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Abstract: A direct approach to non-linear second-order ordinary differential equations admitting a
superposition principle is developed by means of Vessiot-Guldberg-Lie algebras of a dimension
not exceeding three. This procedure allows us to describe generic types of second-order
ordinary differential equations subjected to some constraints and admitting a given Lie algebra
as Vessiot-Guldberg-Lie algebra. In particular, well-known types, such as the Milne-Pinney or
Kummer-Schwarz equations, are recovered as special cases of this classification. The analogous
problem for systems of second-order differential equations in the real plane is considered for a
special case that enlarges the generalized Ermakov systems.
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1. Introduction

The theory of Lie systems, i.e., systems of non-autonomous first-order ordinary differential
equations admitting a (generally nonlinear) superposition principle, is an old one and emerges
principally from the pioneering work of Lie, Vessiot and Guldberg in the late 19th century [1]. For
a long time considered as a particular technique for differential equations, the importance of Lie
systems in physical applications, particularly in the context of integrable systems, as well as in control
theory, has motivated extensive studies on the subject in the last few decades (see, e.g., [2,3]) that
have led to natural generalizations of the notion of Lie systems [4–6]. These generalizations of the
classical analytical formulation allow an elegant and effective description of Lie systems in terms of
distributions in the sense of Fröbenius and the theory of fiber bundles, hence offering a much wider
spectrum of applications, as well as their adaptation to quantum systems (the excellent treatise on
the geometrical foundations of Lie systems [2] contains an extensive and updated list of references
enumerating these applications).

In this work, we reconsider, mainly for the case of scalar second-order ordinary differential
equations (scalar SODE Lie systems), a direct approach to Vessiot-Guldberg-Lie algebras in
dimensions not exceeding three. Based on the particularities of the case of two-dimensional
Vessiot-Guldberg-Lie algebras, the admissible realizations in terms of vector fields for three
dimensions are obtained, enabling a direct construction of differential equations associated with
these algebras.

We stress the fact that the multiple results concerning Lie algebras of vector fields could be used
(see, e.g., [7]) and that the superposition problem has been studied from this perspective by various
authors [8–10]. The purpose of our direct construction is of a practical nature, in order to illustrate
that cleverly-chosen constraints on realizations allow the construction of quite general differential
equations (systems) admitting Vessiot–Guldberg–Lie algebras.
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Definition: A system of ordinary differential equations:

d xi

dt
= Ψi (t, x) , 1 ≤ i ≤ n (1)

is said to admit a fundamental system of solutions if the general solution of the system can be
expressed in terms of a finite number m of functionally independent particular solutions {y1, · · · , ym}
and n significant constants {C1, · · · , Cn}:

xi = ϕi (y1, · · · , ym, C1, · · · , Cn) (2)

where yk =
(
y1

k , · · · , yn
k
)
. We say that Equation (2) is a superposition rule for the system Equation (1),

while the set {y1, · · · , ym} is called a fundamental system of solutions. The vector field in Rn

defined by:

X (t, x) =
n

∑
i=1

Ψi (t, x)
∂

∂xi (3)

is further called the t-dependent vector field associated with the system Equation (1). It is immediate
to verify that there is a one-to-one correspondence between systems and vector fields of this type.

The basic criterion concerning the existence of fundamental systems of solutions is due to Lie
himself [1] and can be formulated as follows [2,11]:

Lie–Scheffers Theorem [1]: The system of ODEs Equation (1) possesses a generic fundamental
system of solutions if it can be represented in the form:

d xi

dt
=

r

∑
k=1

Fk (t) ξ i
k (x) (4)

such that the vector fields:

Xα =
n

∑
i=1

ξ i
α (x)

∂

∂xi , 1 ≤ α ≤ r (5)

span an r-dimensional Lie algebra LVG. Moreover, the so-called Lie-condition:

n m ≥ r = dimLVG

is satisfied.
This criterion implies in particular that the t-dependent vector field Equation (3) can be

written as:

X (t, x, v) =
r

∑
α=1

Fα(t) Xα (6)

The Lie algebra LVG is usually called a Vessiot–Guldberg–Lie algebra of the system. The
existence of such an algebra hence ensures the existence of a (nonlinear) superposition principle
[2,12,13], which can (at least formally) be derived in terms of the differential invariants associated
with the generators of a Vessiot–Guldberg–Lie algebra.

