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Abstract: It is shown that, for both compact and non-compact Lie groups, vector-coherent-state
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Complementary vector-coherent-state methods are introduced to derive pairs of holomorphic
representations which are bi-orthogonal duals of each other with respect to a simple Bargmann
inner product. It is then shown that the dual of a standard holomorphic representation has an integral
expression for its inner product, with a Bargmann measure and a simply-defined kernel, which is not
restricted to discrete-series representations. Dual pairs of holomorphic representations also provide
practical ways to construct orthonormal bases for unitary irreps which bypass the need for evaluating
the integral expressions for their inner products. This leads to practical algorithms for the application
of holomorphic representations to model problems with dynamical symmetries in physics.
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1. Introduction

Pairs of groups that have dual representations on a Hilbert space, such as those given by the
Schur-Weyl duality theorem [1,2] and by Howe’s dual reductive pairs [3], have wide applications
in both mathematics [4] and physics [5,6]. They were shown [7], for example, to expose an
intimate relationship between symmetry groups and dynamical groups in the quantum mechanics
of many-particle systems. However, this contribution is concerned with a different kind of duality
relationship that emerges in vector-coherent-state theory [8,9].

VCS theory is a physics version of the mathematical theory of induced representations [10,11]
which focuses on the construction of irreducible representations. Vector coherent states were
introduced [8] for the purpose of deriving explicit realisations of the holomorphic representations of
the non-compact symplectic groups and their Lie algebras, as needed in applications of a symplectic
model in nuclear collective dynamics [12,13], and were subsequently found to have many other
applications [11,14–17], i.e., induced representations of a more general type [18–22]. Partially-coherent
state representations, related to VCS representations, were also introduced for this purpose by Deenen
and Quesne [23]. A recent review of the applications of VCS theory in nuclear physics can be found
in [24]. Classes of vector coherent states, for which there is a resolution of the identity, have been
considered more recently by Ali and others [25–27] but not, as far as we are aware, for the construction
of Lie group or Lie algebra representations.

Holomorphic discrete-series representations of connected non-compact simple Lie groups were
defined by Harish-Chandra [28–30] and further explored by Godement [31], Gelbart [32] and others [33].
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However, for computational applications in physics, the evaluation of the integral expressions for
their inner products posed problems. Moreover, they applied only to holomorphic representations
which are in the discrete series, even though there are others that are sometimes needed. (Discrete
series representations of a Lie group are subrepresentations of its regular representation.) Thus,
complementary coherent-state methods were developed [8,9] for deriving the matrix elements of the
infinitesimal generators of many Lie groups in terms of a VCS generalisation of standard coherent-state
representations [34–36]. Essential ingredients of VCS theory, which enabled it to provide practical
computational algorithms, were the so-called K-matrix methods [8,37] for calculating inner products.

VCS theory was shown [38] to reproduce the Harish-Chandra/Godement expressions of
the Sp(N,R) holomorphic discrete-series representations. It was also used to derive explicit
representations of numerous Lie algebras, including a graded (super) Lie algebra [17], as outlined
in several reviews [11,39,40]. In this paper, a refined version of K-matrix theory is developed and its
underlying structure is exposed in terms of complementary VCS irreps on simply-defined extensions
of Bargmann Hilbert spaces. These irreps are not unitary but are equivalent to unitary irreps. They are
biorthogonal duals of each other relative to the extended Bargmann inner products and in combination,
a complementary pair of irreps define an orthonormal basis for an irreducible unitary representation.
This approach provides systematic procedures for calculating the explicit matrices of irreducible
Lie algebra representations as needed in applications of dynamical symmetry in physics. Moreover,
they are not restricted to discrete-series representations and apply to both compact and non-compact
Lie groups.

For the purpose of constructing unitary irreps of a Lie group G0, coherent states are most
usefully defined [36,41] as elements of a minimum-dimensional orbit of G0 within the Hilbert
space of an irreducible unitary representation. For simplicity, we here restrict consideration to
connected semi-simple Lie groups and irreps with extremal (highest- or lowest-weight) states. A
minimum-dimensional orbit for such an irrep is one that contains an extremal state. The Lie algebra of
G, the complex extension of G0, is then of the form g = n+ ⊕ k⊕ n−, where k is the complex extension
of the Lie algebra of the isotropy subgroup K0 ⊂ G0 that leaves the extremal state invariant; n+ and n−
are, respectively, subalgebras of raising and lowering operators.

Harish-Chandra showed that the quotient K0\G0 can be regarded in a natural way as a bounded
open subset of the complex vector space n+. This is shown in the VCS context in Section 2.3. It
gives a natural complex structure on the quotient space and makes it possible to discuss holomorphic
functions. This underlies the construction of holomorphic discrete series [28–30].

Construction of a holomorphic unitary irrep of G0 by coherent-state methods is then
straightforward when n+ and n− are Abelian. However, this condition imposes an unacceptable
restriction on the set of holomorphic representations that can be constructed by coherent state methods.
Fortunately, the construction can be extended by considering a larger group K0 ⊂ G0 such that g
continues to be of the form n+ ⊕ k⊕ n− for some subalgebras n± which are Abelian. Consider an
irrep of G0 which contains an irrep of K0 that is extremal in the sense that it is killed by n− (or by n+).
Then, instead of the orbit of a single extremal state, we consider the orbit of this K0-irrep. With this
extension, it becomes straightforward to construct all the holomorphic discrete series irreps, considered
by Harish-Chandra, plus others that are limits of the discrete series.

It is known [42,43] that coherent-state orbits are diffeomorphic to coadjoint orbits. It is also
known [44,45] that coadjoint orbits are classical phase spaces and carry classical representations of
the dynamics of the model for which G0 is a dynamical group. Thus, the construction of the unitary
irreps of a Lie group G0 by VCS methods is, in effect, a partial realisation of Kirillov’s objectives of
constructing unitary irreps from coadjoint orbits. As shown by Bartlett et al. [46], the VCS construction
is also a powerful tool in realising the objectives of geometric quantisation.

This paper starts with consideration of a unitary irrep with lowest weight κ of a connected
non-compact semi-simple Lie group G0 that has a Lie algebra g0 with complex extension g = n+ ⊕
k⊕ n− for which k is the complex extension of a compact subalgebra k0 of g0 and n± are, respectively,
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subalgebras of Abelian raising and lowering operators. Vector coherent states are then defined for
this irrep based on a set of lowest-grade states {|κα〉}, i.e., states that are annihilated by the lowering
operators of n− and are a basis for an irrep σ̂κ of k0.

We adopt conventions standard in physics, in which X̂† denotes the Hermitian adjoint of an
operator X̂, M̃ denotes the transpose of a matrix M, and ∗ denotes complex conjugation. Bases of
raising and lowering operators will be denoted, respectively, by {Ai, i = 1, . . . , d} and {Bi, i = 1, . . . , d},
and the representation of any element X ∈ g in the representation with lowest weight κ will be denoted
by X̂. The raising and lowering operators will be defined such that, in a unitary irrep, B̂i = Â†

i .
Following a derivation in Section 2 and 3 of the Harish-Chandra holomorphic discrete-series

representations from a VCS perspective, the following sections develop the dual VCS theory of
holomorphic representation. An early version of the theory was initiated by the authors [47] in terms
of coherent-state triplets and led to many analytical results for scalar coherent-state representations.
The present VCS developments are new and apply to a much wider class of representations.

If Hκ denotes the Hilbert space of a unitary irrep of the Lie algebra g0 with lowest weight κ, a
state |ψν〉 ∈ Hκ is observed to have two naturally-defined VCS wave functions: one, Φν, defined by
the expansion of the state |ψν〉 as a combination of vector coherent states

|ψν〉 = ∑
α

∫
e∑i z∗i Âi |κα〉Φνα(z) dv(z),

=
∫

e∑i z∗i Âi Φν(z) dv(z), (1)

where dv(z) is any conveniently-chosen measure; the other, Ψν, defined by its overlaps with vector
coherent states

Ψν(z) = ∑
α

|κα〉〈κα|e∑i zi B̂i |ψν〉. (2)

(Note that a state in a Hilbert space can be represented by a variety of wave functions. For example, a
given eigenstate of a particle in a harmonic oscillator potential can be represented by a function of its
position coordinates and by a function of its momentum coordinates. A remarkable property of a dual
pair of VCS wave functions for a state is that they are different functions of a common set of variables.)

