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Abstract:

 A direct approach to non-linear second-order ordinary differential equations admitting a superposition principle is developed by means of Vessiot-Guldberg-Lie algebras of a dimension not exceeding three. This procedure allows us to describe generic types of second-order ordinary differential equations subjected to some constraints and admitting a given Lie algebra as Vessiot-Guldberg-Lie algebra. In particular, well-known types, such as the Milne-Pinney or Kummer-Schwarz equations, are recovered as special cases of this classification. The analogous problem for systems of second-order differential equations in the real plane is considered for a special case that enlarges the generalized Ermakov systems.
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1. Introduction


The theory of Lie systems, i.e., systems of non-autonomous first-order ordinary differential equations admitting a (generally nonlinear) superposition principle, is an old one and emerges principally from the pioneering work of Lie, Vessiot and Guldberg in the late 19th century [1]. For a long time considered as a particular technique for differential equations, the importance of Lie systems in physical applications, particularly in the context of integrable systems, as well as in control theory, has motivated extensive studies on the subject in the last few decades (see, e.g., [2,3]) that have led to natural generalizations of the notion of Lie systems [4,5,6]. These generalizations of the classical analytical formulation allow an elegant and effective description of Lie systems in terms of distributions in the sense of Fröbenius and the theory of fiber bundles, hence offering a much wider spectrum of applications, as well as their adaptation to quantum systems (the excellent treatise on the geometrical foundations of Lie systems [2] contains an extensive and updated list of references enumerating these applications).



In this work, we reconsider, mainly for the case of scalar second-order ordinary differential equations (scalar SODE Lie systems), a direct approach to Vessiot-Guldberg-Lie algebras in dimensions not exceeding three. Based on the particularities of the case of two-dimensional Vessiot-Guldberg-Lie algebras, the admissible realizations in terms of vector fields for three dimensions are obtained, enabling a direct construction of differential equations associated with these algebras.



We stress the fact that the multiple results concerning Lie algebras of vector fields could be used (see, e.g., [7]) and that the superposition problem has been studied from this perspective by various authors [8,9,10]. The purpose of our direct construction is of a practical nature, in order to illustrate that cleverly-chosen constraints on realizations allow the construction of quite general differential equations (systems) admitting Vessiot–Guldberg–Lie algebras.




Definition: 

A system of ordinary differential equations:


dxidt=Ψit,x,1≤i≤n



(1)




is said to admit a fundamental system of solutions if the general solution of the system can be expressed in terms of a finite number m of functionally independent particular solutions [image: there is no content] and n significant constants [image: there is no content]:


[image: there is no content]



(2)




where [image: there is no content]. We say that Equation (2) is a superposition rule for the system Equation (1), while the set [image: there is no content] is called a fundamental system of solutions. The vector field in [image: there is no content] defined by:


[image: there is no content]



(3)




is further called the t-dependent vector field associated with the system Equation (1). It is immediate to verify that there is a one-to-one correspondence between systems and vector fields of this type.







The basic criterion concerning the existence of fundamental systems of solutions is due to Lie himself [1] and can be formulated as follows [2,11]:




Lie–Scheffers Theorem [1]: 

The system of ODEs Equation (1) possesses a generic fundamental system of solutions if it can be represented in the form:


dxidt=∑k=1rFktξkix



(4)




such that the vector fields:


Xα=∑i=1nξαix∂∂xi,1≤α≤r



(5)




span an r-dimensional Lie algebra [image: there is no content]. Moreover, the so-called Lie-condition:


nm≥r=dim[image: there is no content]








is satisfied.







This criterion implies in particular that the t-dependent vector field Equation (3) can be written as:


Xt,x,v=∑α=1rFα(t)Xα



(6)







The Lie algebra [image: there is no content] is usually called a Vessiot–Guldberg–Lie algebra of the system. The existence of such an algebra hence ensures the existence of a (nonlinear) superposition principle [2,12,13], which can (at least formally) be derived in terms of the differential invariants associated with the generators of a Vessiot–Guldberg–Lie algebra.



