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1. Introduction

Rational surfaces are complex surfaces birational to P2. According to the classification of
surfaces [1], the minimal surfaces of smooth rational surfaces are either a projective plane P2 or
a Hirzebruch surface F. In particular, the typical examples of del Pezzo surfaces, which are smooth
surfaces Sr with the ample anticanonical divisor class −KSr , are obtained by blowing up r (<9) points
of P2 in general position. Del Pezzo surfaces have drawn the attention of mathematicians and physicists
because of their geometries and dualities involving mysterious symmetries. For example, the special
divisor classes l (called lines) of a del Pezzo surface Sr satisfying l2 = l · KSr = −1 are bijectively
related to the vertices of Gosset polytopes (r− 4)21 , which are one type of semiregular polytopes
given by the action of the Er symmetry group (called E-polytopes). The well-known 27 lines in a cubic
surface S6 are bijectively related to the vertices of a Gosset 221 obtained by an E6-action, and it is well
known that the configuration of the 27 lines can also be understood via the action of the Weyl group
E6 [2,3]. Coxeter [4] applied the bijection between the lines of S6 and the vertices in 221 to study the
geometry of 221. The complete list [5] of bijections between lines in del Pezzo surfaces Sr and vertices in
Gosset polytopes (r− 4)21 is well known, and the bijections play key roles in many different research
fields[6–8]. In particular, the classical application appeared in the study by Du Val [9].

The first author constructed Gosset polytopes as convex hulls in the Picard group Pic(Sr) and
extended the bijections between lines and vertices to correspondences between special divisors in
the del Pezzo surface Sr and subpolytopes in (r− 4)21 via the Weyl Er-action. correspondences were
applied to study the geometry of del Pezzo surfaces and the geometry of Gosset polytopes [10–12].

We consider the special divisor classes D of del Pezzo surfaces Sr [10–12], which are rational
with self intersection D2 = −2,−1, 0, 1, 2 (called root, line, ruling, exceptional system, quartic rational
divisor, respectively). Here, the rulings of del Pezzo surfaces Sr are P1-fibrations of Sr, and the
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exceptional systems produce rational maps from Sr to P2. In fact, one can define these special divisor
classes in a smooth projective variety S. We define the following special divisor (class) in Pic(S):

R(S) :=
{

d ∈ Pic(S)
∣∣∣ d2 = −2, d · KS = 0

}
(roots)

L(S) :=
{

l ∈ Pic(S)
∣∣∣ l2 = l · KS = −1

}
(lines)

M(S) :=
{

m ∈ Pic(S)
∣∣∣ m2 = 0, m · KS = −2

}
(rulings)

E(S) :=
{

e ∈ Pic(S)
∣∣∣ e2 = 1, e · KS = −3

}
(exceptional systems)

Q(S) :=
{

q ∈ Pic(S)
∣∣∣ q2 = 2, q · KS = −4

}
(quartic rational divisors)

For each root d in R(S), we consider a reflection σd on (ZKS)
⊥ in Pic(S) as defined by

σd(D) := D + (D · d) d for D ∈ (ZKS)
⊥

Since each reflection σd preserves the intersection of divisors and fixes the canonical divisor KS,
the action of the reflection σd can be extended naturally to the whole Picard group Pic(S).
Therefore, the Weyl group W(S) generated by the reflections on (ZKS)

⊥ acts on Pic(S), and it acts on
each set of special divisors. In this article, we consider the surfaces S whose Weyl groups are of En-type
whose extended list is given as follows.

n 3 4 5 6 7 8

En A1× A2 A4 D5 E6 E7 E8

For rational surfaces S, we add a condition K2
S > 0 so that the intersection is negative definite on

each affine hypersurface given as

Hb(S) := {D ∈ Pic(S)| − D · KS = b}

In [10], the first author showed that the set of lines L(Sr) ⊂ H1(Sr) of del Pezzo surfaces Sr turns
out to be an orbit of an Er+4-action, and its convex hull in Pic(Sr)⊗Q is the Gosset polytope (r− 4)21.
Therefore, he obtained equivariant correspondences between the special divisors and the subpolytopes
in Gosset polytopes and studied the geometry of del Pezzo surfaces, such as the configurations of
lines [10–12].

One can ask to extend the class of surfaces from del Pezzo surfaces to rational surfaces (with a
condition K2 > 0 on the canonical divisor class K) and the class of E-polytopes from Gosset polytopes
related to lines to other E-polytopes related to the special divisors. In this article, we give a summary
of the first author’s works [10–12] on the special divisors of del Pezzo surfaces and the subpolytopes
in Gosset polytopes via Weyl actions and provide an extension of the studies on del Pezzo surfaces to
the rational surfaces given as the blowing up of Hirzebruch surfaces. We also extend the family of
E-polytopes from Gosset polytopes of lines to other E-polytopes of special divisors. As a matter of fact,
the extension of [10–12] to the blowing up of Hirzebruch surfaces is so natural that most results are
parallel to [10–12]. However, there are interesting characterizations different from the studies on del
Pezzo surfaces appearing along the monoidal transformation of Hirzebruch surfaces. In this article,
we announce the parallel results on fundamental issues without details. The studies related to the
monoidal transformation of the blowing up of Hirzebruch surfaces will be explained in [13]. For the
extension of families of E-polytopes, we consider families of polytopes 2k1 and 1k2 related to rulings
and exceptional systems, respectively. Further studies on correspondences between subpolytopes in
2k1 and 1k2 and divisors in rational surfaces will be described in other articles.
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2. Preliminary

2.1. Smooth Rational Surfaces with K2 > 0

In this article, we consider smooth rational surfaces S with the condition K2
S > 0. By the

classification of surfaces [1], each smooth rational surface has a minimal surface, a projective plane P2,
or a Hirzebruch surface F. In this article, we only consider the blow-ups of the projective plane P2 and
the Hirzebruch surface F in general position. In fact, the studies of the blow-ups of the Hirzebruch
surface F in general position have not done much so that there are no typical descriptions of the general
positions of points in F. Below, we give a description of the blow-ups of the Hirzebruch surface F in
general position matching our purpose.

