclidean transducer shows distinct bands of higher performance separated
by troughs of low performance.
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Figure 7. Comparison of the distribution of the maximum gain between the Sierpinski gasket lattice
transducer at fractal generation level n = 3 and the standard (Euclidean) transducer, as the key material
parameters are subjected to a random perturbation: (a) for the transmission sensitivity at a noise level
of 30 dB; (b) for the reception sensitivity at a noise level of 30 dB; (c) for the pulse-echo sensitivity at a
noise level of —45 dB. Parameter values are given in Auld [29] for PZT-5H.
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Figure 8. Comparison of the distribution of the bandwidth between the Sierpinski gasket lattice
transducer at fractal generation level n = 3 and the standard (Euclidean) transducer, as the key material
parameters are subjected to a random perturbation: (a) for the transmission sensitivity at a noise level
of 30 dB; (b) for the reception sensitivity at a noise level of 30 dB; and (c) for the pulse-echo sensitivity
at a noise level of —45 dB. Parameter values are given in Auld [29] for PZT-5H.
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Figure 9. Variation of the maximum gain for the transmission sensitivities calculated over ranges of the

design parameters ¢ and L: (a) the Sierpinski gasket lattice transducer at fractal generation level n = 3;
and (b) the standard (Euclidean) transducer. Parameter values are given in Auld [29] for PZT-5H.
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Figure 10. Variation of the bandwidth (MHz) for the transmission sensitivities at a noise level of 30 dB,
calculated over ranges of the design parameters ¢ and L: (a) the Sierpinski gasket lattice transducer at
fractal generation level n = 3; and (b) the standard (Euclidean) transducer. Parameter values are given
in Auld [29] for PZT-5H.

Both performance measures of the reception sensitivity for the fractal and the standard Euclidean
transducers are compared in Figures 11 and 12. In Figure 11 the maximum gain of the reception
sensitivity is shown for the fractal and standard Euclidean transducers. Both cases are relatively
similar, demonstrating that the gain is lowest for higher values of L and lower values of ¢, and that the
gain increases as L increases and as ¢ decreases. The fractal transducer exhibits a reasonably smooth
variation with both L and ¢, whereas the standard Euclidean transducer exhibits little variation in
the region of higher ¢ and lower L, with the banded step-like structure evident in Figures 9b and 10b
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becoming increasingly observable for lower ¢ and higher L. The bandwidth of the reception sensitivity
for the fractal transducer is shown in Figure 12a, and has similar structure as shown in Figure 11a for the
maximum gain. Three distinct regions of bandwidth are shown for the standard Euclidean transducer,
with the same regions of lower performance and higher performance as shown in Figure 11b, but
with an additional ridge at the intersection of the lower and higher performance regions exhibiting the
highest bandwidth values.
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Figure 11. Variation of the maximum gain for the reception sensitivities calculated over ranges of the
design parameters ¢ and L: (a) the Sierpinski gasket lattice transducer at fractal generation level n = 3;
and (b) the standard (Euclidean) transducer. Parameter values are given in Auld [29] for PZT-5H.
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Figure 12. Variation of the bandwith (kHz) for the reception sensitivities at a noise level of 30 dB,
calculated over ranges of the design parameters ¢ and L: (a) the Sierpinski gasket lattice transducer at
fractal generation level n = 3; and (b) the standard (Euclidean) transducer. Parameter values are given
in Auld [29] for PZT-5H.

Figures 13 and 14 show the maximum gain and the bandwidth, respectively, of the pulse-echo
sensitivity for the fractal and the standard Euclidean transducers. As with previous investigations, the
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maximum gain obtained by the fractal transducer is shown to be consistently larger than the standard
(Euclidean) transducer in Figure 13, displaying an intricate performance surface with numerous
regions of high performance throughout the design space and a general trend of higher performance
towards regions of lower ¢ and higher L. The bandwidth performance for the standard (Euclidean)
design is shown in Figure 14b to be relatively consistent throughout the design space, with regions of
highest performance for lower values of L. In comparison, the fractal transducer is shown to obtain
higher bandwidths throughout the majority of the design space, with highest performance for lower L
and ¢ and two bands of comparatively lower performance in regions of lower L and higher ¢.
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Figure 13. Variation of the maximum gain for the pulse-echo sensitivities calculated over ranges of the
design parameters ¢ and L: (a) the Sierpinski gasket lattice transducer at fractal generation level n = 3;
and (b) the standard (Euclidean) transducer. Parameter values are given in Auld [29] for PZT-5H.
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Figure 14. Variation of the bandwith (kHz) for the pulse-echo sensitivities at a noise level of —45 dB,
calculated over ranges of the design parameters ¢ and L: (a) the Sierpinski gasket lattice transducer at
fractal generation level n = 3; and (b) the standard (Euclidean) transducer. Parameter values are given
in Auld [29] for PZT-5H.