It shall however be observed that, in contrast to the Lie algebra of point symmetries of differential equations [11,12], a Vessiot–Guldberg–Lie algebra generally does not provide an invariant of the system. Actually, the same system Equation (1) may admit different superposition rules, hence non-isomorphic Vessiot–Guldberg–Lie algebras that can have different dimensions. The Riccati equation and other ODEs related to it constitute the canonical examples for this pathology [2]. In this sense, the problem differs considerably from the construction of differential equations admitting certain types of symmetry algebras [14].




2. Vessiot–Guldberg–Lie Algebras with [image: there is no content] for Scalar SODE Systems


In this section, realizations of Vessiot–Guldberg–Lie algebras in low dimensions are analyzed directly for the case of a scalar second-order ODE, corresponding formally to the case of first-order systems with [image: there is no content].



A scalar second-order ODE:


[image: there is no content]



(7)




can always be rewritten as a first-order system:


[image: there is no content]



(8)




with [image: there is no content]. In this case, the t-dependent vector field [image: there is no content] has the form:


[image: there is no content]











We say that Equation (7) is a SODE Lie system if it possesses a Vessiot–Guldberg–Lie algebra [image: there is no content] Geometrically, the vector field [image: there is no content] takes values in the Lie algebra [image: there is no content]; hence, in particular, for two given values [image: there is no content], the vector fields:


Xt0,x,v=v[image: there is no content]+Ft0,x,v[image: there is no content],Xt0,x,v−Xt1,x,v=Ft0,x,v−Ft1,x,v[image: there is no content]



(9)




must be elements of [image: there is no content]. Considering the determinant of the matrix of coefficients of these vector fields, we find that:


[image: there is no content]



(10)







Now, if dim[image: there is no content]=1, then Equation (10) must vanish for all values of t, from which we conclude that:


[image: there is no content]








for all [image: there is no content], implying that the constraint [image: there is no content] must be satisfied. The SODE Lie system thus reduces to:


[image: there is no content]



(11)




and the generator of [image: there is no content] is given by [image: there is no content].



The substitution [image: there is no content] further reduces Equation (11) to a first-order equation, recovering the well-known property that autonomous second-order ODEs admit a superposition principle. The same conclusion holds for autonomous SODE Lie systems in higher dimensions [5,13].



2.1. dim[image: there is no content]=2


The simplest case of a non-trivial Vessiot–Guldberg–Lie algebra is given by a Lie algebra in dimension two, as it is either Abelian or isomorphic to the affine algebra [image: there is no content] on the plane [15] (in the following, the reader is led to this reference for the elementary properties of Lie algebras; for classifications in low dimensions, see [15,16]). Suppose thus that the system Equation (8) admits a Vessiot–Guldberg–Lie algebra [image: there is no content] of dimension two (it is implicitly assumed that it does not admit a smaller dimensional Lie algebra [image: there is no content]). By Equation (6), we have the identity:


Xt,x,v=v[image: there is no content]+Ft,x,v[image: there is no content]=F1t[image: there is no content]+F2t[image: there is no content]



(12)




where [image: there is no content] are two independent elements of [image: there is no content]. Using again the vector fields Equation (9), there exist [image: there is no content], such that the determinant Equation (10) does not vanish:


[image: there is no content]








showing that the vector fields are linearly independent. Without loss of generality, we can define a basis of [image: there is no content] as:


[image: there is no content]=v[image: there is no content]+Ft0,x,v[image: there is no content],[image: there is no content]=Ft0,x,v−Ft1,x,v[image: there is no content]



(13)







We rewrite the generators of Equation (13) as:


[image: there is no content]=v[image: there is no content]+fx,v[image: there is no content],[image: there is no content]=gx,v[image: there is no content]