First, we consider the smooth rational surface S with K2
S > 0 whose minimal surface is

P2. We have a birational morphism ρ : S −→ P2 decomposed by contractions ρj : Sj −→ Sj−1,
j = 1, 2, . . . , r of (−1)-curves e′j (i.e., ρ = ρ1 ◦ · · · ◦ ρr−1 ◦ ρr), where Sr = S and S0 = P2. We remark
that each e′j, j = 1, 2, . . . , r can be obtained by a blow-up of a point pj on Sj−1. The blow-ups at points
pj, j = 1, 2, . . . , r allow infinitely near ones on P2. When the points pj, j = 1, 2 . . . , r on P2 are in
general position, we call S a del Pezzo surface with a degree K2

S = 9− r > 0 whose anticanonical
divisor −KS is ample. We denote by ej, j = 1, 2, . . . , r− 1 the total transforms of (−1)-curves e′j by
ρj+1 ◦ · · · ◦ ρr−1 ◦ ρr, and er := e′r. Then, the Picard group of S is generated by h and ej, j = 1, 2, . . . , r
(i.e., Pic(S) = Zh

⊕
Ze1

⊕ · · ·⊕Zer), where h is a pull-back of a line in P2 by ρ. Note that the canonical
divisor KS ≡ −3h + e1 + e2 + · · ·+ er, and r ≤ 8 since K2

S = 9− r > 0.
Also, we deal with a smooth rational surface X with K2

X > 0 whose minimal surface is a
Hirzebruch surface F. As above we denote a birational morphism ρ : X −→ F decomposed by
contractions ρj : Fj −→ Fj−1, j = 1, 2, . . . , r of (−1)-curves e′j (i.e., ρ = ρ1 ◦ · · · ◦ ρr−1 ◦ ρr), where Fr = X
and F0 = F; moreover, we have a map ϕ′ : F −→ P1, which gives a fibration ϕ := ϕ′ ◦ ρ : X −→ P1.
We denote by f and s a general fibre of ϕ and the special section of ϕ whose self-intersection number is
a nonpositive integer −p, respectively. We use Fp,r instead of Fr unless there is no confusion. When we
consider the contraction ρj of e′j as a (possibly infinitely near) blow-up of a point pj on Fj−1, the point pj

is located in the special section sj−1 on Fj−1 or not. If pj is not a point in sj−1 then s2
j = s2

j−1. On the other

hand, if pj is a point in sj−1 then s2
j = s2

j−1 − 1. Thus, we define that distinct points pj+1, pj+2, . . . , pr

are located on F−s2
j ,j := Fj in general position if each point pk, k = j + 1, . . . , r is not in a special section

sj (s2
j 6= 0) and there are no two points pk1 , pk2 for k1 6= k2 ∈ {j + 1, . . . , r} which are in a common

general fibre of ϕ′ ◦ ρ1 ◦ ρ2 ◦ · · · ◦ ρj. As above, we denote by ej, j = 1, 2, . . . , r− 1 the total transforms
of (−1)-curves e′j by ρj+1 ◦ · · · ◦ ρr−1 ◦ ρr, and er := e′r. Then the Picard group of X is generated by f , s
and ej, j = 1, 2, . . . , r (i.e. Pic(X) = Z f

⊕
Zs
⊕

Ze1
⊕ · · ·⊕Zer). The canonical divisor KX is written

as KX ≡ (−2− p) f − 2s + e1 + e2 + · · ·+ er, and we have r ≤ 7 since K2
X = 8− r > 0.

Remark 1. We can consider an isometric isomorphism ψ : Pic(Fp,r−1) −→ Pic(Sr) for r = 3, 4, . . . , 8 defined by
ψ(ei) = ei+1, 2 ≤ i ≤ r,
ψ(e1) = h− e1 − e2,
ψ( f ) = h− e1,
ψ(s) = 2−p

2 h + p
2 e1 − e2

if p is even


ψ(ei) = ei+1, 1 ≤ i ≤ r,
ψ( f ) = h− e1,
ψ(s) = 1−p

2 h + 1+p
2 e1

if p is odd

Then ψ preserves intersection pairings, root systems and the canonical divisor classes between Pic(Fp,r−1) and
Pic(Sr). Note the isometric isomorphism in the proof of Lemma 3.2 in [14]. Thus, we can naturally extend the
correspondence between the special divisors of a del Pezzo surface Sr and the subpolytopes of a Gosset polytope
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to one for Fp,r−1. Because the correspondence was established for a del Pezzo surface in [10,12] at first, we
use the argument of [10,12] in Sections 3 and 4 to present the original idea, although we have the isometric
isomorphism ψ.