If one chooses dv to be the Bargmann measure [48], for which∫
e∑i xiy∗i φ(y) dv(y) = φ(x), (3)

one obtains from these equations the powerful results

〈ψµ|ψν〉 = (Φµ, Ψν) (4)

where
(Φµ, Ψν) = ∑

α

∫
Φ∗µα(z)Ψνα(z) dv(z) (5)

and
Ψν(x) = ŜΦν(x) =

∫
Ŝ(x, y∗)Φν(y) dv(y), (6)

with
Ŝ(x, y∗) = ∑

α,β
|κα〉〈κα|e∑i xi B̂i e∑i y∗i Âi |κβ〉〈κβ|. (7)

Systematic procedures are given in the text for constructing the unitary VCS irreps with these
dual VCS wave functions. Similar constructions are also given for compact Lie groups defined by
highest-weights.
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2. VCS Construction of Holomorphic Discrete-series Representations

It is shown in this section that VCS theory reproduces the standard results for
holomorphic-discrete-series representations.

Let G0 be a real, simple and connected Lie group with Lie algebra g0 which, if non-compact, has
a faithful finite-dimensional representation. (Extension to a reductive Lie group is straightforward
but will not be considered.) Without loss of generality, we regard G0 as a matrix subgroup of GL(n,C).
Let G with Lie algebra g denote the complex extension of G0. Then, G0 has unitary holomorphic
representations if its Lie algebra g0 has a compact subalgebra k0 that contains a Cartan subalgebra for
G0 and g is expressible as a direct sum

g = n+ ⊕ k⊕ n−, (8)

in which k is the complex extension of k0, and n± are, respectively, Abelian subalgebras of raising and
of lowering operators for which [k, n±] ∈ n± and [n−, n+] ∈ k.

The conditions on G0 are such that, if K0 ⊂ G0 is a compact subgroup with Lie algebra k0, G0/K0

and K0\G0 are symmetric spaces, and G0 and K0 have defining representations of the block-matrix
form

g =

(
a b
c d

)
∈ G0, (9)

k =

(
e 0
0 f

)
∈ K0, (10)

with a, e ∈ Mpp(C), d, f ∈ Mqq(C), b ∈ Mpq(C) and c ∈ Mqp(C). Likewise, the subgroups of G
generated by the subalgebras n± can be defined by matrix representations of the form(

Ip x
0 Iq

)
= eX(x) with X(x) =

(
0 x
0 0

)
∈ n+, (11)(

Ip 0
z Iq

)
= eZ(z) with Z(z) =

(
0 0
z 0

)
∈ n−, (12)

in which Ip ∈ Mpp and Iq ∈ Mqq are identity matrices.
Substantial use will be made in the following of the Gauss factorisation

g(a, b, c, d) =

(
a b
c d

)
=

(
Ip bd−1

0 Iq

)(
a− bd−1c 0

0 d

)(
Ip 0

d−1c Iq

)
, (13)

where a, b, c, and d are real or complex matrices, which applies to any matrix of the given block matrix
form, provided det(d) 6= 0.

2.1. Holomorphic VCS Representations of the Group G0

Let Û κ denote an irreducible unitary representation of G0 and its Lie algebra g0 on a Hilbert space
Hκ and let T̂κ denote the extension of Û κ to the complex Lie algebra g. We also let T̂κ denote the
extension of Û κ from the compact subgroup K0 ⊂ G0 to the corresponding complex group K ⊂ G.
The matrix

c0 =

(
Ip 0
0 −Iq

)
(14)

then has the property that the subalgebra k is an eigenspace of ad(c0) with zero eigenvalue, i.e.,

[c0, X] = 0, for X ∈ k, (15)
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and the subalgebras n± are eigenspaces of ad(c0) with respective eigenvalues ±2, given by

[c0, X(x)] = +2 X(x), [c0, Z(z)] = −2 Z(z). (16)

We consider holomorphic representations for which the spectrum of the self-adjoint operator
ĉ0 = T̂κ(c0) on Hκ is bounded from below (if the required spectrum is bounded from above, replace c0

with -c0). The eigenspace belonging to the least ĉ0 eigenvalue is then called the lowest-grade subspace.
It is the subspace Hκ

0 of states in Hκ that are annihilated by the lowering operators representing
elements of n−.

Each eigenspace of ĉ0 is a K0-invariant subspace of Hκ and is a direct sum of subspaces for unitary
irreps of K0. In particular, the lowest-grade subspace, Hκ

0, carries a single irrep of k, which we denote
by σ̂κ . As will be seen, this irrep σ̂κ uniquely determines, up to unitary equivalence, the irrep Û κ of G0.
Thus, the irrep Û κ and its Hilbert space Hκ are appropriately labelled by the highest weight κ of the
irrep σ̂κ . Thus, if Π̂κ denotes the projection operator

Π̂κ : Hκ → Hκ
0 (17)

to the lowest-grade subspace of the Hilbert space Hκ that we wish to construct, the representation σ̂κ

is related to the representation T̂κ by the intertwining relationship

σ̂κ(k)Π̂κ = Π̂κ T̂κ(k), ∀ k ∈ K ⊂ G. (18)

The objective is now to induce the representation Û κ of G0 from the irrep σ̂κ of its subgroup K0

by VCS methods. If Ẑ(z) represents an element Z(z) ∈ n−, its Hermitian adjoint Ẑ†(z) represents an
element of n+ and is a raising operator for the representation under construction. A set of coherent
states {eẐ†(z)|α〉, Z(z) ∈ n−} is then defined for every vector |α〉 in the space of lowest-grade states.

Holomorphic wave functions for states of the Hilbert space Hκ can now be defined. Observe
that an element Z(z) ∈ n− can be expanded Z(z) = ∑i ziBi, in a basis {Bi, i = 1, . . . , d} for the
d-dimensional subalgebra n−. A vector z, with components {zi}, is then an element of a complex
vector space Z that is isomorphic, as a vector space, to n−, and the Hilbert space Hκ is spanned by a
subset of the coherent states

{
eẐ†(z)|α〉,

∣∣α〉 ∈ Hκ
0, z ∈ D

}
, where D is an open neighbourhood of z = 0

in Z . Thus, in this paper, the same symbol z is used, without ambiguity, to denote both an element of
Z and the corresponding matrix representing an element of n− in Equation (12). It follows that a state
vector |ψ〉 ∈ Hκ can be represented by a VCS wave function Ψ which is a holomorphic function of the
complex variables {zi} that takes values in Hκ

0, given by

Ψ(z) = Π̂κeẐ(z)|ψ〉, z ∈ D. (19)

The corresponding holomorphic VCS representation Γ̂, isomorphic to the desired irrep Û κ , is then
defined by

Γ̂(g)Ψ(z) = Π̂κeẐ(z)Û κ(g)|ψ〉, ∀ g ∈ G0. (20)

In fact, because the VCS wave functions are holomorphic functions of the variables {zi}, their
values are defined at all z ∈ Z by their values in any open neighbourhood D of z = 0 in Z . Let F κ(D)

denote the space of holomorphic functions on D with values in Hκ
0, defined by Equation (19). The VCS

linear mapping
VCS : Hκ → F κ(D); |ψ〉 7→ Ψ(z) = Π̂κeẐ(z)|ψ〉 (21)

then intertwines the actions Û κ(g) and Γ̂(g) for all g ∈ G0, i.e.,

Γ̂(g)Π̂κeẐ(z) = Π̂κeẐ(z)Û κ(g). (22)
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Consider the action Γ̂(g) defined by Equation (20) of a group element g = g(a, b, c, d) ∈ G0

starting from the observation that the product eẐ(z)Û κ(g) is a representation of the element

eZ(z)g =

(
Ip 0
z Iq

)(
a b
c d

)
=

(
a b

c + za d + zb

)
∈ G. (23)