(14)




where, by Equation (12), it follows that [image: there is no content] and [image: there is no content] for some non-constant function [image: there is no content] and [image: there is no content]. The commutator is given by:


[image: there is no content]











The only possibility that [image: there is no content] generate a two-dimensional Lie algebra is that [image: there is no content] for some [image: there is no content]. This assumption leads to the equations:


[image: there is no content]











Solving the first of these equations and inserting the result in the second, we obtain the general solution:


[image: there is no content]











A further linear change allows us to suppose that [image: there is no content]. The t-dependent vector field is thus given by:


[image: there is no content]








and the associated SODE Lie system is easily seen to be an equation of the Liouville type (in various applications, this type of SODE Lie system is also known as the generalized Buchdahl equation [4]):


[image: there is no content]











This equation is well known to admit an integrating factor, a first integral being given by:


[image: there is no content]











In this sense, a two-dimensional Vessiot–Guldberg–Lie [image: there is no content] does not provide new results to those already derived from the theory of differential equations.




2.2. dim[image: there is no content]=3


For the case of three-dimensional Vessiot-Guldberg-Lie algebras, the analysis of the generic form of the realizations of the algebra generators is quite similar to that already developed for the two-dimensional algebras. Suppose that Equation (7) does admit a Vessiot–Guldberg–Lie algebra with dim[image: there is no content]=3. By the same argument used in two dimensions, the vector fields:


[image: there is no content]=v[image: there is no content]+fx,v[image: there is no content],[image: there is no content]=gx,v[image: there is no content]








are contained in [image: there is no content], where [image: there is no content] and [image: there is no content] for some arbitrary values [image: there is no content]. Further, the commutator:


[image: there is no content]








also belongs to the Vessiot–Guldberg–Lie algebra [image: there is no content]. The requirement on the dimension of [image: there is no content] implies that [image: there is no content] must be linearly independent on [image: there is no content], as otherwise [image: there is no content] reduces to the affine Lie algebra [image: there is no content]. Therefore, there exists a third vector field X3=ξ31x,v[image: there is no content]+ξ32x,v[image: there is no content]∈[image: there is no content] with [image: there is no content], such that [image: there is no content] constitute a basis of [image: there is no content] and satisfying the identity:


[image: there is no content]=α[image: there is no content]+β[image: there is no content]+γX3








for some constants [image: there is no content], where necessarily [image: there is no content].



As a consequence, a three-dimensional Vessiot–Guldberg–Lie algebra [image: there is no content] can always be realized in the following way:


[image: there is no content]=v[image: there is no content]+fx,v[image: there is no content];[image: there is no content]=gx,v[image: there is no content];X3=ξ31x,v[image: there is no content]+ξ32x,v[image: there is no content]



(15)







In particular, the t-dependent vector field is given by [image: there is no content].



For the latter realization, the remaining commutators are given by:


[image: there is no content]











As the component in [image: there is no content] of [image: there is no content] is zero, a change of basis always enables us to reduce the first commutator to the form:


[image: there is no content]=λ[image: there is no content]+μX3








where [image: there is no content]. By means of a scaling change in [image: there is no content], we can further suppose that [image: there is no content] (we observe that [image: there is no content]=α[image: there is no content] cannot appear by the previously indicated reasons). The remaining brackets have the form:


[image: there is no content],X3=a1[image: there is no content]+a2[image: there is no content]+a3X3,[image: there is no content],X3=b1[image: there is no content]+b2[image: there is no content]+b3X3



(16)




for some constants [image: there is no content]. If [image: there is no content], then:


[image: there is no content]=X3








and a routine computation shows that the Jacobi identity is fulfilled whenever the relations [image: there is no content] and:


a1a3+a2b3=0,b1a3−a1b3=0



(17)




are satisfied. At this stage, the problem corresponds essentially to classifying three-dimensional Lie algebras, a well-known problem solved in any standard reference [15]. We merely indicate that it suffices to consider the following three cases:



(a) b3=0,b1=0,a1=0; (b) b3=0,a3=0; (c) a3=0,a1=0,a2=0.