2.2. ADE-Polytopes

The polytopes under consideration in this article are characterized by the highly nontrivial
symmetries given by Coxeter groups. Moreover, the polytopes are determined by the corresponding
Coxeter–Dynkin diagrams. In this subsection, we introduce the general theory of regular and
semiregular polytopes according to their symmetry groups and the corresponding Coxeter–Dynkin
diagrams. In particular, we consider a family of semiregular polytopes known as the Gosset polytopes,
(k21 according to Coxeter), 2k1 and 1k2. Here, we only present a brief introduction; for further detail,
refer to [10,15].

2.2.1. Regular and Semiregular Polytopes

Let Pn be a convex n-polytope in an n-dimensional Euclidean space. For each vertex O of Pn,
when the set of midpoints of all the edges emanating from the vertex O in Pn is contained in an affine
hyperplane, the set consists of the vertices of an (n− 1)-polytope. This (n− 1)-polytope is called the
vertex figure of Pn at O. A regular polytope Pn (n ≥ 2) is a polytope whose facets and the vertex figure at
each vertex are regular. Thus, the facets of a regular Pn are all congruent, and the vertex figures are the
same. We also call a polytope Pn a semiregular one if its facets are regular and the symmetry group of
Pn acts transitively on the vertices of Pn. Here we consider two kinds of regular polytopes, a regular
simplex and a crosspolytope. A regular simplex αn is an n-dimensional simplex with equilateral edges,
and a crosspolytope βn is an n-dimensional polytope whose 2n-vertices are the intersections between an
n-dimensional Cartesian coordinate frame and a sphere centered at the origin. Below we also consider
three kinds of families of semiregular polytopes given by Weyl action of En.

2.2.2. Coxeter–Dynkin Diagrams

Reflection groups generated by the reflections with respect to hyperplanes (called mirrors) are
called Coxeter groups, and the relationships among generating reflections are presented in the Dynkin
diagrams of Coxeter groups.

The Coxeter–Dynkin diagrams of Coxeter groups are graphs with labels where their nodes present
indexed mirrors and the labels on edges present the order n, which is the dihedral angle π

n between
two mirrors. If n = 2, namely, two mirrors are perpendicular, we denote it as no edge joining two nodes
presenting the corresponding mirrors. This also implies that the corresponding mirrors commute.
For n = 3, since the dihedral angle π

3 appears very often, we denote it with an edge between two nodes
without labels. We only label the edges when the corresponding order is n > 3. Each Coxeter–Dynkin
diagram contains at least one ringed node which represents an active mirror; i.e., we choose a point off
the mirrors corresponding to the ringed nodes, and on the mirrors corresponding to the nodes without
rings. The construction of a polytope begins with reflecting the point by the active mirrors.

2.2.3. ADE-Type Coxeter Groups and Isotropy Groups

We consider Coxeter groups of ADE-type, and we call the polytopes given by Coxeter groups
of ADE-type ADE-polytopes. In fact, the Coxeter–Dynkin diagrams of polytopes in this article have
only one ringed node and no labeled edges. For these cases, the following simple procedure using
the Coxeter–Dynkin diagrams describes possible subpolytopes and gives the total number of them.
Each Coxeter–Dynkin diagram of subpolytopes P̃ is the connected subgraph Γ of the diagram
containing the ringed node. The subgraph obtained by removing all the nodes joined with the subgraph
Γ represents the isotropy group GP̃ of P̃. Furthermore, the index between the symmetry group G of the
ambient polytope and the isotropy group GP̃ gives the total number of such subpolytopes. For example,
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by removing the ringed node, we obtain the subgraph corresponding to the isotropy group of a vertex
where the isotropy group is the symmetry group of the vertex figure.

In fact, the complete list of ADE-polytopes consists of various polytopes given by ADE Weyl
action. However, we consider only a few of them related to the studies in this article as below.

2.2.4. ADE-Polytopes

(1) (A-polytope) A regular simplex αn is an n-dimensional simplex with equilateral edges.
Inductively, αn is constructed as a pyramid based on an (n− 1)-dimensional simplex αn−1. The facets
of a regular simplex αn are regular simplexes αn−1, and the vertex figure of αn is also αn−1. For a
regular simplex αn, only regular simplexes αk, 0 ≤ k ≤ n− 1 appear as subpolytopes.u u uhr r r

1 2 n

Coxeter–Dynkin diagram of αn

(2) (D-polytope) A crosspolytope βn is an n-dimensional polytope whose 2n-vertices are given
as the intersections between an n-dimensional Cartesian coordinate frame and a sphere centered
at the origin. βn is also inductively constructed as a bipyramid based on an (n − 1)-dimensional
crosspolytope βn−1, and the n-vertices in βn form a simplex αn−1 if any two vertices are not chosen
from the same Cartesian coordinate line. The vertex figure of a crosspolytope βn is also a crosspolytope
βn−1, and the facets of βn are simplexes αn−1. For a crosspolytope βn, only regular simplexes αk,
0 ≤ k ≤ n− 1 appear as subpolytopes.