Thus, provided det(d + zb) 6= 0, the product eZ(z)g has the Gauss factorisation given, according to
Equation (13), by

eZ(z)g(a, b, c, d) =

(
Ip b(d + zb)−1

0 Iq

)(
a− b(d + zb)−1(c + za) 0

0 d + zb

)

×
(

Ip 0
(d + zb)−1(c + za) Iq

)
. (24)

It follows that, for g ∈ G0 and z ∈ D,

Γ̂(g)Ψ(z) = Π̂κeẐ(z)Û κ(g)|ψ〉 = σ̂κ(k)Ψ
(
(d + zb)−1(c + za)

)
, (25)

where k ∈ K is the element given in the defining representation by

k =

(
a− b(d + zb)−1(c + za) 0

0 d + zb

)
. (26)

The domain D on which the VCS representation Γ̂ acts can now be defined as a convenient subset
of Z that is invariant under the transformations

z→ (d + zb)−1(c + za) (27)

for all the group elements g(a, b, c, d) ∈ G0. The domain D must also exclude any z for which
det(d + zb) could vanish, or be such that all such points are of zero measure. Such a domain is
identified with a subset of K0\G0 as follows. Let P ⊂ G denote the parabolic subgroup with Lie algebra

p = n+ ⊕ k. (28)

The action given by Equation (27) allows us to canonically identify K0\G0 with an open
submanifold of P\G [29,49,50], and by regarding exp

(
Z(z)

)
as a representative of a coset

P exp
(
Z(z)

)
∈ P\G, the complex numbers z = {zi} become coordinates for P\G. This is discussed

further in Section 2.3.
Note that the above results have not been restricted to representations of the discrete series.

2.2. Holomorphic Representation of a Lie Algebra g

The VCS derived representation Γ̂(X) of an element X in the Lie algebra g is defined as for the Lie
group G0 by

Γ̂(X)Ψ(z) = Π̂κeẐ(z)X̂|ψ〉, Ẑ(z) = z · B̂ = ∑
i

zi B̂i, (29)

where {Bi} is a basis for n−. Explicit expressions are obtained from the expansion

eẐX̂ =
(
X̂ + [Ẑ, X̂] + 1

2! [Ẑ, [Ẑ, X̂]]
)
eẐ (30)
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and the identities

Π̂κ B̂ieẐ(z)|ψ〉 = ∂iΨ(z) ≡ ∂Ψ(z)/∂zi, (31)

Π̂κĈpeẐ(z)|ψ〉 = ĈpΨ(z), ∀Cp ∈ k, (32)

Π̂κ ÂieẐ(z)|ψ〉 = 0, (33)

where Âi is the Hermitian adjoint of B†
i , Ĉp = σ̂κ(Cp) is defined, in accordance with Equation (18), by

σ̂κ(Cp)Π̂κ = Π̂κĈp, ∀Cp ∈ k, (34)

and {Cp} is a basis for k, the Lie algebra of K. From these definitions, it follows that

Γ̂(Bi) = ∂i, (35)

Γ̂(Cp) = Ĉp + ∑
ij

ẑiC
ij
p ∂j, (36)

Γ̂(Aj) = ∑
ip

ẑiD
ij
p

(
Ĉp +

1
2 ∑

kl
ẑkCkl

p ∂l

)
, (37)

where ẑi is the multiplicative operator for which ẑiΨ(z) = ziΨ(z). The first of these equations is
obtained immediately. The second is obtained from the expansion [Bi, Cp] = ∑j Cij

p Bj and

eZ(z)Cp =
(

Cp + [Z(z), Cp]
)

eZ(z) =
(

Cp + ∑
j

ziC
ij
p Bj

)
eZ(z). (38)

The third is obtained from the expansion [Bi, Aj] = ∑p Dij
p Cp followed by Equation (38).

2.3. The Inner Product for Discrete-series Representations

This section confirms that, when the VCS construction is applied to a discrete-series representation,
it reproduces the familiar expression for the inner products of its wave functions as obtained by the
standard methods [28–31,51].

Let {|κα〉} denote an orthonormal basis for the lowest-grade subspace Hκ
0 of the Hilbert space Hκ

for an irreducible discrete-series representation Û κ of G0. The inner product for the Hilbert space of
standard coherent-state wave functions for this representation is then obtained from the resolution of
the identity on Hκ [34,35],

Î =
∫

G0

Û κ†(g)|κα〉〈κα|Û κ(g) dν(g), (39)

where dν(g) is the suitably normalised G0-invariant measure. If the integral in this expression is
restricted to the compact subgroup K0 ⊂ G0, then the modified operator continues to be the identity
operator on the subspace Hκ

0 ⊂ Hκ but on Hκ it becomes the projection operator

Π̂κ =
∫

K0

Û κ†(k)|κα〉〈κα|Û κ(k) dν(k) : Hκ → Hκ
0. (40)

This implies that the identity operator (39) can be expressed

Î =
∫

G0

Û κ†(g)Π̂κÛ κ(g)
1

dim σ̂κ
dν(g), (41)

where dim σ̂κ is the dimension of the irrep κ of K0. However, because of the K0 invariance of Π̂κ ,

Û κ†(k)Π̂κÛ κ(k) = Π̂κ , for k ∈ K0, (42)
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the integrand Û κ†(g)Π̂κÛ κ(g) in (41) is unchanged if g is replaced by any g′ in the K0\G0 coset K0g.
Thus, the integral in Equation (41) effectively reduces to an integral over the symmetric space K0\G0.

To derive the Harish-Chandra expression for the inner product of a discrete series holomorphic
irrep from this resolution of the identity for the irrep, we need to express the identity operator of
Equation (41) as an integral over K0\G0 coset representatives.

The Gauss factorisation, given by Equation (13), defines a G → Z map in which

g =

(
a b
c d

)
7→ z(g) = d−1c. (43)

The set of elements of G that map to a single z ∈ Z is then a P\G coset, of the form(
a b
0 d

)(
Ip 0
z Iq

)
=

(
a + bz b

dz d

)
∈ G. (44)

It has been shown by Harish-Chandra [29] that, for z in an open subset D ⊂ Z , the subset of
elements of the corresponding P\G coset that lie in G0 form a K0\G0 coset with a representative
element that can be expressed in the form

g(z) = eX(x(z))h(z)eZ(z) ∈ G0. (45)

The expression (41) of the identity Î can now be replaced by

Î =
∫

D
eẐ†(z)T̂†(h(z))Π̂κ T̂(h(z))eZ(z) dµ(z), (46)

where dµ(z) is the G0-invariant measure on the domain D diffeomorphic to K0\G0. The inner product
of state vectors |ψ〉 and |ψ′〉 in Hκ is then expressed in terms of their VCS wave functions, Ψ and Ψ′ by

〈ψ| Î|ψ′〉 =
∫

D
〈σ̂κ(h(z))Ψ(z)|σ̂κ(h(z))Ψ′(z)〉 dµ(z), (47)

where 〈σ̂κ(h(z))Ψ(z)|σ̂κ(h(z))Ψ′(z)〉 is an inner product of σ̂κ(h(z))Ψ(z) and σ̂κ(h(z))Ψ′(z) as vectors
in Hκ

0.