4.3. Transducer Performance under Various Design Regimes with Uncertainty in Material Parameter Values

The scenarios considered in Sections 4.1 and 4.2 are combined here, to consider the problem of
optimising the transducer performance with uncertain material and geometric design parameters.
The key piezoelectric material parameters are defined as in Section 4.1, with each parameter described
by a normal distribution centered on the expected value with a standard deviation of 10% of this value.
The key design parameters are defined as in Section 4.2, with each parameter varied across a range
extending from 50% less than the baseline value to 50% more than the baseline value. The results
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are shown in Figures 15-20, where the performance of each transducer design is measured for
100 realisations of the key material parameters for the two performance metrics in transmission,
reception and pulse-echo modes. These figures show the coefficient of variation—defined as the
standard deviation divided by the mean—and provide a normalised measure of the uncertainty in
transducer performance, with greater absolute values indicating greater uncertainty. In each case, the
mean of a particular performance measure in a particular mode of operation for each transducer is
comparable to that shown in the corresponding figures in Section 4.2.
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Figure 15. Coefficient of variation of the maximum gain for the transmission sensitivities at a noise
level of 30 dB over ranges of the design parameter values as all key material parameters are subjected
to a random perturbation: (a) the Sierpinski gasket lattice transducer at fractal generation level n = 3;
and (b) the standard (Euclidean) transducer. Parameter values are given in Auld [29] for PZT-5H.
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Figure 16. Coefficient of variation of the bandwidth for the transmission sensitivities at a noise level
of 30 dB over ranges of the design parameter values as all key material parameters are subjected to a
random perturbation: (a) the Sierpinski gasket lattice transducer at fractal generation level n = 3; and
(b) the standard (Euclidean) transducer. Parameter values are given in Auld [29] for PZT-5H.
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Figure 17. Coefficient of variation of the maximum gain for the reception sensitivities at a noise level
of 30 dB over ranges of the design parameter values as all key material parameters are subjected to a
random perturbation: (a) the Sierpinski gasket lattice transducer at fractal generation level n = 3; and
(b) the standard (Euclidean) transducer. Parameter values are given in Auld [29] for PZT-5H.
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Figure 18. Coefficient of variation of the bandwidth for the reception sensitivities at a noise level of
30 dB over ranges of the design parameter values as all key material parameters are subjected to a
random perturbation: (a) the Sierpinski gasket lattice transducer at fractal generation level n = 3; and
(b) the standard (Euclidean) transducer. Parameter values are given in Auld [29] for PZT-5H.
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Figure 19. Coefficient of variation of the maximum gain for the pulse-echo sensitivities at a noise level

of —45 dB over ranges of the design parameter values as all key material parameters are subjected to a

random perturbation: (a) the Sierpinski gasket lattice transducer at fractal generation level n = 3; and

(b) the standard (Euclidean) transducer. Parameter values are given in Auld [29] for PZT-5H.
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Figure 20. Coefficient of variation of the bandwidth for the pulse-echo sensitivities at a noise level of
—45 dB over ranges of the design parameter values as all key material parameters are subjected to a
random perturbation: (a) the Sierpinski gasket lattice transducer at fractal generation level n = 3; and
(b) the standard (Euclidean) transducer. Parameter values are given in Auld [29] for PZT-5H.

In Figure 15 the maximum gain in transmission mode of the fractal transducer and the standard
Euclidean transducer are examined. Both transducers demonstrate relatively low levels of variability in
performance, with deviations of approximately 12% and 5% of the mean value for the fractal transducer
and the standard Euclidean transducer, respectively. In each case the level of uncertainty has a complex
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behaviour throughout the space of design configurations and does not match directly with performance,
although the highest performance regions are generally associated with the highest uncertainty.

In Figure 16 the bandwidth achieved by both transducers in transmission mode is compared.
As with Figure 15, the regions of higher uncertainty do not map directly onto regions of higher
performance, with a complex uncertainty structure displayed by both transducers. In each case the
level of uncertainty has increased from Figure 15, and the fractal transducer has reduced uncertainty at
up to 13% of the mean value in comparison with up to 30% of the mean value for the standard Euclidean
transducer. Both transducers display relatively low uncertainty in regions of high bandwidth.