u u uh
u

r r r
2 3 n

1

Coxeter–Dynkin diagram of βn

(3) (E-polytope) Gosset polytopes k21 (k = −1, 0, 1, 2, 3, 4) are (k + 4)-dimensional semiregular
polytopes of the Coxeter groups Ek+4 discovered by Gosset. The vertex figure of k21 is (k− 1)21.
For k 6= −1 the facets of k21-polytopes are the regular simplexes αk+3 and the crosspolytopes βk+3,
but all the lower dimensional subpolytopes are regular simplexes. In fact, Coxeter called 421, 321 and
221 Gosset polytopes. We extend the list of Gosset polytopes along the extended list of En. Note that a
Gosset polytope (−1)21, a triangular prism, especially has an isosceles triangle as the vertex figure
different from an equilateral triangle.

u u u u uh
u

r r r
−1 0 1 k

Coxeter–Dynkin diagram of k21 k 6=−1

(4) (E-polytope) 2k1 (k = −1, 0, 1, 2, 3, 4) are (k + 4)-dimensional semiregular polytopes of the
Coxeter groups Ek+4. Here the vertex figure of 2k1 is a (k + 3)-demicube. For k 6= −1 the facets of
2k1-polytopes are regular simplexes αk+3 and semiregular polytopes 2(k−1)1.
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u u u u uh
u

r r r
−1 0 1 k

Coxeter–Dynkin diagram of 2k1 k 6=−1

(5) (E-polytope) 1k2 (k = −1, 0, 1, 2, 3, 4) are semiregular polytopes which are (k + 4)-dimensional
polytopes whose symmetry groups are the Coxeter groups Ek+4. Here the vertex figure of 1k2 is a
birectified (k + 4)-simplex. For k 6= −1, the facets of 1k2-polytopes are the semiregular polytopes
1(k−1)2 and (k + 3)-demicubes, but all the lower dimensional subpolytopes are regular simplexes.

u u u u u
hu

r r r
−1 0 1 k

Coxeter–Dynkin diagram of 1k2 k 6=−1

2.2.5. Subpolytopes in Gosset Polytopes k21

Below, it is useful to know the total numbers of subpolytopes in (r− 4)21 for each r ∈ {3, 4, . . . , 8}.
The numbers of simplexes αi, i = 1, 2, . . . , r− 1 in a Gosset polytope (r− 4)21 are as follows in Tables 1
and 2.

Table 1. Total numbers of simplexes αi in (r− 4)21 for 1 ≤ i ≤ 7.

r 3 4 5 6 7 8

α1 9 30 80 216 756 6720
α2 2 30 160 720 4032 60,480
α3 0 5 120 1080 10,080 241,920
α4 0 0 16 648 12,096 483,840
α5 0 0 0 72 6048 483,840
α6 0 0 0 0 576 207,360
α7 0 0 0 0 0 17,280

The numbers of crosspolytopes βr−1 in (r− 4)21 for each r ∈ {3, 4, . . . , 8} are as follows.

Table 2. Total numbers of crosspolytopes βr−1 in (r− 4)21.

r 3 4 5 6 7 8

βr−1 3 5 10 27 126 2160

2.3. Del Pezzo Surfaces and Gosset Polytopes

A del Pezzo surface is a smooth rational surface whose anticanonical divisor is ample. All del Pezzo
surfaces are Sr, a blow-up of P2 at r points in general position, for r = 0, 1, . . . , 8 and P1 × P1.

To define reflections on (ZKSr )
⊥ in Pic(Sr), we consider a root system:

R(Sr) =
{

d ∈ Pic(Sr) | d2 = −2, d · KSr = 0
}

With a choice of simple roots

d0 = h− e1 − e2 − e3, di = ei − ei+1, 1 ≤ i ≤ r− 1
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we have a Weyl group W(Sr) of Er-type with the Dynkin diagram:

u u u u u
u

r r r
d1 d2 d3 d4 dr−1

d0

Dynkin diagram of Er r≥3

In [10] we obtained correspondences between special divisors on del Pezzo surfaces Sr and the
faces of Gosset polytopes (r− 4)21. For this purpose we define affine hyperplane sections in Pic(Sr)⊗Q as

H̃b(Sr) := {D ∈ Pic(Sr)⊗Q | − D · KSr = b}

where b is a real number.
After fixing a center −b

K2
Sr

KSr in H̃b(Sr), for each divisor D ∈ H̃b(Sr) we obtain

(
D +

b
K2

Sr

KSr

)2

= D2 − b2

K2
Sr

≤ 0

and D ≡Q
−b
K2

Sr
KSr if

(
D + b

K2
Sr

KSr

)2
= 0 by Hodge index theorem and K2

Sr
> 0. Therefore, we get a

negative definite norm in H̃b(Sr) induced by the intersection product when we fix a center −b
K2

Sr
KSr

in H̃b(Sr).
Then, by applying reflections defined by the roots for the lines of del Pezzo surfaces Sr,

we obtained the following theorem (in [10]) about the vertices of Gosset polytopes (r − 4)21 in
H̃1(Sr) ⊂ Pic(Sr)⊗Q:

Theorem 2 (Theorem 4.2 in [10]). For each del Pezzo surface Sr, the set L(Sr) of lines on Sr is the set of
vertices of a Gosset polytope (r− 4)21 in a hyperplane section H̃1(Sr).

Remark 3. In fact, the convex hull of the set L(Sr) of lines in H̃1(Sr) is the polytope (r− 4)21.

We consider the set of skew a-lines defined by

La(Sr) := {D ∈ Pic(Sr) | D ≡ l1 + l2 + · · ·+ la for disjoint lines li in L(Sr)} .

The following theorem gives a correspondence among the exceptional systems of Sr,
the (r− 1)-simplexes of (r− 4)21, and the skew r-lines of Sr.