It shall however be observed that, in contrast to the Lie algebra of point symmetries of differential
equations [11,12], a Vessiot–Guldberg–Lie algebra generally does not provide an invariant of the
system. Actually, the same system Equation (1) may admit different superposition rules, hence
non-isomorphic Vessiot–Guldberg–Lie algebras that can have different dimensions. The Riccati
equation and other ODEs related to it constitute the canonical examples for this pathology [2]. In
this sense, the problem differs considerably from the construction of differential equations admitting
certain types of symmetry algebras [14].
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2. Vessiot–Guldberg–Lie Algebras with r ≤ 3 for Scalar SODE Systems

In this section, realizations of Vessiot–Guldberg–Lie algebras in low dimensions are analyzed
directly for the case of a scalar second-order ODE, corresponding formally to the case of first-order
systems with n = 2.

A scalar second-order ODE:
ẍ− F (t, x, ẋ) = 0 (7)

can always be rewritten as a first-order system:

ẋ = v,
v̇ = F (t, x, v)

(8)

with n = 2. In this case, the t-dependent vector field X(t, x, v) has the form:

X(t, x, v) = v
∂

∂x
+ F (t, x, v)

∂

∂v

We say that Equation (7) is a SODE Lie system if it possesses a Vessiot–Guldberg–Lie algebra
LVG Geometrically, the vector field X(t, x, v) takes values in the Lie algebra LVG; hence, in particular,
for two given values t0 6= t1, the vector fields:

X (t0, x, v) = v
∂

∂x
+ F (t0, x, v)

∂

∂v
, X (t0, x, v)− X (t1, x, v) = (F (t0, x, v)− F (t1, x, v))

∂

∂v
(9)

must be elements of LVG. Considering the determinant of the matrix of coefficients of these vector
fields, we find that: ∣∣∣∣∣ v F (t0, x, v)

0 F (t0, x, v)− F (t1, x, v)

∣∣∣∣∣ = v (F (t0, x, v)− F (t1, x, v)) (10)

Now, if dimLVG = 1, then Equation (10) must vanish for all values of t, from which we
conclude that:

F (t0, x, v) = F (t, x, v)

for all t ∈ R, implying that the constraint ∂F
∂t = 0 must be satisfied. The SODE Lie system thus

reduces to:
ẍ− F (x, ẋ) = 0 (11)

and the generator of LVG is given by X1 = v ∂
∂x + F (x, v) ∂

∂v .
The substitution ẋ = p further reduces Equation (11) to a first-order equation, recovering the

well-known property that autonomous second-order ODEs admit a superposition principle. The
same conclusion holds for autonomous SODE Lie systems in higher dimensions [5,13].

2.1. dimLVG = 2

The simplest case of a non-trivial Vessiot–Guldberg–Lie algebra is given by a Lie algebra in
dimension two, as it is either Abelian or isomorphic to the affine algebra a2 on the plane [15]
(in the following, the reader is led to this reference for the elementary properties of Lie algebras;
for classifications in low dimensions, see [15,16]). Suppose thus that the system Equation (8) admits a
Vessiot–Guldberg–Lie algebra LVG of dimension two (it is implicitly assumed that it does not admit
a smaller dimensional Lie algebra LVG). By Equation (6), we have the identity:

X (t, x, v) = v
∂

∂x
+ F (t, x, v)

∂

∂v
= F1 (t) X1 + F2 (t) X2 (12)
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where X1, X2 are two independent elements of LVG. Using again the vector fields Equation (9), there
exist t0 6= t1, such that the determinant Equation (10) does not vanish:

v (F (t0, x, v)− F (t1, x, v)) 6= 0

showing that the vector fields are linearly independent. Without loss of generality, we can define a
basis of LVG as:

X1 = v
∂

∂x
+ F (t0, x, v)

∂

∂v
, X2 = (F (t0, x, v)− F (t1, x, v))

∂

∂v
(13)

We rewrite the generators of Equation (13) as:

X1 = v
∂

∂x
+ f (x, v)

∂

∂v
, X2 = g (x, v)

∂

∂v
(14)

where, by Equation (12), it follows that F1 (t) = 1 and f (x, v) + F2 (t) g (x, v) = F (t, x, v) for some
non-constant function F2 (t) and g (x, v) 6= 0. The commutator is given by:

[X1, X2] = −g (x, v)
∂

∂x
+

(
v

∂g
∂x

+ f (x, v)
∂g
∂v
− g (x, v)

∂ f
∂v

)
∂

∂v
6= 0

The only possibility that X1, X2 generate a two-dimensional Lie algebra is that [X1, X2] = λX1 +