The levels of uncertainty in the maximum gain achieved by both transducers in reception
mode are compared in Figure 17. In this case, the uncertainty in the standard Euclidean transducer
response generally follows the behaviour of the performance with highest levels of uncertainty (at
approximately 13% of the mean value) at the regions of highest performance. The fractal transducer
exhibits a maximum uncertainty of approximately 8% of the mean value; however, the behaviour
of the uncertainty surface is in contrast to the behaviour of the performance surface, and there is
approximately 5% deviation from the mean value at the regions of highest performance.

In Figure 18 the uncertainty in the bandwidth performance of each transducer in reception mode
is compared. There are regions of extremely high uncertainty for both transducers, where the skewed
distribution of the bandwidth values results in extremely large coefficients of variation. These large
uncertainties arise in regions where the amplitude of the gain is less than the noise floor level, and
therefore no bandwidth is recorded, for the majority of realisations of the material parameter values.
A small number of these realisations produce a gain marginally above the noise floor level, however,
and a small number of non-zero bandwidths are therefore recorded and skew the resulting mean
bandwidth values. To aid the display of these results, Figure 18a,b have both been thresholded at a
coefficient of variation of one; however the maximum coefficient of variation is over seven in each case.
For the fractal transducer the regions of high uncertainty are associated with the regions of extremely
low bandwidth, and there is comparatively low uncertainty throughout the higher performance regions.
In contrast, the regions of high uncertainty are widespread for the standard Euclidean transducer and
coincide with regions of higher performance.

Figure 19 compares the level of uncertainty in the maximum gain for both transducers in
pulse-echo mode. In each case, the level of uncertainty is approximately 5% of the mean value
for the majority of transducer designs; however, both the fractal and the standard Euclidean transducer
are shown to have a region of comparatively high uncertainty (at approximately 10% of the mean
value) for L greater than approximately 1.4 mm. In Figure 20 the levels of uncertainty in the bandwidth
are compared for pulse-echo mode of operation. For the standard Euclidean transducer this is shown
to be relatively consistent, at approximately 15% of the mean bandwidth for the majority of transducer
designs. The fractal transducer is shown to have a ridge of comparatively high uncertainty cutting
through the upper left quadrant of Figure 20a. This ridge coincides with regions of lowest performance
in terms of bandwidth, and further investigation reveals that this level of uncertainty can be attributed
to a number of material parameter realisations achieving substantially larger bandwidths than is the
norm for these transducer designs.

4.4. Discussion of Transducer Performance

The results of Section 4.1, where the design parameters are fixed and there is uncertainty in the
material parameter values, demonstrate that the fractal transducer is consistently predicted to produce
a high-level of performance. This performance is ultimately shown to be superior to the performance
of the standard Euclidean transducer with respect to each performance measure. The significance of
these results is that the fractal transducer is shown to robustly deliver a superior performance to the
standard Euclidean transducer.

In Section 4.2 the material parameters are fixed at their expected values and a range of design
configurations are examined, with both the fractal and the standard Euclidean transducers yielding
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interesting performance surfaces. The fractal transducer demonstrates substantially larger regions of
high performance with respect to both gain and bandwidth than the standard Euclidean transducer.
In designing a transducer, experimentalists would therefore have greater likelihood of producing a
high-performance transducer by adopting a fractal design.

The problem of designing a transducer when the material properties of the piezoelectric material
are uncertain is considered in Section 4.3. In the majority of cases the standard Euclidean transducer
exhibits higher levels of uncertainty in performance and the extent of overlap between high uncertainty
and high performance is more prevalent, in comparison with the fractal transducer. The only exception
is for the maximum gain in transmission mode where both transducers show comparatively low
uncertainty, and the uncertainty related to the standard Euclidean transducer performance is lower than
that of the fractal transducer. The significance of these results is that the regions of high performance
for the fractal transducer are more resilient to uncertainties in the material parameters, when compared
with the standard Euclidean transducer.

The results of Sections 4.1-4.3 show that the fractal transducer can be expected to consistently
produce a superior level of performance in comparison with the standard Euclidean transducer, and
that this high performance is robust to changes in material properties and is achievable for a wide
range of design configurations. These transducers therefore have the potential to deliver a step-change
in transducer performance, and can lead to substantially more accurate ultrasound systems.