After we observe the bijections between exceptional systems in del Pezzo surfaces and the top
degree simplexes in (r− 4)21 except for r = 8, we deduced the following theorem (in [10]).

Theorem 4 (Theorem 5.3 in [10]). When 3 ≤ r ≤ 8, each (r − 1)-simplex in (r − 4)21 corresponds to
an exceptional system in the del Pezzo surfaces Sr. Moreover, for 3 ≤ r ≤ 7, the Weyl group W(Sr) acts
transitively on E(Sr); i.e., the set of exceptional systems in the del Pezzo surface Sr. Finally E(Sr) is bijective to
Lr(Sr), the set of skew r-lines in Pic(Sr).

Remark 5. To explain the correspondence, we consider a transformation Φ (e) = KSr + 3e from E(Sr) to
Lr(Sr) which satisfies

Φ (e) · KSr = (KSr + 3e) · KSr = −r, Φ (e)2 = −r

When r = 8, the set of exceptional systems consists of two orbits. One orbit, with 17280 elements, corresponds
to the set of skew 8-lines in S8, and the other orbit, with 240 elements, corresponds to the set of E8-roots, because
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each E8-root d gives an exceptional system −3KS8 + 2d. To distinguish elements of two orbits, we check if
e + 3KS8 is in 2Pic(S8) or not. If so, there is a root satisfying e + 3KS8 = 2d, which otherwise corresponds to a
skew 8-line via 3e + KS8 .

Also, we had correspondences between rulings of Sr and (r− 1)-crosspolytopes of (r− 4)21 in [10]:

Theorem 6 (Theorem 5.4 in [10]). For each ruling f in a del Pezzo surface Sr, 3 ≤ r ≤ 8, there is a pair
of lines l1 and l2 with l1 · l2 = 1 such that f is equivalent to the sum l1 + l2. Furthermore, the set of rulings
in Sr is bijective to the set of (r− 1)-crosspolytopes in (r− 4)21 and is acted transitively upon by the Weyl
group W(Sr).

One can observe that there are two types of (r − 2)-simplexes in (r − 4)21. In [12],
an (r− 2)-simplex in (r− 4)21 is called of A-type if it is contained in an (r− 1)-simplex in (r− 4)21,
and of B-type otherwise. In fact, (r− 2)-simplexes in (r− 4)21 form two Weyl orbits according to types
and the total numbers of the simplexes of each orbit are as follows in Tables 3 and 4.

Table 3. Total numbers of (r− 2)-simplexes in (r− 4)21.

(r− 4)21 −121 021 121 221 321 421

total # 9 30 120 648 6048 207,360
A, B 3, 6 10, 20 40, 80 216, 432 2016, 4032 69,120, 138,240

Table 4. Total numbers of quartic rational divisor classes.

r 3 4 5 6 7 8

total # 3 10 40 216 2072 82,560
I, II 3, 0 10, 0 40, 0 216, 0 2016, 56 69,120, 13,440

For r = 3, 4, . . . , 6 the set Q(Sr) of quartic rational divisors consists of one orbit,
W(Sr) · (2h − e1 − e2). However, for r = 7, 8 the set Q(Sr) consists of two orbits,
W(Sr) · (2h− e1 − e2) ∪̇W(Sr) · (3h−∑6

i=1 ei + e7). We say that a quartic rational divisor is of type I
if it is in the orbit W(Sr) · (2h− e1 − e2) and of type II if it is in the orbit W(Sr) · (3h−∑6

i=1 ei + e7). The
total number of such divisor classes in Sr is finite and is given in the following table.

Then, we had correspondences between (r − 2)-simplexes of A-type in (r − 4)21 and quartic
rational divisors of type I in Q(Sr) as follows (in [12]):

Theorem 7 (Theorem 1 in [12]). For disjoint lines li, 1 ≤ i ≤ r − 1 on a del Pezzo surface Sr,
they produce a contraction to P1 × P1 if there is a quartic rational divisor class q on Sr satisfying
2q + KSr ≡ l1 + l2 + · · ·+ lr−1. Moreover, the quartic rational divisor classes of type I are bijectively related to
(r− 2)-simplexes of A-type in (r− 4)21.

3. Special Divisors of Blown-up Hirzebruch Surfaces

In this section we consider a smooth rational surface X with K2
X > 0 whose minimal surface

is a Hirzebruch surface F. For a Hirzebruch surface Fp, we allow a blowing up of points in
Fp in general position (Note Section 2.1) up to 7 points so that the obtained surface Fp,r satisfies
K2

Fp,r
> 0. The results in this section for Fp,r are naturally parallel to studies of a del Pezzo surface Sr+1

(Note Remark 1). The particular and unique characterization on Fp,r comparing to Sr+1 will be in [13].
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3.1. Special Divisors of Fp,r

For 2 ≤ r ≤ 7 we consider simple roots of a root system R(Fp,r) on
(
ZKFp,r

)⊥
in Pic

(
Fp,r
)
:



d0 = e1 − e2,
d1 = p−2

2 f + s,
d2 = f − e1 − e2,
di = ei−1 − ei, 3 ≤ i ≤ r
(Note that we have only d0, d1, d2 when r = 2)

if p is even


d0 = f − e1 − e2,
d1 = p−1

2 f + s− e1,
di = ei−1 − ei, 2 ≤ i ≤ r

if p is odd

with a corresponding Coxeter–Dynkin diagram of the type Er+1

u u u u u
u

r r r
d1 d2 d3 d4 dr

d0

Note that E3 = A1 × A2, E4 = A4 and E5 = D5. The Weyl group W(Fp,r) is of the type Er+1

for 2 ≤ r ≤ 7.
We get a number of special divisors on Fp,r by a simple calculation of the equations of

numerical conditions or a coefficient of a theta series of a dual lattice of a root lattice Er+1 (see [10]).
For r = 2, 3, . . . , 7, by simple calculation we obtain the total numbers of special divisors in Fp,r which
is the same as the one of a del Pezzo surface Sr+1.