µX2 for some λ 6= 0. This assumption leads to the equations:

g (x, v) + λv = 0

v
∂g
∂x

+ f (x, v)
∂g
∂v
− g (x, v)

∂ f
∂v
− λ f (x, v)− µg (x, v) = 0

Solving the first of these equations and inserting the result in the second, we obtain the
general solution:

f (x, v) = µv + v2 f1 (x)

A further linear change allows us to suppose that µ = 0. The t-dependent vector field is thus
given by:

X (t, x, v) = v
∂

∂x
+
(

f1 (x) v2 + λF2 (t) v
) ∂

∂v
and the associated SODE Lie system is easily seen to be an equation of the Liouville type (in various
applications, this type of SODE Lie system is also known as the generalized Buchdahl equation [4]):

ẍ− f1 (x) ẋ2 − λF2 (t) ẋ = 0

This equation is well known to admit an integrating factor, a first integral being given by:

ln |ẋ|+
∫

f1 (x) dx + λ
∫

F2 (t) dt = C1

In this sense, a two-dimensional Vessiot–Guldberg–Lie LVG does not provide new results to
those already derived from the theory of differential equations.

2.2. dimLVG = 3

For the case of three-dimensional Vessiot-Guldberg-Lie algebras, the analysis of the generic
form of the realizations of the algebra generators is quite similar to that already developed for the
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two-dimensional algebras. Suppose that Equation (7) does admit a Vessiot–Guldberg–Lie algebra
with dimLVG = 3. By the same argument used in two dimensions, the vector fields:

X1 = v
∂

∂x
+ f (x, v)

∂

∂v
, X2 = g (x, v)

∂

∂v

are contained in LVG, where f (x, v) = F (t0, x, v) and g (x, v) = F (t0, x, v) − F (t1, x, v) for some
arbitrary values t0 6= t1. Further, the commutator:

[X1, X2] = −g (x, v)
∂

∂x
+

(
v

∂g
∂x

+ f (x, v)
∂g
∂v
− g (x, v)

∂ f
∂v

)
∂

∂v
6= 0

also belongs to the Vessiot–Guldberg–Lie algebra LVG. The requirement on the dimension of LVG
implies that [X1, X2] must be linearly independent on X1, X2, as otherwise LVG reduces to the affine
Lie algebra a2. Therefore, there exists a third vector field X3 = ξ1

3 (x, v) ∂
∂x + ξ2

3 (x, v) ∂
∂v ∈ LVG with

ξ1
3 (x, v) 6= 0, such that {X1, X2, X3} constitute a basis of LVG and satisfying the identity:

[X1, X2] = αX1 + βX2 + γX3

for some constants α, β, γ, where necessarily γ 6= 0.
As a consequence, a three-dimensional Vessiot–Guldberg–Lie algebra LVG can always be

realized in the following way:

X1 = v
∂

∂x
+ f (x, v)

∂

∂v
; X2 = g (x, v)

∂

∂v
; X3 = ξ1

3 (x, v)
∂

∂x
+ ξ2

3 (x, v)
∂

∂v
(15)

In particular, the t-dependent vector field is given by X (t, x, v) = X1 + F2 (t) X2.
For the latter realization, the remaining commutators are given by:

[X1, X3] =

(
v ∂ξ1

3
∂x + v ∂ξ1

3
∂v − ξ2

3 (x, v)
)

∂
∂x +

(
v ∂ξ2

3
∂x + f (x, v) ∂ξ2

3
∂v − ξ2

3 (x, v)
)

∂
∂v

[X2, X3] =

(
g (x, v) ∂ξ2

3
∂v − ξ2

3 (x, v) ∂g
∂v

)
∂

∂v

As the component in ∂
∂x of X2 is zero, a change of basis always enables us to reduce the first

commutator to the form:
[X1, X2] = λX1 + µX3

where µ 6= 0. By means of a scaling change in X2, we can further suppose that µ = 1 (we observe
that [X1, X2] = αX2 cannot appear by the previously indicated reasons). The remaining brackets have
the form:

[X1, X3] = a1X1 + a2X2 + a3X3, [X2, X3] = b1X1 + b2X2 + b3X3 (16)

for some constants ai, bi ∈ R. If λ = 0, then:

[X1, X2] = X3

and a routine computation shows that the Jacobi identity is fulfilled whenever the relations
b2 = −a1 and:

a1a3 + a2b3 = 0, b1a3 − a1b3 = 0 (17)

are satisfied. At this stage, the problem corresponds essentially to classifying three-dimensional Lie
algebras, a well-known problem solved in any standard reference [15]. We merely indicate that it
suffices to consider the following three cases:

(a) b3 = 0, b1 = 0, a1 = 0; (b) b3 = 0, a3 = 0; (c) a3 = 0, a1 = 0, a2 = 0.
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We observe that in the commutators Equation (16), the role of X1 and X2 is symmetric, implying
that Cases (a) and (c) are equivalent. For each of the remaining possibilities, the commutators
Equation (16) can be further reduced by successive changes of basis. As this is a routine computation,
we skip the details and will only indicate the resulting three-dimensional Lie algebras.

If λ 6= 0, a similar reasoning with the Jacobi identity and the realization Equation (15) shows
that only one isomorphism class can appear, corresponding to the following values of the constants
in Equation (16): a1 = a2 = a3 = b2 = 0, b1 = 1, b3 = −λ.

Proposition 1: If the vector fields Equation (15) generates a three-dimensional Vessiot–Guldberg–Lie
algebra LVG, then it belongs to one of the following types:

1. r1,ε:
[X1, X2] = X3, [X1, X3] = ε X2, [X2, X3] = X1, ε = −1, 1. (18)

2. r2:
[X1, X2] = X3, [X1, X3] = X1, [X2, X3] = −X2. (19)

3. r3,λ:
[X1, X2] = X3 [X1, X3] = 0, [X2, X3] = λX1, λ ∈ R. (20)

4. r4 :
[X1, X2] = X3, [X1, X3] = 0, [X2, X3] = 0. (21)

5. r5:
[X1, X2] = X3, [X1, X3] = −X2, [X2, X3] = 0. (22)

6. r6,λ:
[X1, X2] = −λX1 + X3 [X1, X3] = 0, [X2, X3] = X1 + λX3, λ > 0. (23)

Concerning the isomorphism class of these Lie algebras, we have that r1,1 and r2 are isomorphic
to the simple Lie algebra sl(2,R), while r1,−1 is isomorphic to so(3). The remaining algebras are
solvable. Following the list of [16], we have the isomorphisms r3,λ ' A3,8, r4 ' A3,3, r5 ' A3,8 and
r6,λ ' A3,9.

Once the possible Lie algebras g have been deduced, the precise functions in the realization
Equation (15), as well as the differential equations admitting g as Vessiot–Guldberg–Lie algebra LVG
are obtained by solving the successive conditions imposed by the commutators of g. As an illustration
of the procedure, we give the details for the Lie algebras r1,ε, the remaining cases being obtained in a
completely analogous way.

Let LVG have brackets (18) with ε = ±1. From the two first generators:

X1 = v
∂

∂x
+ f (x, v)

∂

∂v
, X2 = g (x, v)

∂

∂v
(24)

it follows that the third generator has the form:

X3 := [X1, X2] = −g (x, v)
∂

∂x
+

(
v

∂g
∂x

+ f (x, v)
∂g
∂v
− g (x, v)

∂ f
∂v

)
∂

∂v
(25)
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In principle, four conditions on f (x, v) and g(x, v) corresponding to the components of the
remaining commutators [X1, X3] and [X2, X3] must be solved. These are explicitly given by:

[X1, X3] =
(

g (x, v) ∂ f
∂v − 2v ∂g

∂x − 2 f (x, v) ∂g
∂v

)
∂

∂x + g (x, v)
(

∂ f
∂x − ε +

(
∂ f
∂v

)2
)

∂
∂v

+ f (x, v)
(

∂g
∂x − g (x, v) ∂2 f

∂v2 −
∂ f
∂v

∂g
∂v + 2v ∂2g

∂x∂v + f (x, v) ∂2g
∂v2

)
∂

∂v

+v
(

∂ f
∂x

∂g
∂v − 2 ∂ f

∂v
∂g
∂x + v ∂2g

∂x2 − g (x, v) ∂2 f
∂x∂v

)
∂

∂v

[X2, X3] = −g (x, v) ∂g
∂v

∂
∂x + g (x, v)

(
∂ f
∂v

∂g
∂v + 2 ∂g

∂x + v ∂2g
∂x∂v + f (x, v) ∂2g

∂v2

)
∂

∂v

−
(

g (x, v)2 ∂2 f
∂v2 + f (x, v)