We observe that in the commutators Equation (16), the role of [image: there is no content] and [image: there is no content] is symmetric, implying that Cases (a) and (c) are equivalent. For each of the remaining possibilities, the commutators Equation (16) can be further reduced by successive changes of basis. As this is a routine computation, we skip the details and will only indicate the resulting three-dimensional Lie algebras.



If [image: there is no content], a similar reasoning with the Jacobi identity and the realization Equation (15) shows that only one isomorphism class can appear, corresponding to the following values of the constants in Equation (16): [image: there is no content], [image: there is no content], [image: there is no content].




Proposition 1: 

If the vector fields Equation (15) generates a three-dimensional Vessiot–Guldberg–Lie algebra [image: there is no content], then it belongs to one of the following types:

	
[image: there is no content]:


[image: there is no content]=X3,[image: there is no content],X3=ε[image: there is no content],[image: there is no content],X3=[image: there is no content],ε=−1,1.



(18)







	
[image: there is no content]:


[image: there is no content]=X3,[image: there is no content],X3=[image: there is no content],[image: there is no content],X3=−[image: there is no content].



(19)







	
[image: there is no content]:


[image: there is no content]=X3[image: there is no content],X3=0,[image: there is no content],X3=λ[image: there is no content],λ∈R.



(20)







	
[image: there is no content]


[image: there is no content]=X3,[image: there is no content],X3=0,[image: there is no content],X3=0.



(21)







	
[image: there is no content]:


[image: there is no content]=X3,[image: there is no content],X3=−[image: there is no content],[image: there is no content],X3=0.



(22)







	
[image: there is no content]:


[image: there is no content]=−λ[image: there is no content]+X3[image: there is no content],X3=0,[image: there is no content],X3=[image: there is no content]+λX3,λ>0.



(23)
















Concerning the isomorphism class of these Lie algebras, we have that [image: there is no content] and [image: there is no content] are isomorphic to the simple Lie algebra [image: there is no content], while [image: there is no content] is isomorphic to [image: there is no content]. The remaining algebras are solvable. Following the list of [16], we have the isomorphisms [image: there is no content]≃A3,8, [image: there is no content], [image: there is no content]≃A3,8 and [image: there is no content]≃A3,9.



Once the possible Lie algebras [image: there is no content] have been deduced, the precise functions in the realization Equation (15), as well as the differential equations admitting [image: there is no content] as Vessiot–Guldberg–Lie algebra [image: there is no content] are obtained by solving the successive conditions imposed by the commutators of [image: there is no content]. As an illustration of the procedure, we give the details for the Lie algebras [image: there is no content], the remaining cases being obtained in a completely analogous way.



Let [image: there is no content] have brackets Equation (18) with [image: there is no content]. From the two first generators:


[image: there is no content]=v[image: there is no content]+fx,v[image: there is no content],[image: there is no content]=gx,v[image: there is no content]



(24)







it follows that the third generator has the form:


X3:=[image: there is no content]=−gx,v[image: there is no content]+v∂g∂x+fx,v∂g∂v−gx,v∂f∂v[image: there is no content]



(25)







In principle, four conditions on [image: there is no content] and [image: there is no content] corresponding to the components of the remaining commutators [image: there is no content],X3 and [image: there is no content],X3 must be solved. These are explicitly given by:


[image: there is no content],X3=gx,v∂f∂v−2v∂g∂x−2fx,v∂g∂v[image: there is no content]+gx,v∂f∂x−ε+∂f∂v2[image: there is no content]+fx,v∂g∂x−gx,v∂2f∂v2−∂f∂v∂g∂v+2v∂2g∂x∂v+fx,v∂2g∂v2[image: there is no content]+v∂f∂x∂g∂v−2∂f∂v∂g∂x+v∂2g∂x2−gx,v∂2f∂x∂v[image: there is no content][image: there is no content],X3=−gx,v∂g∂v[image: there is no content]+gx,v∂f∂v∂g∂v+2∂g∂x+v∂2g∂x∂v+fx,v∂2g∂v2[image: there is no content]−gx,v2∂2f∂v2+fx,v∂g∂v2−v∂g∂v∂g∂x[image: there is no content]











As [image: there is no content],X3=[image: there is no content] holds, from the component in [image: there is no content], we extract the first-order PDE:


[image: there is no content]








with generic solution:


gx,v=Gx−v2








for some function [image: there is no content]. Inserting [image: there is no content] into the commutators, the component in [image: there is no content] of the commutator [image: there is no content],X3 further leads to the condition:


vdGdx−2vfx,v+v2∂f∂v−Gx∂f∂v=0











The latter PDE has general solution:


fx,v=Gx−v2kx+12dhdx











It turns out that with this choice of [image: there is no content], the commutator [image: there is no content],X3=[image: there is no content] is identically satisfied. It merely remains to consider the condition specified by the component in [image: there is no content] of [image: there is no content],X3, given by:


d2Gdx2−3kxdGdx−2Gxdkdx+2Gxk2x−2ε=0



(26)







This constraint equation shows that the realization Equations (24) and (25) depends on an arbitrary function [image: there is no content]. For any pair of functions [image: there is no content] satisfying Equation (26), the commutators Equation (18) is satisfied and defines a three-dimensional Vessiot–Guldberg–Lie algebra for the (nonlinear) second-order ODE:


x¨=kx[image: there is no content]2+F2tGx−[image: there is no content]2+12dGdx−Gxkx=0











Recall that for [image: there is no content], the Vessiot–Guldberg–Lie algebra is isomorphic to [image: there is no content], while for ε=−1, it is isomorphic to [image: there is no content].




2.3. Second-Order ODEs with Three-Dimensional Vessiot–Guldberg–Lie Algebra


For each of the Lie algebras [image: there is no content] listed in Proposition 1, we enumerate the realization by vector fields, the possible constraints on the functions in their components and the generic SODE Lie system admitting [image: there is no content] as a Vessiot-Guldberg Lie algebra.

	
[image: there is no content]≃[image: there is no content]:



Commutators:


[image: there is no content]=X3,[image: there is no content],X3=ε[image: there is no content],[image: there is no content],X3=[image: there is no content]











Realization:


[image: there is no content]=v[image: there is no content]+G′x2−kxGx−v2[image: there is no content],[image: there is no content]=Gx−v2[image: there is no content]X3=−Gx−v2[image: there is no content]+vkx[image: there is no content]











Second-order differential equation:


x¨=kx[image: there is no content]2+F2tGx−[image: there is no content]2+12G′x−kxGx



(27)







Constraints:


G″x−2k′xGx+2k2xGx−3kxG′x−2ε=0



(28)







	
[image: there is no content]≃[image: there is no content]:



Commutators:


[image: there is no content]=X3,[image: there is no content],X3=[image: there is no content],[image: there is no content],X3=−[image: there is no content]











Realization:


[image: there is no content]=v[image: there is no content]+kx+1+2G′x2Gxv2[image: there is no content],[image: there is no content]=Gx[image: there is no content],X3=−Gx[image: there is no content]−vG′x+1[image: there is no content]











Second-order differential equation:


x¨=[image: there is no content]221+2G′x[image: there is no content]+kx+F2tGx



(29)







Constraints:


[image: there is no content]



(30)







	
[image: there is no content]≃[image: there is no content]:



Commutators:


[image: there is no content]=X3,[image: there is no content],X3=0,[image: there is no content],X3=λ[image: there is no content]











Realization:


[image: there is no content]=v[image: there is no content]+kxGx−λv2+G′x2λ[image: there is no content],[image: there is no content]=Gx−λv2[image: there is no content],X3=−Gx−λv2[image: there is no content]−λvkx[image: there is no content]











Second-order differential equation:


[image: there is no content]



(31)







Constraints:


[image: there is no content]



(32)







	
[image: there is no content]≃[image: there is no content]:



Commutators:


[image: there is no content]=X3,[image: there is no content],X3=0,[image: there is no content],X3=0











Realization:


[image: there is no content]=v[image: there is no content]+G′xv2+μG2x[image: there is no content][image: there is no content],[image: there is no content]=Gx[image: there is no content],X3=−Gx[image: there is no content]−vG′x[image: there is no content]











Second-order differential equation:


x¨=G′x[image: there is no content][image: there is no content]2+F2t+μGx



(33)







	
[image: there is no content]≃[image: there is no content]:



Commutators:


[image: there is no content]=X3,[image: there is no content],X3=−[image: there is no content],[image: there is no content],X3=0











Realization:


[image: there is no content]=v[image: there is no content]+G′x[image: there is no content]v2+kx[image: there is no content],[image: there is no content]=Gx[image: there is no content],X3=−Gx[image: there is no content]−vG′x[image: there is no content]











Second-order differential equation:


x¨=G′x[image: there is no content][image: there is no content]2+kx+F2tGx



(34)







Constraints:


[image: there is no content]



(35)







	
[image: there is no content]≃[image: there is no content]:



Commutators:


[image: there is no content]=−λ[image: there is no content]+X3,[image: there is no content],X3=0,[image: there is no content],X3=[image: there is no content]+λX3











Realization:


[image: there is no content]=v[image: there is no content]+G2vβ+1+λ2x[image: there is no content],[image: there is no content]=Gv[image: there is no content],X3=λv−Gv[image: there is no content]−G2vG′v−λβ+1+λ2x[image: there is no content]











Second-order differential equation:


[image: there is no content]



(36)







Constraints:


[image: there is no content]



(37)












We observe that, in most cases, the preceding SODE Lie systems always involve a term quadratic in the velocity, with the exception of Equation (36), where more general functions of [image: there is no content] are allowed.




2.4. Examples


The preceding generic realizations of Vessiot–Guldberg–Lie algebras must in particular cover the already known SODE Lie systems for which the condition dim [image: there is no content][image: there is no content] holds.



Among the low dimensional Lie algebras, the case [image: there is no content]≃sl2,R plays a special role, as it is related to various of the most relevant and best studied cases of SODE Lie systems (see, e.g., [2,4,5] and the references therein).




	
The well-known Milne–Pinney equation:


x¨=Ftx+cx3,c∈R



(38)




appears making the choice [image: there is no content] in Equation (29). Here, the constraint Equation (30) is given by:


[image: there is no content]








The solution of this equation is immediate and equals kx=cx−3. Now, setting [image: there is no content], we recover Equation (38). In particular, for [image: there is no content] and [image: there is no content], we get the harmonic oscillator with time-dependent frequency. The Lie algebra [image: there is no content] is realized by the vector fields:


[image: there is no content]=v[image: there is no content]+cx3[image: there is no content],[image: there is no content]=−x2[image: there is no content],X3=−x2[image: there is no content]−v2[image: there is no content]








We observe that the Milne–Pinney equation is the only SODE Lie system with Vessiot–Guldberg–Lie algebra [image: there is no content], such that the differential equation does not contain a factor in [image: there is no content]2.



	
The Kummer–Schwarz equation:


x¨=32x[image: there is no content]2−2cx3+2gtx



(39)




is also recovered from Equation (29). In this case, we take [image: there is no content], leading to the constraint Equation (30):


xk′x−3kx=0








The solution is given by kx=cx3. The vector fields realizing the Lie algebra [image: there is no content] are:


[image: there is no content]=v[image: there is no content]+cx3+32x[image: there is no content],[image: there is no content]=x[image: there is no content],X3=−x[image: there is no content]−2v[image: there is no content]
















We observe that both equations actually arise as particular cases for the value [image: there is no content] of the more general SODE Lie system:


x¨=3+m+2amm−1xm−122+am−1xm−1[image: there is no content]2+2+am−1xm−1m−1F2t+bxm








where [image: there is no content] and [image: there is no content].