3.2. Blown-Up Hirzebruch Surfaces and Gosset Polytopes

We have correspondences between special divisors of a del Pezzo surface Sr and faces of a Gosset
polytope (r− 4)21 in Section 2.3. For the special divisors of a blow-up Fp,r of a Hirzebruch surface in
general position (Note Section 2.1) and the subpolytopes of a Gosset polytope (r− 3)21 we can also
get parallel correspondences as in the case in Section 2.3 by applying similar proofs in [10]. We define
an affine hyperplane H̃(Fp,r) and the set La(Fp,r) of skew a-lines for Fp,r like the cases of a del Pezzo
surface Sr (See Section 2.3).

For correspondences between the lines of a blow-up of a Hirzebruch surface and the vertices of a
Gosset polytope, we have the following theorem which extends Theorem 2 to Hirzebruch surfaces:

Theorem 8. Let Fr be a blown-up of a Hirzebruch surface in general position for r ∈ {2, 3, . . . , 7}. Then the
convex hull of the set L(Fr) of lines in an affine hyperplane H̃1(Fr) is a Gosset polytope (r− 3)21.

Proof. The lines in Pic(Fr) are on the sphere of a radius −1− 1
K2

Fr
with a center − 1

K2
Fr

KFr in H̃1(Fr).

Thus a convex hull of L (Fr) is a convex polytope in H̃1(Fr). We consider the line er in L(Fr).
For each simple root di, i = 0, 1, . . . , r in R(Fr) explicitly described in the previous subsection,
reflections σdi

, i = 0, . . . , r − 1 fix the line er and the reflection σdr moves the line er in L(Fr).
Thus σdr is the only active reflection for the line er. Therefore, the Weyl Er+1-orbit of er in Pic(Fr) is the
set of the vertices of an (r− 3)21-polytope obtained by the Coxeter–Dynkin diagram.
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u u u u uh
u

r r r
−1 0 1 k

Coxeter–Dynkin diagram of k21 k 6=−1

Since |L(Fr)| = the number of the vertices of an (r− 3)21-polytope (Table 5), we show that L(Fr)

is a Weyl Er+1-orbit of er and acted transitively by the Coxeter group of Er+1-type. Thus it is the set of
the vertices of a (r− 3)21-polytope. Therefore, we conclude that the convex hull of L(Fr) is a Gosset
polytope (r− 3)21 for each r = 2, 4, . . . , 7.

Table 5. Total numbers of special divisors.

r 1 2 3 4 5 6 7

R(Fp,r) 2 8 20 40 72 126 240
L(Fp,r) 3 6 10 16 27 56 240
M(Fp,r) 2 3 5 10 27 126 2160
E(Fp,r) 1 2 5 16 72 576 17,520
Q(Fp,r) 1 3 10 40 216 2072 82,560

The following theorem, which extends Theorem 4 to a Hirzebruch surface, gives correspondences
among the set E(Fp,r) of exceptional systems, the set Lr+1(Fp,r) of the skew (r + 1)-lines and the set of
the r-simplexes αr of a Gosset polytope (r− 3)21.

Theorem 9. Let Fr be a blow-up of a Hirzebruch surface in general position for r ∈ {2, 3, . . . , 7}. Then there
is a bijection compatible with the action of Weyl group W(Fr) between the set E(Fr) of exceptional systems
in Pic(Fr) and the set of the simplexes αr in a Gosset polytope (r− 3)21. Moreover, for 2 ≤ r ≤ 6, the Weyl
group W(Fr) transitively acts on E(Fr), and E(Fr) is bijective to Lr+1(Fr), the set of the skew (r + 1)-lines
in Pic(Fr).

Remark 10. Similarly to two Weyl orbits in the set E(S8) of the del Pezzo surface S8, the set E(F7) of
exceptional systems of a blown up Hirzebruch surface F7 has two orbits. The set L8(F7) of skew 8-lines in
F7 consists of one orbit with 17280 elements. The set of E8-roots consists of the other orbit with 240 elements.
To distinguish elements of two orbits, we check if e + 3KF7 is in 2Pic(F7) or not. If so, there is a root satisfying
e + 3KF7 = 2d, which otherwise corresponds to a skew 8-line via 3e + KF7 .

We can also obtain correspondences between the set M(Fr) of rulings and the set
of the crosspolytopes βr of a Gosset polytope (r − 3)21. In the following, we consider
correspondences between

L(Fr) := {(l1, l2) ∈ L(Fr)× L(Fr) | l1 · l2 = 1} /∼

and the crosspolytopes of a Gosset polytope (r− 3)21, where the relation (l1, l2) ∼ (l̄1, l̄2) is induced
by l1 + l2 ≡ l̄1 + l̄2 for any (l1, l2) and (l̄1, l̄2) in L(Fr)× L(Fr). Therefrom we obtain the following
theorem which extends Theorem 6 to Hirzebruch surfaces.