3. A G0 = Sp(N,R) Example

In quantum mechanics the position and momentum coordinates (x1, . . . , xN , p1, . . . , pN) of a
particle are mapped to linear operators (x̂1, . . . , x̂N , p̂1, . . . , p̂N) on a Hilbert space that satisfy the
Heisenberg commutation relations

[x̂j, x̂k] = [ p̂j, p̂k] = 0, [x̂j, p̂k] = ih̄δj,k. (48)

The real symplectic group G0 = Sp(N,R) is then defined as the group of linear transformations
of such position and momentum coordinates that preserve these commutation relations. However, for
present purposes, Sp(N,R) is equivalently expressed as the group of complex linear transformations
that preserve the commutation relations

[cj, ck] = [c†
j , c†

k ] = 0, [cj, c†
k ] = δj,k. (49)

of the harmonic-oscillator raising and lowering operators, which are related to the position and
momentum coordinates by

x̂j =
1√
2 a

(c†
j + cj), p̂j = ih̄

a√
2
(c†

j − cj), (50)
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where a is a unit of inverse length. Defining Sp(N,R) as a subgroup of linear transformations of
harmonic-oscillator raising and lowering operators makes use of the isomorphism

Sp(N,R) ' Sp(N,C) ∩U(N, N). (51)

3.1. A Defining Representation of Sp(N,R)

An Sp(N,C) matrix satisfies the condition(
α β

γ δ

)(
0 IN
−IN 0

)(
α̃ γ̃

β̃ δ̃

)
=

(
0 IN
−IN 0

)
, (52)

where α, β, γ, δ are N × N matrices and α̃ is the transpose of α. This implies that

αβ̃ = βα̃, γδ̃ = δγ̃, αδ̃− βγ̃ = IN . (53)

Restriction to the subgroup Sp(N,R) ' Sp(N,C) ∩U(N, N) further requires that δ = α∗ and γ = β∗.
Thus, Sp(N,R) is the group of 2N × 2N complex matrices{(

α β

β∗ α∗

)
; αα† − ββ† = IN , αβ̃ = βα̃

}
. (54)

In this realisation, the group U(N) is embedded in Sp(N,R) as the subgroup of matrices of the form{(
α 0
0 α∗

)
; αα† = IN

}
. (55)

The group Sp(N,C) has Gauss factorisation as a product of three matrices(
α β

γ δ

)
=

(
IN βδ−1

0 IN

)(
α− βδ−1γ 0

0 δ

)(
IN 0

δ−1γ IN

)
. (56)

However, the third equation of (53) implies that(
α− βδ−1γ 0

0 δ

)
=

(
δ̃−1 0

0 δ

)
. (57)

It follows that GL(N,C), the complex extension of U(N), is embedded in Sp(N,C) as the subgroup{(
δ 0
0 δ̃−1

)
; δ ∈ GL(N,C)

}
. (58)

A basis for a realisation of the sp(N,C) Lie algebra is given by the operators

Ĉij = c†
i cj +

1
2 , Âij = c†

i c†
j , B̂ij = cicj, (59)

which satisfy the commutation relations

[Ĉij, c†
k ] = δj,kc†

i , [Ĉij, ck] = −δi,kcj, (60)

[Âij, c†
k ] = 0, [Âij, ck] = −δj,kc†

i − δi,kc†
j , (61)

[B̂ij, c†
k ] = δj,kci + δi,kcj, [B̂ij, ck] = 0. (62)
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It follows that, in the above defining representation,

Cij =

(
Eij 0
0 −Eji

)
, (63)

Aij =

(
0 −Eij − Eji
0 0

)
, (64)

Bij =

(
0 0

Eij + Eji 0

)
, (65)

where Eij is the N × N matrix with elements(
Eij
)

lk = δi,lδj,k. (66)

Subgroups of Sp(N,C) generated by these basis elements then comprise matrices of the form

exp
(

∑
ij

yijCij

)
=

(
ey 0
0 e−ỹ

)
, (67)

exp
(
− 1

2 ∑
ij

xij Aij

)
=

(
IN x
0 IN

)
, (68)

exp
(

1
2 ∑

ij
zijBij

)
=

(
IN 0
z IN

)
, (69)

in which x and z are symmetric. An Sp(N,C) element

g(y, z) = exp
(

∑
ij

[
yijCij +

1
2 zijBij − 1

2 z∗ij Aij
])

(70)

is an element of Sp(N,R) when y is skew-Hermitian.

3.2. VCS Representations of the Sp(N,R) Lie Group

We consider an irrep Û κ of Sp(N,R) with a lowest grade irrep σ̂κ of the subgroup U(N) of
highest weight κ. Thus, with the embeddings of K0 = U(N) in its complexification K = GL(N,C)
and Sp(N,R) in Sp(N,C), in accord with the equations in Section 3.1, and with Π̂κ : Hκ → Hκ

0 being
the projection operator of the Hilbert space for the representation Û κ to its lowest-grade subspace, it
follows that

σ̂κ(α) Π̂κ = Π̂κ Û κ

(
α 0
0 α∗

)
, for α ∈ U(N), (71)

σ̂κ(δ) Π̂κ = Π̂κ T̂κ

(
δ 0
0 δ̃−1

)
, for δ ∈ GL(N,C). (72)

A state |ψ〉 ∈ Hκ has the VCS wave function

Ψ(z) = Π̂κeẐ(z)|ψ〉, (73)

where Ẑ(z) = 1
2 ∑ij zij B̂ij. The Hilbert space Hκ of such wave functions is then a module for a VCS

irrep Γ̂ for which
Γ̂(g)Ψ(z) = Π̂κeẐ(z)Û κ(g)|ψ〉, ∀ g ∈ Sp(N,R). (74)
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For g in the defining Sp(N,R) matrix representation,

eZ(z)g =

(
IN 0
z IN

)(
α β

β∗ α∗

)
=

(
α β

zα + β∗ zβ + α∗

)
(75)

is an Sp(N,C) matrix which, by Equations (56) and (57), has the factorised form

eZ(z)g =

(
IN β(zβ + α∗)−1

0 IN

)(
(β̃z + α†)−1 0

0 zβ + α∗

)

×
(

IN 0
(zβ + α∗)−1(zα + β∗) IN

)
. (76)

It follows that
Γ̂(g)Ψ(z) = σ̂κ((β̃z + α†)−1)Ψ((zβ + α∗)−1(zα + β∗)). (77)

3.3. Representations of the Sp(N,R) Lie Algebra

The above sp(N,R) matrices satisfy the commutation relations

[Bij, Akl ] = δikCl j + δilCkj + δjkCli + δjlCki, (78)

[Cij, Akl ] = δjk Ail + δjl Aik, (79)

[Cij, Bkl ] = −δikBl j − δil Bkj, (80)

and, with Ẑ(z) = 1
2 ∑ij zij B̂ij, the VCS representation of an element X ∈ sp(N,C) is defined by

Γ̂(X)Ψ(z) = Π̂κeẐ(z)X̂|ψ〉. (81)

Thus, the VCS operators representing elements of the sp(N,C) Lie algebra are determined by use
of the expansion

eẐX̂ =
(
X̂ + [Ẑ, X̂] + 1

2! [Ẑ, [Ẑ, X̂]]
)
eẐ, (82)

and the identities

Π̂κĈijeẐ(z)|ψ〉 = ĈijΨ(z), (83)

Π̂κ B̂ijeẐ(z)|ψ〉 = ∇ijΨ(z), (84)

Π̂κ ÂijeẐ(z)|ψ〉 = 0, (85)

where Ĉij = σ̂κ(Cij), in accordance with Equation (18), and

∇ijΨ(z) = (1 + δi,j)
∂Ψ(z)

∂zij
, (86)

with ∇ij defined such that
[∇ij, zkl ] = δj,kδi,l + δi,kδj,l . (87)

Then, because Ẑ(z) is a sum of sp(N,R) lowering operators, the expansions of Equation (82)
terminate at or before the third term and we obtain the VCS representation [8,9]

Γ̂(Cij) = Ĉij + (ẑ∇)ij, (88)

Γ̂(Bij) = ∇ij, (89)

Γ̂(Aij) = (Ĉẑ)ij + (Ĉẑ)ji +
1
2 (ẑ∇ẑ)ij +

1
2 (ẑ∇ẑ)ji − 4zij, (90)
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in which, for example, ẑ∇ is an N × N matrix with components (ẑ∇)ij = ∑k ẑik∇kj.

3.4. Inner Products for the Holomorphic Discrete Series Representations of Sp(N,R)

To derive the inner product for a holomorphic discrete series representations of Sp(N,R), we
need an expression of the identity resolution as an integral in the form given by Equation (46). The
required integral is obtained by use of the following claim.

Claim: The expansion

g(α, β) =

(
α β

β∗ α∗

)
=

(
IN β(α∗)−1

0 IN

)(
(α†)−1 0

0 α∗

)(
IN 0

(α−1β)∗ IN

)
(91)

of an element g(α, β) ∈ Sp(N,R) defines an isomorphism between the U(N)\Sp(N,R) cosets and a
subset of vectors in D ⊂ Z .