3. SODE Lie Systems in the Plane


The analogous problem of determining the systems of second-order ordinary differential equations:


x¨1=F1t,x1,x2,[image: there is no content]1,x2,x¨2=F2t,x1,x2,[image: there is no content]1,x2








in the plane admitting a Vessiot–Guldberg–Lie algebra [image: there is no content] is considerably more complicated, as the algebras are realized in [image: there is no content] with the coordinates x1,x2,v1=[image: there is no content]1,v2=[image: there is no content]2, and the constraints determined by the commutators lead to (nonlinear) partial differential equations that can only seldom be solved in full generality. In this sense, a direct approach as developed for scalar equations is not practical, unless some simplifications in the realizations are introduced.



Using the straightforward generalization of the realization Equation (14), it can be easily shown that the most general SODE Lie system admitting a two-dimensional Vessiot–Guldberg–Lie algebra [image: there is no content] has the generic form:


x¨1−Fx1,x2,[image: there is no content]2[image: there is no content]1[image: there is no content]12+λF2t[image: there is no content]1=0,x¨2−Gx1,x2,[image: there is no content]2[image: there is no content]1[image: there is no content]12+λF2t[image: there is no content]2=0








where we specifically have [image: there is no content]=v1[image: there is no content]+v2[image: there is no content]+Fx1,x2,[image: there is no content]2[image: there is no content]1[image: there is no content]12[image: there is no content]+Gx1,x2,[image: there is no content]2[image: there is no content]1[image: there is no content]12[image: there is no content] and [image: there is no content]=−λv1[image: there is no content]+v2[image: there is no content] with commutator [image: there is no content]=λ[image: there is no content] (for [image: there is no content], the system is autonomous and clearly admits a superposition principle [2]).



This result suggests an ansatz based on realizations of the type Equations (18)–(23) and such that the components of the vector field [image: there is no content] are linear functions in the coordinates [image: there is no content]. We will only consider one case, namely that corresponding to the special case:


[image: there is no content]=λx1[image: there is no content]+μx2[image: there is no content]



(40)




for non-vanishing constants [image: there is no content]. Without loss of generality, we can always suppose that [image: there is no content]. Taking:


[image: there is no content]=v1[image: there is no content]+v2[image: there is no content]+f1x,v[image: there is no content]+f2x,v[image: there is no content]



(41)




the vector field X3=[image: there is no content] is given by:


[image: there is no content]











As the commutator [image: there is no content],X3 does not have nonzero components in [image: there is no content] and [image: there is no content], the only possibility is that:


[image: there is no content],X3=α[image: there is no content]



(42)




for some constant α. This means that with this realization, the possible Vessiot–Guldberg–Lie algebras are [image: there is no content], [image: there is no content] and [image: there is no content]. Starting from the assumption Equation (42), the components in [image: there is no content] and [image: there is no content] imply the constraints:


[image: there is no content]











Introducing the auxiliary variable [image: there is no content], the solution to the system can be written as:


[image: there is no content]











With this choice of functions, it follows from the Jacobi identity that the bracket [image: there is no content],X3 must have the following form:


[image: there is no content],X3=ε[image: there is no content]+γ[image: there is no content]











The term in [image: there is no content] is inessential, so that without loss of generality, we can suppose that [image: there is no content]. Analyzing the components in [image: there is no content] and [image: there is no content], we see that the conditions:


F12x1,x2,W0−α+εv1=0;F22x1,x2,W0−ε+2W0+α+ε=0








must be satisfied. This can only happen if [image: there is no content], from which we conclude that:


F12x1,x2,W0=0,F22x1,x2,W0=−α+2W0











With these values, it only remains to evaluate the components in [image: there is no content] and [image: there is no content] of [image: there is no content],X3: in terms of the variables [image: there is no content], the conditions read:


[image: there is no content]











We thus obtain the functions:


F11x1,x2,W0=Ψ1x2λx1,W0λx1λ+1−αx11−2αλ;F21x1,x2,W0=Ψ2x2λx1,W0λx1λ+1−αx11−2αλ











From the t-dependent vector field [image: there is no content] and replacing the [image: there is no content] by the first derivatives [image: there is no content]i, we obtain the following SODE Lie system admitting the Lie algebra generated by Equations (40) and (41) as the Vessiot–Guldberg–Lie algebra:


x¨1−1−α2λ[image: there is no content]12x1−Ψ1x2λx1,W0λx1λ+1−αx11−2αλ−λF2tx1=0x¨2+2−α2λ2x2[image: there is no content]12x12+α−2λ[image: there is no content]1[image: there is no content]2x1−Ψ2x2λx1,W0λx1λ+1−αx11−2αλ−λF2t[image: there is no content]2=0











From the commutators, we see at once that the algebra is isomorphic to [image: there is no content]=[image: there is no content] if [image: there is no content] and to [image: there is no content] if [image: there is no content]. In particular, for the special values [image: there is no content], [image: there is no content] and [image: there is no content], the preceding SODE Lie system reduces to:


x¨1−Ψ1x2x1,W0x1−3+ω2tx1=0,x¨2−Ψ2x2x1,W0x1−3+ω2tx2=0



(43)




corresponding to the well-known generalizations of Ermakov systems (see, e.g., [5,17] and the references therein).



We remark that a slight variation in the preceding argumentation also allows us to obtain SODE Lie systems having the Lie algebra [image: there is no content] as the Vessiot–Guldberg–Lie algebra. The system [image: there is no content] in particular has the form:


x¨1−[image: there is no content]12x1−x1Ψ1x2λx1,W0λx1λ+1+x1lnx1−λF2tx1=0x¨2+1λ2x2[image: there is no content]12x12−2λ[image: there is no content]1[image: there is no content]2x1−Ψ2x2λx1,W0λx1λ+1x11−λ+x2lnx1λ−λF2t[image: there is no content]2=0












4. Conclusions


By means of a direct approach, scalar SODE Lie systems admitting a Vessiot–Guldberg–Lie algebra of a dimension at most three have been constructed. These equations encompass some of the well-known types of SODE Lie systems, like the Liouville-type equations and the Milne–Pinney and Kummer–Schwarz equations. The case of SODE Lie systems in the plane, much more cumbersome due to the complicated partial differential equations arising from the constraints, has been considered for a special case that however contains an important class, namely the generalized Ermakov systems [5].



The problem of determining Vessiot–Guldberg–Lie algebras corresponds formally to studying the realization of Lie algebras in terms of vector fields in [image: there is no content], and thus, the ansatz could be formulated in terms of the primitive classes of realizations [7,8]. Such an approach, combined with the lattice of subalgebras of a Lie algebra and the obstructions obtained for low dimensional Vessiot–Guldberg–Lie algebras, could eventually lead to a complete classification of scalar SODE Lie systems. From a pure practical perspective, however, it can be sometimes more convenient to choose a realization that generalizes some fixed realization, with the purpose of obtaining a class of equations or systems that naturally generalize already known types of SODE Lie systems. Proceeding along these lines also enables us to consider realizations depending on parameters, thus enabling the use of non-isomorphic Lie algebras simultaneously. In this context, an interesting problem concerns the combination of the notion of contractions of (realizations of) Lie algebras with that of Vessiot–Guldberg–Lie algebras, especially in connection with the recently developed notion of strong contractions [18].
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