Theorem 11. Let Fr be a blow-up of a Hirzebruch surface in general position for r ∈ {2, 3, . . . , 7}. Then there
is a bijection compatible with the action of Weyl group W(Fr) between the set M(Fr) of rulings in Pic(Fr) and
the set of the crosspolytopes βr in a Gosset polytope (r− 3)21. Moreover, the Weyl group W(Fr) transitively
acts on M(Fr), and each ruling f in M(Fr) is linearly equivalent to l1 + l2 for two lines l1, l2 in L(Fr) with
l1 · l2 = 1.
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Proof. Let βr be a crosspolytope in a Gosset polytope (r− 3)21. By Theorem 8, we have 2r lines in
Pic(Fr) corresponding to the vertices of βr. Choose distinct two pairs (l1, l2),

(
l̄1, l̄2

)
of distinct two

lines corresponding two vertices of βr which are not in an edge of βr. For the corresponding center of
βr, we get l1 + l2 ≡ l̄1 + l̄2 in Pic(Fr). Moreover, we have l1 · l̄2 = 0 (resp. l2 · l̄2 = 0) because vertices
corresponding to l1, l̄2 (resp. l2, l̄2) are in an edge of βr in (r − 3)21. Thus we obtain l̄1 · l̄2 = 1 and
similarly get l1 · l2 = 1. We define an injective map as

cr : {crosspolytopes βr in a Gosset polytope (r− 3)21} −→ L(Fr)

by cr(βr) := (l1, l2). The Weyl group W(Fr) is the Coxeter group of the type Er+1. By applying Table 5,
we get the theorem.

Note: For the proof of Theorem 11, we apply a fact that for two distinct lines l1 and l2 in Fr,
l1 · l2 = 0 if and only if the corresponding vertices in (r− 3)21 are joined by an edge. This fact can be
obtained by simple calculations as in the case of del Pezzo surfaces ([10]).

We define a subset QI(Fp,r) of the set Q(Fp,r) of quartic rational divisors in Pic
(
Fp,r
)

as follows:

QI(Fp,r) := {q ∈ Q(Fp,r) | 2q + KFp,r ≡ l1 + · · ·+ lr for mutually disjoint lines li}.

For r = 2, 3, . . . , 7 the set QI(Fp,r) consists of one orbit, W(Fp,r) · q0, where q0 ≡
(

p+2
2

)
f + s

(resp.
(

p+3
2

)
f + s− e1) for a nonnegative even integer (resp. a nonnegative odd integer) p. Then we

obtain correspondence between the set QI(Fp,r) and the subset of simplexes αr−1 in a Gosset polytope
(r− 3)21 as the following theorem which extends Theorem 7 for Hirzebruch surfaces:

Theorem 12. Let Fr be a blow-up of a Hirzebruch surface in general position for r ∈ {2, 3, . . . , 7}. Then there
is a bijection compatible with an action of Weyl group W(Fr) between the set QI(Fr) and the set of simplexes
αr−1 of type A which is the set of simplexes αr−1 not contained in any simplexes αr in a Gosset polytope (r− 3)21.

Remark 13. We obtain Q(Fp,r) = QI(Fp,r) for 2 ≤ r ≤ 5. On the other hand, we have∣∣Q(Fp,r)−QI(Fp,r)
∣∣ = 56 for r = 7, and

∣∣Q(Fp,r)−QI(Fp,r)
∣∣ = 13440 for r = 8. Indeed, for each

r ∈ {7, 8}, the set Q(Fp,r)−QI(Fp,r) = W
(
Fp,r
)
· q1 which consists of one orbit in Q(Fp,r) via an action of

Weyl group W
(
Fp,r
)
, where q1 ≡ (p + 2) f + 2s−∑5

i=1 ei + e6. Thus

Q(Fp,r) = W
(
Fp,r
)
· q0 ∪̇W

(
Fp,r
)
· q1.

4. E-Polytopes in Picard Groups of Smooth Rational Surfaces

In the above Theorems 2 and 8, we know that the convex hulls of both L(Sr), the set of the
lines of a del Pezzo surface Sr, and L(Fr−1), the set of the lines of a blow-up Hirzebruch surface Fr−1,
are Gosset polytopes (r− 4)21.

Below, we show that the sets of the special divisors are also identified as the vertices of E-polytopes
by verifying the corresponding convex hulls are E-polytopes.

4.1. 2k1 and Rulings

Above, we recall that the set M(Sr) of rulings in a del Pezzo surface Sr and the set of the
crosspolytopes in (r − 4)21 are equivariantly corresponded via Er-type Weyl action (Theorem 6),
and we state the similar conclusion for the set M(Fr) of rulings in blown-up Hirzebruch surfaces
(Theorem 11). In the following Table 6, we observe that the bijections between rulings and the
crosspolytopes in (r − 4)21 can be extended to the vertices of 2(r−4)1. Moreover, we show that the
convex hulls of rulings are E-polytopes 2(r−4)1.
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Table 6. Vertices of 2(r−4)1, crosspolytopes of (r− 4)21, and rulings of Sr (Fr−1).