Proof: First observe that the map

Sp(N,R)→ Z : g(α, β) 7→ z(α, β) = (α−1β)∗, (92)

is U(N) invariant. This follows because, for g(a, 0) ∈ U(N),

g(a, 0)g(α, β) = g(aα, aβ) and z(aα, aβ) = z(α, β). (93)

Conversely, if z(α′, β′) = z(α, β) it follows that α′ = aα and β′ = aβ, for some a and that

g(α′, β′) = g(a, 0)g(α, β). (94)

�
In accordance with Section 2.3, a representative of a K0\G0 coset can then be identified with an

element z ∈ D ⊆ Z by an inverse map

D → Sp(N,R) : z 7→ g(α, αz∗), (95)

for a suitable α. For g(α, αz∗) to be an element of Sp(N,R), α and z must satisfy the constraint

|α|2 − αz†zα† = α(IN − z†z)α† = IN . (96)

Thus, we can choose the coset representative g(z) = g(α, αz∗), as in [38], for any z in the image of the
map, given in Equation (92), by setting

α = α† = (IN − z†z)−
1
2 . (97)

The resolution of the identity, given in general by Equation (46), is then expressed for G0 =

Sp(N,R) by

Î =
∫

D
eẐ†(z)T̂†(h(z))Π̂κ T̂(h(z))eẐ(z) dµ((z), (98)

with
h(z) = (IN − z†z)

1
2 , (99)

where dµ(z) is the U(N)-invariant measure on the domain D ⊂ Z , diffeomorphic to U(N)\Sp(N,R),
and hereby identified as the multi-dimensional unit disk of vectors z ∈ Z of length |z| < 1.
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The inner product of VCS wave functions, expressed generally by Equation (47), is now given for
Sp(N,R) by

〈Ψ|Ψ′〉 =
∫

D
〈σ̂κ((I − z∗z)

1
2 )Ψ(z)|σ̂κ((I − z∗z)

1
2 )Ψ′(z)〉 dµ(z), (100)

where 〈σ̂κ((I − z∗z)
1
2 )Ψ(z)|σ̂κ((I − z∗z)

1
2 )Ψ′(z)〉 is the inner product of σ̂κ((I − z∗z)

1
2 ))Ψ(z) and

σ̂κ((I − z∗z)
1
2 )Ψ′(z) as vectors in the Hilbert space for the U(N) irrep σ̂κ . The measure dµ(z) is

determined by VCS methods [38], consistent with previously known results [52,53], to be given to
within a normalization factor by

dµ(z) = (I − z∗z)−(N+1) ∏
i≤j

dxijdyij, (101)

where xij = Re zij and yij = Im zij.

4. Dual VCS Holomorphic Representations

Sections 2 and 3 have shown that VCS methods can be used to derive the holomorphic
discrete-series representations of many simple Lie groups. This section proceeds to show that
holomorphic representations, in general, have dual pairs of non-unitary VCS representations which, in
combination, provide simple algebraic procedures for constructing orthonormal bases for irreducible
unitary representations. It also shows that dual representations are not restricted to discrete-series
representations and, in fact, neither are they restricted to holomorphic representations [47].

The notations are the same as in Section 2: G0 is a real connected simple Lie group with a faithful
finite-dimensional representation and a compact subgroup K0; G and K are the complex extensions of
G0 and K0; the Lie algebra g of G is a sum

g = n+ ⊕ k⊕ n−, (102)

in which k is the Lie algebra of K and n± are, respectively, Abelian Lie algebras of raising and lowering
operators having the property that [k, n±] ∈ n± and [n−, n+] ∈ k; Hκ is the Hilbert space for a unitary
irrep Û κ of G0 with lowest-weight κ; Hκ

0 ⊂ Hκ is the lowest-grade subspace of states in Hκ that are
annihilated by the lowering operators of n− and is the Hilbert space for a unitary irrep of K0 of
highest-weight κ given by the restriction of Û κ to K0 ⊂ G0; T̂κ denotes the extension of Û κ to the
complex Lie algebra g and also to K; X̂ denotes the representation T̂κ(X) of an element X ∈ g.

4.1. Dual VCS Wave Functions

Dual VCS wave functions for the states of Hκ are constructed as follows. Define F κ to be the linear
space of entire-analytic vector-valued functions of a set of complex variables {zi, i = 1, . . . , dim (n+)}
of the form

φ(z) = ∑
α

φα(z)|κα〉, (103)

in which {|κα〉} is an orthonormal basis for the lowest-grade subspace Hκ
0 ⊂ Hκ and the functions

{φα} are polynomials. The space Hκ of VCS wave functions is then defined as the image of the
vector-space homomorphism

Hκ → F κ : |ψ〉 7→ Ψ (104)

for which
Ψ(z) = Π̂κeẐ(z)|ψ〉 = ∑

α

|κα〉〈κα|eẐ(z)|ψ〉, ∀ |ψ〉 ∈ Hκ , (105)

where Ẑ(z) = ∑i zi B̂i and {Bi} is a basis for n−.
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Conversely, a space Hκ∗ of dual VCS* wave functions is defined as follows. For each i =

1, . . . , dim (n+), choose Ai ∈ n+ and Bi ∈ n− so that Âi is the Hermitian adjoint of B̂i. Then Hκ∗ is
identified with the factor space F κ/F κ

0 , where F κ
0 is the kernel of the map

F κ → Hκ : φ 7→ |ψ〉 = ∑
α

φα(Â)|κα〉, (106)

in which each variable zi of a function φα is replaced by the corresponding element Âi in the
representation T̂κ(n+). Because F κ is a vector space, Hκ∗ = F κ/F κ

0 is isomorphic, as a vector
space, to a subspace of F κ .

Consider the maps defined in Equations (106) and (104):

F κ → Hκ → F κ . (107)

Neither of them is an isomorphism in general. Thus, we insert two more spaces to obtain the following
sequence of maps:

F κ → Hκ∗ → Hκ → Hκ ↪→ F κ : φ 7→ Φ 7→ |ψ〉 7→ Ψ 7→ Ψ, (108)

where Hκ ↪→ F κ is a simple embedding. The first space inserted, Hκ∗, is the quotient of F κ by the
kernel of the first map in Equation (107). This makes the second map in Equation (108) an isomorphism.
The second insertion,Hκ , is the image of the second map in Equation (107). This makes the third map in
Equation (108) an isomorphism. In other words, we have vector-space isomorphismsHκ∗ → Hκ → Hκ

involving a space of VCS wave functions and its dual. We shall see that these isomorphisms can be
exploited to simplify various calculations.

To determine inner products and the completion of F , Hκ , and Hκ∗ to Hilbert spaces, it is
convenient to start with the inner product

(φ, φ′) = ∑
α

∫
φ∗α(z)φ

′
α(z) dv(z) (109)

for F κ , in which dv(z) is the Bargmann measure [48]. This is the inner product for a coherent-state
representation of a multi-dimensional harmonic oscillator on a space of entire analytic wave functions
such that, if n = {n1, n2, . . . , ndim (n+)} is a set of non-negative integers and a wave function φα

is expanded

φα(z) = ∑
n

φαn ∏
i∈n

zni
i√
ni!

, (110)

then
(φ, φ′) = ∑

nα

φ∗αnφ′αn. (111)

This inner product (φ, φ′) and the corresponding measure dv(z) have the useful property that∫
eẐ†(z)φα(z) dv(z) =

∫
e∑i z∗i Âi φα(z) dv(z) = φα(Â). (112)

As shown in [54], the calculation of such inner products is facilitated by use of the Capelli
identities [2,55–58] when the {zi} variables are elements of a matrix {zjk}, as is generally the case in
the VCS construction.

4.2. Inner Products and Dual VCS Representations

In this Section, inner products are defined for Hκ , Hκ and Hκ∗ such that they are isomorphic
as Hilbert spaces and carry a representation of K and a unitary irrep of G0. The constructions start
with the Bargmann inner product (φ, φ′) for F κ , and show that, with the definitions and notations of
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Equation (108), the VCS wave functions satisfy the relationship (Φµ, Ψν) = (Ψµ, Φν) = 〈ψµ|ψν〉, where
Φν ∈ Hκ∗ and Ψν ∈ Hκ are dual VCS wave functions for a state vector |ψν〉 ∈ Hκ . Thus, the dual VCS
wave functions have orthogonal bases that are mutually biorthogonal relative to the Bargmann inner
product and, in combination, define an orthonormal basis for the Hilbert space Hκ .