(
∂g
∂v

)2
− v ∂g

∂v
∂g
∂x

)
∂

∂v

As [X2, X3] = X1 holds, from the component in ∂
∂x , we extract the first-order PDE:

−g (x, v)
∂g
∂v

= v

with generic solution:

g (x, v) =
√

G (x)− v2

for some function G (x). Inserting g (x, v) into the commutators, the component in ∂
∂x of the

commutator [X1, X3] further leads to the condition:

v
dG
dx
− 2 v f (x, v) + v2 ∂ f

∂v
− G (x)

∂ f
∂v

= 0

The latter PDE has general solution:

f (x, v) =
(

G (x)− v2
)

k (x) +
1
2

d h
dx

It turns out that with this choice of f (x, v), the commutator [X2, X3] = X1 is identically satisfied.
It merely remains to consider the condition specified by the component in ∂

∂v of [X1, X3], given by:

d2G
dx2 − 3k (x)

dG
dx
− 2G (x)

d k
dx

+ 2G (x) k2 (x)− 2ε = 0 (26)

This constraint equation shows that the realization Equations (24) and (25) depends on an
arbitrary function G(x). For any pair of functions {G (x) , k (x)} satisfying Equation (26), the
commutators Equation (18) is satisfied and defines a three-dimensional Vessiot–Guldberg–Lie algebra
for the (nonlinear) second-order ODE:

ẍ = k (x) ẋ2 + F2 (t)
√

G (x)− ẋ2 +
1
2

d G
dx
− G (x) k (x) = 0

Recall that for ε = 1, the Vessiot–Guldberg–Lie algebra is isomorphic to sl (2,R), while for
ε = − 1, it is isomorphic to so (3).

2.3. Second-Order ODEs with Three-Dimensional Vessiot–Guldberg–Lie Algebra

For each of the Lie algebras g listed in Proposition 1, we enumerate the realization by vector
fields, the possible constraints on the functions in their components and the generic SODE Lie system
admitting g as a Vessiot-Guldberg Lie algebra.

1. LVG ' r1,ε :
Commutators:

[X1, X2] = X3, [X1, X3] = ε X2, [X2, X3] = X1
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Realization:

X1 = v ∂
∂x +

(
G′(x)

2 − k (x)
(
G (x)− v2)) ∂

∂v , X2 =
√

G (x)− v2 ∂
∂v

X3 = −
√

G (x)− v2
(

∂
∂x + v k (x) ∂

∂v

)
Second-order differential equation:

ẍ = k (x) ẋ2 + F2 (t)
√

G (x)− ẋ2 +
1
2

G′ (x)− k (x) G (x) (27)

Constraints:
G′′ (x)− 2k′ (x) G (x) + 2k2 (x) G (x)− 3k (x) G′ (x)− 2 ε = 0 (28)

2. LVG ' r2 :
Commutators:

[X1, X2] = X3, [X1, X3] = X1, [X2, X3] = −X2

Realization:

X1 = v ∂
∂x +

(
k (x) + (1+2 G′(x))

2G(x) v2
)

∂
∂v , X2 = G (x) ∂

∂v , X3 = −G (x) ∂
∂x − v ( G′ (x) + 1) ∂

∂v

Second-order differential equation:

ẍ =
ẋ2

2

(
1 + 2G′ (x)

G (x)

)
+ k (x) + F2 (t) G (x) (29)

Constraints:
k′ (x) G (x)− k (x) G′ (x)− 2k (x) = 0 (30)

3. LVG ' r3,λ :
Commutators:

[X1, X2] = X3, [X1, X3] = 0, [X2, X3] = λX1

Realization:

X1 = v ∂
∂x +

(
k (x)

(
G (x)− λv2)+ G′(x)

2λ

)
∂

∂v , X2 =
√

G (x)− λv2 ∂
∂v ,

X3 = −
√

G (x)− λv2
(

∂
∂x − λvk (x)

)
∂

∂v

Second-order differential equation:

ẍ = −λk (x) ẋ2 + G (x) k (x) +
G′ (x)

2λ
+ F2 (t)

√
G (x)− λẋ2 (31)

Constraints:
2λ2G′ (x) k2 (x) + 2λG (x) k′ (x) + 3λG (x) k (x) + G′′ (x) = 0 (32)

4. LVG ' r4 :
Commutators:

[X1, X2] = X3, [X1, X3] = 0, [X2, X3] = 0

Realization:

X1 = v ∂
∂x + G′(x)v2+µG2(x)