5. Conclusions

An investigation into the performance of ultrasonic transducers has been presented, with
comparison between a standard (Euclidean) transducer design with a homogeneous structure, and a
transducer design inspired by the high-performance ultrasound systems observed naturally in species
such as bats and moths. Fractal geometry has recently been considered as a mechanism to mimic
the complex and intricate structure of these natural ultrasound systems, and this work builds upon
the work of Algehyne and Mulholland [23] who derived analytical expressions for the response of
a fractal transducer. Utilising these analytical expressions provides an assessment of the transducer
performance, and enables a large number of scenarios to be investigated in a tractable computing time.
This makes it possible to ascertain the robustness of this performance as the system parameters vary.

Two situations which arise in the real-world development of transducers are considered: in
the first situation the values of the key parameters which describe the piezoelectric material of the
transducer are varied, and in the second situation the key design parameters of the transducer are
varied in order to obtain the optimal transducer performance. The investigations of the first situation
are presented as an interrogation of transducers constructed from one particular piezoelectric material
(PZT-5H); however, these investigations could additionally be used to guide experimentalists in the
design of novel high-performance piezoelectric materials by identifying the material parameter values
that maximise the transducer response and are most robust to uncertainty. The second situation is a
natural stage of the design process, where a transducer will be designed to provide the best possible
performance. Transducers for which high performance is only attained for small ranges of design
parameters are more challenging to optimise, and as a result the performance of these transducers can
be more variable.

The fractal transducer is shown to outperform the standard (Euclidean) transducer. The fractal
transducer is demonstrated to consistently achieve higher levels of performance over large ranges of
the design variables, and has more resilience to uncertainties in the material parameters, particularly
in the regions of high performance. As a result, the fractal transducer is shown to have the potential
to bridge the gap between the current capability of man-made transducers and naturally occurring
systems, and could give rise to a new generation of accurate and resilient transducer designs.
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Abbreviations

The following abbreviations are used in this manuscript:

A Matrix used to construct G(1)
Ay Cross-sectional area of each edge of the Sierpinski gasket transducer (m?)
a Zp/(Zy+ Zp) (ratio of electrical impedances in the circuit (non-dimensional))
b ZoZp/(Zy+ Zp) (ratio of electrical impedances in the circuit (Q2))
Co The capacitance of the transducer (F)
Ca4 An element of the stiffness tensor of the piezoelectric material (N-m~2)
cT The (piezoelectrically stiffened) wave velocity in the SG(™) (3) lattice (m-s~1)
cL Wave speed in the front load (m-s—1)
cp Wave speed in the backing layer (m-s~1)
€4 An element of the piezoelectric tensor of the piezoelectric material (C-nf2 orN-V-I.m™1
f The natural frequency
G]{Zl) The Green’s transfer matrix given by Equations (1)—(4) (non-dimensional)
G Recursive relations utilised for the renormalisation approach, given by Equations (7) and (8)
(non-dimensional)
h Length of each edge of the Sierpinski gasket transducer (m)
K™ Non-dimensionalised parameter given by Equation (12)
L Thickness of transducer (m)
m The vertex labelled (N +1)/2
N =3"  The total number of vertices in the SG(") (3) lattice
n The fractal generation level
q Scaled frequency
Zp Mechanical impedance of backing layer (N-s-m~1)
71 Mechanical impedance of the front load (N-s-m~1)
ZT Mechanical impedance of the transducer (N-s-m~1)
Zp Parallel circuit electrical impedance load (€2)
Zy Series circuit electrical impedance load (Q2)
Ze(f;n)  Electrical impedance of the SG(")(3) lattice given by Equation (11) (CQ))
o Non-dimensionalised parameter equal to 4 + (84%/5)
B Non-dimensionalised parameter equal to —2/3 + 114 /30
Vi Non-dimensionalised parameter given by Equation (5)
'?](”) Non-dimensionalised parameter equal to r]]-(n)’yj
e11 Element of the permittivity tensor of the piezoelectric material (F-m~1)
4 ex/e11 (V-m™)
17]«(11) Non-dimensionalised parameter given by Equation (6)
UT The (piezoelectrically stiffened) shear modulus (N-m~—2)
¢ A/l (m)

0B Density of the backing layer (kg-m~3)
oL Density of the front load (kg-m~3)

oT The density of the piezoelectric material (kg-m~3)
o] Non-dimensionalised parameter given by Equation (13)
%) Non-dimensionalised parameter given by Equation (14)

¢(f;n)  The non-dimensionalised reception sensitivity given by Equation (10)
¢(f;n)  The non-dimensionalised transmission sensitivity given by Equation (9)
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