By use of the identity (112), the map in Equation (106) is expressed in terms of the Bargmann
integral of Equation (109) by

φ 7→ |ψ〉 = ∑
α

φα(Â)|κα〉 = ∑
α

∫
eẐ†(z)|κα〉φα(z) dv(z), (113)

where Z†(z) = ∑i z∗i B̂†
i = ∑i z∗i Âi. Equations (113) and (105) then show that the sequence of maps

F κ → Hκ → Hκ is given by

φ 7→ |ψ〉 =
∫

eẐ†(y)φ(y) dv(y) 7→ Ψ(x) = ΠκeẐ(x)|ψ〉 =
∫

ΠκeẐ(x)eẐ†(y)φ(y) dv(y). (114)

BecauseHκ∗ = F κ/F κ
0 , where F κ

0 is the kernel of the map F κ → Hκ , the sequenceHκ∗ → Hκ →
Hκ is similarly given by

Φ 7→ |ψ〉 =
∫

eẐ†(y)Φ(y) dv(y) 7→ Ψ(x) = ΠκeẐ(x)|ψ〉 =
∫

ΠκeẐ(x)eẐ†(y)Φ(y) dv(y). (115)

Thus, the relationship between a wave function Φ ∈ Hκ∗ and its counterpart Ψ ∈ Hκ , both of which
have vector values in Hκ

0, is given by the equation

Ψ(x) = ŜΦ(x) =
∫

Ŝ(x, y∗)Φ(y) dv(y) (116)

with
Ŝ(x, y∗) = Π̂κeẐ(x)eẐ†(y)Π̂κ . (117)

The inner product 〈ψ|ψ′〉 of Hκ and a corresponding inner product forHκ∗ are then expressed by

(Φ, ŜΦ′) = 〈ψ|ψ′〉 =
∫

Φ†(x)Ŝ(x, y∗)Φ′(y) dv(x) dv(y). (118)

Thus,Hκ∗ andHκ are, respectively, the Hilbert spaces

Hκ∗ = {Φ ∈ F κ | (Φ, ŜΦ) < ∞}. (119)

and
Hκ = {Ψ = ŜΦ | Φ ∈ Hκ∗}. (120)

It follows that an orthonormal basis {Φν} forHκ∗ for which

(Φµ, ŜΦν) = δµ,ν (121)

defines an orthonormal basis for {Ψν = ŜΦν} forHκ such that together they form biorthogonal bases
for which

(Φµ, Ψν) = δµ,ν. (122)

The function Ŝ(x, y∗) in Equation (118) appears as a weight function for the inner product of the
Hilbert space Hκ∗ relative to the Bargmann measure. Thus, it serves a parallel role to the Bergman
kernel [52] for the inner product ofHκ in terms of a Euclidean measure. Moreover, the inner product
of Equation (118) has the advantage over the inner product in terms of the K0\G0 invariant measure in
that it is not restricted to discrete-series representations by the convergence constraint on the resolution
of the identity given by Equation (47).
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The relationships between the triplet of Hilbert spaces Hκ∗, Hκ , and Hκ relate the VCS
representation Γ̂ of G0 on Hκ to a dual VCS* representation Θ̂ on Hκ∗ and relate both of these
VCS representations to the equivalent unitary representation Û κ on Hκ in accordance with the
commuting diagram

Hκ∗ Hκ Hκ

Hκ∗ Hκ Hκ

Θ̂ Û κ Γ̂ . (123)

The relationships are expressed by the equations

〈ψ|Û κ(g)|ψ′〉 =
(
Φ, Γ̂(g)Ψ′

)
=
(
Ψ, Θ̂(g)Φ′

)
, ∀ g ∈ G0, (124)

〈ψ|X̂|ψ′〉 =
(
Φ, Γ̂(X)Ψ′

)
=
(
Ψ, Θ̂(X)Φ′

)
, ∀X ∈ g. (125)

Together with Equation (117) and the map

Ŝ : Hκ∗ → Hκ ; Φ 7→ Ψ = ŜΦ, (126)

they show that the dual VCS representations, Γ̂ and Θ̂, are intertwined by Ŝ, i.e.,

Γ̂(g)Ŝ = ŜΘ̂(g), ∀ g ∈ G0, (127)

Γ̂(X)Ŝ = ŜΘ̂(X), ∀X ∈ g. (128)

An interpretation of Ŝ(x, y∗) is obtained by inserting the identity Î = ∑ν |ν〉〈ν|, where {|ν〉} is an
orthonormal basis for Hκ , into Equation (117) to obtain

Ŝ(x, y∗) = ∑
ν

Π̂κeẐ(x)|ν〉〈ν|eẐ†(y) Π̂κ = ∑
ν

Ψν(x)Ψ†
ν(y), (129)

in which it is noted that

Ψν(x) = ∑
α

|κα〉〈κα|eẐ(x)|ν〉 = ∑
α

|κα〉Ψνα(x) (130)

implies that
Ψ†

ν(y) = ∑
α

〈ν|eẐ†(y)|κα〉〈κα| = ∑
α

Ψ∗να(y)〈κα|. (131)

This expression indicates that for an infinite-dimensional irrep of a non-compact group, Ŝ(x, y∗)
is not, in general, a well-defined function for unrestricted values of x and y. However, like the Dirac
delta function in the inner product∫

ψ∗(x)δ(x, y)φ(y) dx dy =
∫

ψ∗(x)φ(x) dx, (132)

it is well-defined as a distribution on dual VCS wave functions with integration over the entire
multi-dimensional complex plane and, as a consequence, the VCS representations are not restricted to
those of the discrete series.

An explicit expression for the inner product of Equation (118) is obtained from the observation
that the operator eẐ(x)eẐ†(y) in Equation (117) is a representation of the group product

eZ(x)eZ†(y) =

(
Ip 0
x Iq

)(
Ip εy†

0 Iq

)
=

(
Ip εy†

x Iq + εxy†

)
(133)
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with ε = ±1 according as G0 is, respectively, compact or non-compact. Gauss factorization then gives

eZ(x)eZ†(y) =

(
Ip εy†(Iq + εxy†)−1

0 Iq

)

×
(

Ip − εy†(Iq + εxy†)−1x 0
0 Iq + εxy†

)(
Ip 0

(Iq + εxy†)−1x Iq

)
(134)

from which it follows that
Ŝ(x, y∗) = σ̂κ(h(x, εy∗)), (135)

where h(x, εy∗) is the K ⊂ G matrix

h(x, εy∗) =

(
Ip − εy†(Iq + εxy†)−1x 0

0 Iq + εxy†

)
. (136)

It also follows that

〈ψ|ψ′〉 = (Φ, ŜΦ′) =
∫

Φ†(x)σ̂κ(h(x, εy∗))Φ′(y) dv(x) dv(y). (137)

This expression of the inner product is particularly useful for scalar-valued VCS wave functions
(i.e., when the representation σ̂κ is one-dimensional) [47]. However, as now shown, the construction
of orthonormal bases and the calculation of matrix elements of Lie algebra observables, as needed
in quantum mechanical applications, is also achieved by alternative and, for generic vector-valued
representations, more practical algebraic methods.