G(x)
∂

∂v , X2 = G (x) ∂
∂v , X3 = −G (x) ∂

∂x − vG′ (x) ∂
∂v
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Second-order differential equation:

ẍ =
G′ (x)
G (x)

ẋ2 + (F2 (t) + µ) G (x) (33)

5. LVG ' r5 :
Commutators:

[X1, X2] = X3, [X1, X3] = −X2, [X2, X3] = 0

Realization:

X1 = v ∂
∂x +

(
G′(x)
G(x) v2 + k (x)

)
∂

∂v , X2 = G (x) ∂
∂v , X3 = −G (x) ∂

∂x − vG′ (x) ∂
∂v

Second-order differential equation:

ẍ =
G′ (x)
G (x)

ẋ2 + k (x) + F2 (t) G (x) (34)

Constraints:
k′ (x) G (x)− k (x) G′ (x) + G (x) = 0 (35)

6. LVG ' r6,λ :
Commutators:

[X1, X2] = −λX1 + X3, [X1, X3] = 0, [X2, X3] = X1 + λX3

Realization:

X1 = v ∂
∂x + G2(v)

(β+(1+λ2)x)
∂

∂v , X2 = G (v) ∂
∂v , X3 = (λv− G (v)) ∂

∂x −
G2(v)(G′(v)−λ)
(β+(1+λ2)x)

∂
∂v

Second-order differential equation:

ẍ =
G2 (ẋ)

(β + (1 + λ2) x)
+ F2 (t) G (ẋ) (36)

Constraints:
2λG (v)− G (v) G′ (v)−

(
1 + λ2

)
v = 0 (37)

We observe that, in most cases, the preceding SODE Lie systems always involve a term quadratic
in the velocity, with the exception of Equation (36), where more general functions of ẋ are allowed.

2.4. Examples

The preceding generic realizations of Vessiot–Guldberg–Lie algebras must in particular cover the
already known SODE Lie systems for which the condition dim LVG ≤ 3 holds.

Among the low dimensional Lie algebras, the case r2 ' sl (2,R) plays a special role, as it is
related to various of the most relevant and best studied cases of SODE Lie systems (see, e.g., [2,4,5]
and the references therein).

1. The well-known Milne–Pinney equation:

ẍ = F (t) x +
c

x3 , c ∈ R (38)
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appears making the choice G (x) = − 1
2 x in Equation (29). Here, the constraint Equation (30) is

given by:

− x
2

k′ (x)− 3
2

k (x) = 0

The solution of this equation is immediate and equals k (x) = c x−3. Now, setting F2 (t) =

−2F (t), we recover Equation (38). In particular, for c = 0 and F (t) = ω2 (t), we get the
harmonic oscillator with time-dependent frequency. The Lie algebra LVG is realized by the
vector fields:

X1 = v
∂

∂x
+

c
x3

∂

∂v
, X2 = − x

2
∂

∂v
, X3 = − x

2
∂

∂x
− v

2
∂

∂v
We observe that the Milne–Pinney equation is the only SODE Lie system with
Vessiot–Guldberg–Lie algebra r2, such that the differential equation does not contain a factor
in ẋ2.

2. The Kummer–Schwarz equation:

ẍ =
3

2 x
ẋ2 − 2c x3 + 2g (t) x (39)

is also recovered from Equation (29). In this case, we take G (x) = x, leading to the constraint
Equation (30):

x k′ (x)− 3 k (x) = 0

The solution is given by k (x) = c x3. The vector fields realizing the Lie algebra r2 are:

X1 = v
∂

∂x
+

(
c x3 +

3
2 x

)
∂

∂v
, X2 = x

∂

∂v
, X3 = −x

∂

∂x
− 2v

∂

∂v

We observe that both equations actually arise as particular cases for the value a = 0 of the more
general SODE Lie system:

ẍ =

(
3 + m + 2a m (m− 1) xm−1)

2 (2 + a (m− 1) xm−1)
ẋ2 +

(
2 + a (m− 1) xm−1)

(m− 1)
F2 (t) + b xm

where a, b, m ∈ R and m 6= 1.

3. SODE Lie Systems in the Plane

The analogous problem of determining the systems of second-order ordinary
differential equations:

ẍ1 = F1 (t, x1, x2, ẋ1, x2) , ẍ2 = F2 (t, x1, x2, ẋ1, x2)

in the plane admitting a Vessiot–Guldberg–Lie algebra LVG is considerably more complicated, as
the algebras are realized in R4 with the coordinates {x1, x2, v1 = ẋ1, v2 = ẋ2}, and the constraints
determined by the commutators lead to (nonlinear) partial differential equations that can only seldom
be solved in full generality. In this sense, a direct approach as developed for scalar equations is not
practical, unless some simplifications in the realizations are introduced.