Del Pezzo Surface Sr(
Blown-up

Hirzebruch Fr−1

) S3
(F2)

S4
(F3)

S5
(F4)

S6
(F5)

S7
(F6)

S8
(F7)

rulings 3 5 10 27 126 2160
2(r−4)1 2−11 201 211 221 231 241

vertices of 2(r−4)1 3 5 10 27 126 2160
(r− 4)21 −121 021 121 221 321 421

midrule (r− 1)-crosspolytopes 3 5 10 27 126 2160

Theorem 14. For r ∈ {3, 4, 5, 6, 7, 8}, the convex hulls of M(Sr) (resp. M(Fr−1)) in H̃2(Sr) ⊂
Pic (Sr)⊗Q (resp. H̃2(Fr−1) ⊂ Pic(Fr−1)⊗Q) are 2(r−4)1-polytopes.

Proof. For a del Pezzo surface Sr, we consider the ruling h − e1 ∈ M(Sr) ⊂ H̃2(Sr) and its Weyl
Er-orbit. From the Dynkin diagram of Er, the reflection σe2−e1 given by d1 = e2 − e1 is the only active
reflection moving h− e1 among the reflections. Thus, the Weyl Er-orbit of h− e1 in Pic(Sr) is the set of
the vertices of a 2(r−4)1-polytope obtained by the following Coxeter–Dynkin diagram.

u u u u uh
u

r r r
−1 0 1 k

Coxeter–Dynkin diagram of 2(r−4)1 r 6=3

Since |M(Sr)| = the number of the vertices of a 2(r−4)1-polytope (Table 6), we show that M(Sr) is
a Weyl Er-orbit of h− e1 and transitively acted by the Coxeter group of Er-type. Therefore, it is the set
of the vertices of a 2(r−4)1-polytope. Similarly, for a blown-up of Hirzebruch surface Fr−1, we choose
the ruling f of Fr−1 to get the conclusion. This proves the theorem.

4.2. 1k2 and Exceptional Systems

As above, we observe that the total numbers of exceptional systems in del Pezzo surfaces Sr

and the total numbers of the top degree (r− 1) simplexes in (r− 4)21 are the same except for r = 8.
Again in the following Table 7, we observe the bijections between exceptional systems and the (r− 1)
simplexes in (r− 4)21 can be extended to the vertices of 1(r−4)2. Moreover, we show that the convex
hulls of exceptional systems are 1(r−4)2. When r = 8, the set of exceptional systems has two orbits.
We show that the convex hull of one of the orbits is 142.

Table 7. Vertices of 1(r− 4)2, (r− 1)-simplexes in (r− 4)21 and exceptional systems of Sr (Fr−1).

Del
Pezzo Surface Sr(

Blown-up
Hirzebruch Fr−1

) S3
(F2)

S4
(F3)

S5
(F4)

S6
(F5)

S7
(F6)

S8
(F7)

exceptional systems 2 5 16 72 576 17,520
1(r−4)2 1−11 101 111 121 131 141

vertices of 1(r−4)2 2 5 16 72 576 17,280
(r− 4)21 −121 021 121 221 321 421

(r− 1)-simplexes 2 5 16 72 576 17,280

Theorem 15. For r ∈ {3, 4, 5, 6, 7}, the convex hulls of E(Sr) (resp. E(Fr−1)) in H̃3(Sr) ⊂ Pic(Sr)⊗Q (resp.
H̃3(Fr−1) ⊂ Pic(Fr−1)⊗Q) are 1(r−4)2-polytopes.
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Proof. For del Pezzo surfaces Sr , we consider the exceptional system h ∈ E(Sr) ⊂ H̃3(Sr) and its Weyl
Er-orbit. From the Dynkin diagram of Er, the reflection σh−e1−e2−e3 given by d0 = h− e1 − e2 − e3 is
the only active reflection moving h among the reflections in the Dynkin diagram. Thus the Weyl
Er-orbit of h in Pic (Sr) is a set of the vertices of an 1(r−4)2-polytope obtained by the following
Coxeter–Dynkin diagram.

u u u u u
hu

r r r
−1 0 1 k

Coxeter–Dynkin diagram of 1k2 k 6=−1

Since |E(Sr)| = the number of vertices of an 1(r−4)2-polytope, we show that E(Sr) is the Weyl
Er-orbit of h and acted transitively by the Coxeter group of Er-type. Thus it is the set of the vertices
of an 1(r−4)2-polytope. Similarly, for a blown-up Hirzebruch surface Fr−1, we choose the exceptional

system s + p+1
2 f for odd p (s + p+2

2 f − e1 for even p) of Fr−1. Then the only active reflection from the
Dynkin diagram is given as σd0 where d0 = f − e1 − e2 for odd p (d0 = e1 − e2 for even p), and we get
the conclusion. This proves the theorem.

For r = 8, there are two orbits of Weyl action in E(S8) and the Weyl orbit of h in E(S8) is bijectively
related to the vertices of 142. Also, for E(F7) the Weyl orbit of s + p+1

2 f for odd p (s + p+2
2 f − e1 for

even p) is bijectively related to the vertices of 142. Therefore, the proof of the above Theorem 15 gives
the following Corollary.

Corollary 16. For r = 8, the convex hull of the Weyl orbit of exceptional system h (resp. s + p+1
2 f for odd p,

s + p+2
2 f − e1 for even p) in H̃3(S8) ⊂ Pic(S8)⊗Q (resp. H̃3(F7) ⊂ Pic(F7)⊗Q) is an E8-polytope 142.
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