4.3. Dual representations of the Lie algebra g

The VCS representation Γ̂(X) of an element X ∈ g, defined by

Γ̂(X)Ψ(z) = Π̂κeẐ(z)X̂|ψ〉 (138)

and given explicitly by Equations (35)–(37), has the more useful expression

Γ̂(Bi) = ∂i, (139)

Γ̂(Cp) = Ĉp + ∑
ij

ẑiC
ij
p ∂j, (140)

Γ̂(Ai) = [Λ̂, ẑi], (141)

where
Λ̂ = ∑

ijp
ẑiD

ij
p

(
Ĉp∂j +

1
4 ∑

kl
ẑkCkl

p ∂l∂j

)
(142)

and the coefficients Cij
p and Dij

p are defined, in Section 2.2, by the expansions

[Bi, Cp] = ∑
j

Cij
p Bj, [Bi, Aj] = ∑

p
Dij

p Cp. (143)

Equation (141) is shown to reproduce Equation (37) by use of the symmetry relation

∑
p

Dij
p Ckl

p = ∑
p

Dkj
p Cil

p (144)
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which follows from the Jacobi identity

[Bk[Bi, Aj]] = [[Bk, Bi], Aj] + [Bi, [Bk, Aj]] = [Bi, [Bk, Aj]]. (145)

It is more useful than Equation (37), when Λ̂ is K0 invariant and ∑i[Ĉp, Λ] = 0, because Λ̂ is then
diagonal in a K0-coupled basis for the Hilbert space of the desired representation and the action of the
operator Γ̂(Ai) is much simplified.

Claim: The operator Λ̂ is K0 invariant if the elements {Ai} and {Bi} of n± are chosen such that the
sum ∑i AiBi is K0-invariant.

Proof: K0-invariance of ∑i AiBi implies that ∑i[Cp, AiBi] = 0 and

∑
i
[Cp, Ai]Bi + ∑

i
Ai[Cp, Bi] = 0. (146)

From the expansion [Bi, Cp] = ∑j Cij
p Bj, it then follows that

[Cp, Aj] = ∑
i

AiC
ij
p , (147)

and, hence, that
[Γ̂(Cp), Γ̂(Aj)] = [Γ̂(Cp), [Λ̂, ẑj]] = ∑

i
[Λ̂, ẑi]C

ij
p . (148)

It also follows from Equation (140) that

[Γ̂(Cp), ẑj] = ∑
i

ẑiC
ij
p . (149)

Thus, from the identity

[Γ̂(Cp), [Λ̂, ẑj]] = [[Γ̂(Cp), Λ̂], ẑj] + [Λ̂, [Γ̂(Cp), ẑj]]

= [[Γ̂(Cp), Λ̂], ẑj] + ∑
i
[Λ̂, ẑj]C

ij
p , (150)

it follows that
[[Γ̂(Cp), Λ̂], ẑi] = 0. (151)

Now, because Γ̂(Cp) and Λ̂ are both sums of terms that are of the same order in the variables {zi} as
in the {∂i} derivative operators, the only way that Equation (151) can be satisfied is if [Γ̂(Cp), Λ̂] is
independent of any zi. However, it is indeed ascertained that [Γ̂(Cp), Λ̂] has no zi-independent term
for any zi. Therefore [Γ̂(Cp), Λ̂] = 0. �

The dual VCS* representation Θ̂ of g is now determined starting from the definition of Equation
(113), which asserts that a state |ψ〉 = ∑α Φα(Â)|κα〉 has a VCS* wave function Φ(z) = ∑α |κα〉Φα(z)
and implies that Θ̂(Ai) = ẑi. The other components of the Θ̂ representation are generated by requiring
that they respect the commutation relations of Equations (143) and (147) and have the property that
when restricted to the space of lowest-grade states, an operator Θ(Cp) restricts to Ĉp. Equation (147)
implies that

[Θ̂(Cp), ẑj] = ∑
i

ẑiC
ij
p (152)

and, hence, that
Θ̂(Cp) = Ĉp + ∑

i
ẑiC

ij
p ∂j = Γ̂(Cp). (153)
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Then, because [Bi, Aj] is an element of k, it follows that

[Θ̂(Bi), Θ̂(Aj)] = [Γ̂(Bi), Γ̂(Aj)]

= [∂i, [Λ̂, ẑj]] = [[∂i, Λ̂], ẑj] (154)

and that Θ̂(Bi) = [∂i, Λ̂]. Thus, we obtain the dual VCS* representation of the Lie algebra g:

Θ̂(Ai) = ẑi, (155)

Θ̂(Cp) = Γ̂(Cp) = Ĉp + ∑
ij

ẑiC
ij
p ∂j, (156)

Θ̂(Bi) = [∂i, Λ̂]. (157)

4.4. Non-unitary Representations on F κ

In a unitary representation, the elements of the Lie algebra g satisfy the Hermiticity relations

Â†
i = B̂i and Ĉ†

p = Ĉp. (158)

However, when acting on the Hilbert space F κ with Bargmann inner product given by Equation (109)
for which ∂i is the Hermitian adjoint of ẑi, the representations Γ̂ and Θ̂ satisfy the Hermiticity relations

Γ̂†(Ai) = Θ̂(Bi), Γ̂†(Bi) = Θ̂(Ai),

Γ̂†(Cp) = Γ̂(Cp) = Θ̂†(Cp) = Θ̂(Cp).
(159)

An important observation is that the representations Γ̂ and Θ̂ are both expressed in terms of the
elements of the lowest-grade representation σ̂κ of the compact subalgebra k0, for which Cp = σ̂κ(Cp),
and a commuting Heisenberg-Weyl algebra with commutation relations

[Ĉp, Ĉq] = ∑rCr
pqCr, (160)

[∂i, ẑj] = δi,j Î, (161)

[Ĉp, ẑi] = [Ĉp, δi] = 0, (162)

where {Cr
pq} are structure constants for k0. The direct sum of these two Lie algebras, which is obtained

as a contraction limit of the Lie algebra g [54], has an irreducible unitary representation on F κ with
actions defined simply by

Ĉp ∑
α

|κα〉φα(z) = ∑
α

σ̂κ(Cp)|κα〉φα(z), (163)

∂i ∑
α

|κα〉φα(z) = ∑
α

|κα〉∂iφα(z), ẑi ∑
α

|κα〉φα(z) = ∑
α

|κα〉ziφα(z). (164)

This representation then defines dual representations of the Lie algebra g on F κ by the operators Γ̂(X)

and Θ̂(X) for X ∈ g. In general, these representations of g are neither unitary nor irreducible. However,
they are easily constructed and, as now shown, lead to a practical construction of an orthonormal basis
for the desired irreducible unitary representation.

The commutation relations, Equation (149), for a simple Lie algebra, show that the {ẑi} operators
transform as a basis for an irreducible finite-dimensional K0 representation which, for a suitable choice
of the {Ai} basis, is unitary. Thus, it is possible to classify a basis of polynomials in the variables {zi}
by the labels of irreducible unitary K0 representations. It is also possible to couple these polynomials
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to the states of the lowest-grade irrep σ̂κ to form an orthonormal basis for F κ . Let {φswr} denote such
a basis of vector-valued functions that are eigenfunctions of Λ̂,

Λ̂φswr = Ωswφswr, (165)

and are orthonormal with respect to the Bargmann inner product(
φswr, φtw′r′

)
= δs,tδw,w′δr,r′ , (166)

where w and r label basis states for an irreducible K0-invariant subspace of F κ of highest weight w,
and s is a multiplicity index to distinguish irreducible K0 subspaces of common w. Thus, in both
the Γ̂ and Θ̂ representations on F κ , the subalgebra k0 ⊂ g0 is represented as a sum of irreducible
unitary representations of highest weights labelled by w. Matrix elements of the raising and lowering
operators of the Lie algebra g are then given in the Γ̂ representation by

(φs′w′r′ , Γ̂(Ai)φswr) =
(
Ωs′w′ −Ωsw

)
(φs′w′r, ziφswr), (167)

(φswr, Γ̂(Bi)φs′w′r′) = (φswr, ∂iφs′w′r) = (φs′w′r′ , ziφswr)
∗, (168)

and in the dual Θ̂ representation by

( φs′w′r′ , Θ̂(Ai)φswr) = (φs′w′r′ , ziφswr), (169)

(φswr, Θ̂(Bi)φs′w′r′) = (φs′w′r′ , ziφswr)
∗(Ωs′w′ −Ωsw

)
. (170)

Neither of the dual representations Γ̂ and Θ̂ of g0 is unitary on F κ . Nor, in general, are they
irreducible. However, with orthonormal bases {Φν} and {Ψν} for the respective VCS Hilbert spaces
Hκ and Hκ∗, defined in terms of an operator Ŝ by Equations (121) and (122), they have irreducible
unitary representations on these spaces with matrix elements

〈µ|X̂|ν〉 = (Φµ, Γ̂(X)Ψν) = (Ψµ, Θ̂(X)Φν), ∀X ∈ g. (171)

Thus, given that the bases {Φν} and {Ψν = ŜΦν} are defined by the operator Ŝ and the equation
(Φµ, ŜΦν) = δµ,ν, the matrix elements of Equation (171) are determined simply by those of Ŝ.