Using the straightforward generalization of the realization Equation (14), it can be easily shown
that the most general SODE Lie system admitting a two-dimensional Vessiot–Guldberg–Lie algebra
LVG has the generic form:

ẍ1 − F
(

x1, x2,
ẋ2

ẋ1

)
ẋ2

1 + λF2 (t) ẋ1 = 0, ẍ2 − G
(

x1, x2,
ẋ2

ẋ1

)
ẋ2

1 + λF2 (t) ẋ2 = 0
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where we specifically have X1 = v1
∂

∂x1
+ v2

∂
∂x2

+ F
(

x1, x2, ẋ2
ẋ1

)
ẋ2

1
∂

∂v1
+ G

(
x1, x2, ẋ2

ẋ1

)
ẋ2

1
∂

∂x2
and

X2 = −λ
(

v1
∂

∂v1
+ v2

∂
∂v2

)
with commutator [X1, X2] = λX1 (for λ = 0, the system is autonomous

and clearly admits a superposition principle [2]).
This result suggests an ansatz based on realizations of the type Equations (18)–(23) and such that

the components of the vector field X2 are linear functions in the coordinates {x1, x2, v1, v2}. We will
only consider one case, namely that corresponding to the special case:

X2 = λx1
∂

∂v1
+ µx2

∂

∂v2
(40)

for non-vanishing constants λ, µ. Without loss of generality, we can always suppose that
µ = 1. Taking:

X1 = v1
∂

∂x1
+ v2

∂

∂x2
+ f1 (x, v)

∂

∂v1
+ f2 (x, v)

∂

∂v2
(41)

the vector field X3 = [X1, X2] is given by:

X3 = −λx1
∂

∂x1
− x2

∂

∂x2
+

(
λv1 − λx1

∂ f1

∂v1
− x2

∂ f1

∂v2

)
∂

∂v1
+

(
v2 − λx1

∂ f2

∂v1
− x2

∂ f2

∂v2

)
∂

∂v2

As the commutator [X2, X3] does not have nonzero components in ∂
∂x1

and ∂
∂x2

, the only
possibility is that:

[X2, X3] = α X2 (42)

for some constant α. This means that with this realization, the possible Vessiot–Guldberg–Lie algebras
are r2, r4 and r5. Starting from the assumption Equation (42), the components in ∂

∂v1
and ∂

∂v2
imply

the constraints:

2λ2x1 − λ2x2
1

∂2 f1

∂v2
1
− 2λx1x2

∂2 f1

∂v1∂v2
− x2

2
∂2 f1

∂v2
2
− αλx1 = 0

2x2 − λ2x2
1

∂2 f2

∂v2
1
− 2λx1x2

∂2 f2

∂v1∂v2
− x2

2
∂2 f2

∂v2
2
− αx2 = 0

Introducing the auxiliary variable W0 = λx1v2 − x2v1, the solution to the system can be
written as:

f1 (x, v) =
v2

1
x1
− α

v2
1

2λx1
+ F11 (x1, x2, W0) +

v1

x1
F12 (x1, x2, W0)

f2 (x, v) =
1

λ2
x2v2

1
x2

1
− α

x2v2
1

2λ2x2
1
+ F21 (x1, x2, W0) +

v1

x1
F22 (x1, x2, W0)

With this choice of functions, it follows from the Jacobi identity that the bracket [X1, X3] must
have the following form:

[X1, X3] = εX1 + γX2

The term in X2 is inessential, so that without loss of generality, we can suppose that γ = 0.
Analyzing the components in ∂

∂x1
and ∂

∂x2
, we see that the conditions:

F12 (x1, x2, W0)− (α + ε) v1 = 0; F22 (x1, x2, W0)− (ε + 2)W0 + (α + ε) = 0

must be satisfied. This can only happen if ε = −α, from which we conclude that:

F12 (x1, x2, W0) = 0, F22 (x1, x2, W0) = (−α + 2)W0
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With these values, it only remains to evaluate the components in ∂
∂v1

and ∂
∂v2

of [X1, X3]: in terms
of the variables {x1, x2, W0}, the conditions read:

λx1
∂F11

∂x1
+ x2

∂F11

∂x2
+ (1 + λ− α)

∂F11

∂W0
+ (2α− λ) F11 (x1, x2, W0) = 0

λx1
∂F21

∂x1
+ x2

∂F21

∂x2
+ (1 + λ− α)

∂F21

∂W0
+ (2α− 1) F21 (x1, x2, W0) = 0

We thus obtain the functions:

F11 (x1, x2, W0) = Ψ1

(
xλ

2
x1

,
Wλ

0

x(λ+1−α)
1

)
x(

1−2 α
λ )

1 ; F21 (x1, x2, W0) = Ψ2

(
xλ

2
x1

,
Wλ

0

x(λ+1−α)
1

)
x(

1−2α
λ )

1

From the t-dependent vector field X (t, x, v) = X1 + F2 (t) X2 and replacing the vi by the first
derivatives ẋi, we obtain the following SODE Lie system admitting the Lie algebra generated by
Equations (40) and (41) as the Vessiot–Guldberg–Lie algebra:

ẍ1 −
(

1− α

2λ

) ẋ2
1

x1
−Ψ1

(
xλ

2
x1

,
Wλ

0

x(λ+1−α)
1

)
x(

1−2 α
λ )

1 − λ F2 (t) x1 = 0

ẍ2 +
2− α

2λ2
x2 ẋ2

1
x2

1
+

α− 2
λ

ẋ1 ẋ2

x1
−Ψ2

(
xλ

2
x1

,
Wλ

0

x(λ+1−α)
1

)
x(

1−2α
λ )

1 − λF2 (t) ẋ2 = 0

From the commutators, we see at once that the algebra is isomorphic to r2 = sl (2,R) if α 6= 0 and
to r4 if α = 0. In particular, for the special values λ = 1, α = 2 and F2 (t) = −ω2 (t), the preceding
SODE Lie system reduces to:

ẍ1 −Ψ1

(
x2

x1
, W0

)
x−3

1 + ω2 (t) x1 = 0, ẍ2 −Ψ2

(
x2

x1
, W0

)
x−3

1 + ω2 (t) x2 = 0 (43)

corresponding to the well-known generalizations of Ermakov systems (see, e.g., [5,17] and the
references therein).

We remark that a slight variation in the preceding argumentation also allows us to obtain SODE
Lie systems having the Lie algebra r5 as the Vessiot–Guldberg–Lie algebra. The system X (t, x, v) =

X1 + F2 (t) X2 in particular has the form:

ẍ1 −
ẋ2

1
x1
− x1 Ψ1

(
xλ

2
x1

,
Wλ

0

x(λ+1)
1

)
+ x1 ln (x1)− λ F2 (t) x1 = 0

ẍ2 +
1

λ2
x2 ẋ2

1
x2

1
− 2

λ

ẋ1 ẋ2

x1
−Ψ2

(
xλ

2
x1

,
Wλ

0

x(λ+1)
1

)
x(1−λ)

1 +
x2 ln (x1)

λ
− λF2 (t) ẋ2 = 0

4. Conclusions

By means of a direct approach, scalar SODE Lie systems admitting a Vessiot–Guldberg–Lie
algebra of a dimension at most three have been constructed. These equations encompass some of
the well-known types of SODE Lie systems, like the Liouville-type equations and the Milne–Pinney
and Kummer–Schwarz equations. The case of SODE Lie systems in the plane, much more
cumbersome due to the complicated partial differential equations arising from the constraints, has
been considered for a special case that however contains an important class, namely the generalized
Ermakov systems [5].

The problem of determining Vessiot–Guldberg–Lie algebras corresponds formally to studying
the realization of Lie algebras in terms of vector fields in Rn, and thus, the ansatz could be formulated
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in terms of the primitive classes of realizations [7,8]. Such an approach, combined with the lattice of
subalgebras of a Lie algebra and the obstructions obtained for low dimensional Vessiot–Guldberg–Lie
algebras, could eventually lead to a complete classification of scalar SODE Lie systems. From a
pure practical perspective, however, it can be sometimes more convenient to choose a realization
that generalizes some fixed realization, with the purpose of obtaining a class of equations or systems
that naturally generalize already known types of SODE Lie systems. Proceeding along these lines also
enables us to consider realizations depending on parameters, thus enabling the use of non-isomorphic
Lie algebras simultaneously. In this context, an interesting problem concerns the combination of the
notion of contractions of (realizations of) Lie algebras with that of Vessiot–Guldberg–Lie algebras,
especially in connection with the recently developed notion of strong contractions [18].
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