4.5. Orthonormal VCS Wave Functions

Recall that the operator Ŝ has an integral expression ŜΦ(x) =
∫

Ŝ(x, y∗)Φ(y) dv(y) in which
Ŝ(x, y∗) is given by Equation (129) as a sum ∑νwr Ψνwr(x)Ψ†

νwr(y) in which {Ψνwr} is an orthonormal
K0-coupled basis for Hκ . It follows that the operator Ŝ conserves the K0 quantum numbers and has
matrix elements

(φswr, Ŝφtw′r′) = δw,w′δr,r′S
w
st (172)

in the basis {φswr} for F κ given by

Sw
st = ∑

ν

(φswr, Ψνwr)(Ψνwr, φtwr). (173)

Thus, if the {Ψνwr} basis wave functions are expanded

Ψνwr = ∑
s

φswrKw
sν, (174)

the Sw matrices are given by

Sw
st = ∑

ν

(φswr, Ψνwr)(Ψνwr, φtwr) = ∑
ν

Kw
sνKw∗

tν . (175)
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Particularly useful for computational purposes is the observation that the Sw submatrices are
finite dimensional. Moreover, a recursion relation for these matrices is obtained from the equation

∑
i

Γ̂(Ai)ŜΓ̂(Bi) = Ŝ ∑
i

ẑi∂i = ŜN̂, (176)

where N̂ = ∑i ẑi∂i is an operator that measures the degree in the z variables of any vector in F κ on
which it operates. Equation (176) is obtained from the identities Γ̂(Ai)Ŝ = ŜΘ(Ai) = Ŝẑi (cf. Equation
(128)) and Γ̂(Bi) = ∂i. With the expression Γ̂(Ai) = [Λ̂, ẑi], it becomes

ŜN̂ = ∑
i
[Λ̂, ẑi]Ŝ∂i. (177)

Taking matrix elements of both sides of (177) gives(
φsw′r′ , Ŝw′ N̂φtw′r′

)
= ∑

i

(
φsw′r′ , [Λ̂, zi]Ŝ∂iφtw′r′

)
(178)

and the recursion relation

Sw′
st =

1
Nw′

∑
iuvwr

(
Ωsw′ −Ωuw

)(
φsw′r′ , ẑiφuwr

)(
φtw′r′ , ẑiφvwr

)∗Sw
uv , (179)

where Nw, defined by N̂φswr = Nwφswr, is the degree in the {zi} variables of φswr and use has been
made of the Hermiticity relation (

φvwr, ∂iφtw′r′
)
=
(
φtw′r′ , ẑiφvwr

)∗. (180)

Equation (179) is much simplified by use of the Wigner-Eckart theorem [59](
φsw′r′ , ẑiφuwr

)
= ∑

ρ

(wr, ηi|ρw′r′)
(
φsw′‖ẑ‖φuw

)
ρ

, (181)

in which it is understood that the vector ẑ transforms according to an irrep η of K0. The Wigner-Eckart
theorem expresses the many matrix elements

(
φsw′r′ , ẑiφuwr

)
, for given values of w and w′, in terms

of a few so-called reduced matrix elements
(
φsw′‖ẑ‖φuw

)
ρ

and the Clebsch-Gordan coefficients
(wr, ηi|w′r′)ρ for the decomposition of a tensor product η ⊗ w of irreducible K0 representations into a
sum of irreps; ρ indexes the multiplicity of an irrep w′ in this decomposition. With the sum rule for K0

Clebsch-Gordan coefficients

∑
ri
(wr, ηi|ρw′r′)(wr, ηi|ρ′w′r′)∗ = δρ,ρ′ , (182)

the recursion relation (179) simplifies to

Sw′
st =

1
Nw′

∑
uvρw

(
Ωsw′ −Ωuw

)(
φsw′‖ẑ‖φuw

)
ρ

(
φtw′‖ẑ‖φvw

)∗
ρ
Sw

uv. (183)

Setting Sκ = 1 for the multiplicity-free lowest-grade multiplicity-free K0 irrep, for which w = κ and
Nκ = 0, this equation sequentially determines the Sw matrices for which Nw = 1, 2, 3, . . . .

Now, because the non-zero Sw matrices are positive and Hermitian, they can be diagonalized and
expressed at each step of the recursive process in terms of their eigenvalues, (kw

ν )
2, by

Sw
st = ∑

ν

Uw
sν(k

w
ν )

2Uw∗
tν , (184)
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where Uw is a unitary matrix. Equation (183) then becomes

Sw′
st =

1
Nw′

∑
uvρwν

(
Ωsw′ −Ωuw

)(
φsw′‖ẑ‖φuw

)
ρ

(
φtw′‖ẑ‖φvw

)∗
ρ
Uw

uν(k
w
ν )

2Uw∗
vν . (185)

Note that some of the eigenvalues (kw
ν )

2 vanish, in general, in accordance with the G0 ↓ K0 branching
rules.

From Equation (184) and the identity Sw
st = ∑ν Kw

sνKw∗
tν , an orthonormal basis of VCS wave

functions {Ψνwr} is now given by

Ψνwr = ∑
s

φswrKw
sν = ∑

s
φswrUw

sνkw
ν , (186)

and, from the duality relation
(
Φµwr, Ψνwr

)
= δµ,ν, a dual VCS basis is given by

Φµwr = ∑
t

φtwr
1

kw
µ

Uw∗
tµ , (187)

with µ restricted to values for which kw
µ 6= 0. From Equation (106), an orthonormal basis {|µwr〉} for

Hκ is obtained, in terms of polynomials in the {Âi} raising operators acting on the lowest-grade states
{|κα〉}, in the form

|µwr〉 = ∑
t

1
kw

µ
Uw∗

µt φtwr(Â). (188)

(Recall that a wave function φ is a vector-valued function of z variables for which φ(z) = ∑α φα(z)|κα〉,
where {κα} are basis vectors for the lowest-grade subspace Hκ

0 ⊂ Hκ . Thus, in accord with
Equation (106),

φ(Â) = ∑
α

φα(Â)|κα〉 (189)

is a state vector in Hκ .)

4.6. Matrix Elements of the Group G0 and the Lie Algebra g

From the expression (77) and Equations (186) and (187), the matrix elements of a holomorphic
representation of lowest weight κ are given, relative to an orthonormal basis, by

〈µwr|Û κ(g)|νw′r′〉 = (Φµwr, Γ̂(g)Ψνw′r′)

= ∑
st

1
kw

µ
Uw∗

sµ (φswr, Γ̂(g)φtw′r′)U
w′
tν kw′

ν . (190)

Similarly, for the Lie algebra, matrix elements of the operator X̂ representing an element X ∈ g are
evaluated from either of the expressions

〈µwr|X̂|νw′r〉 = ∑
st

1
kw

µ
Uw∗

sµ (φswr, Γ̂(X)φtw′r′)U
w′
tν kw′

ν , (191)

= ∑
st

kw
µ Uw∗

sµ (φswr, Θ̂(X)φtw′r′)U
w′
tν

1
kw′

ν

. (192)

Thus, for an element Cp ∈ k0, for which

Γ̂(Cp) = Θ̂(Cp) (193)
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and the observation that the matrix elements of a Lie algebra cannot connect its different irreps and are
identical within equivalent irreps, we obtain

〈µwr|Ĉp|νw′r′〉 = δµ,νδw,w′(φswr, Γ̂(Cp)φswr′), (194)

independent of the multiplicity indices. For a lowering operator, for which Γ̂(Bi) = ∂i, and a raising
operator, for which Θ̂(Ai) = ẑi, we obtain expressions

〈µwr|B̂i|νw′r′〉 = ∑
st

1
kw

µ
Uw∗

sµ (φswr, ∂iφtw′r′)U
w′
tν kw′

ν , (195)

〈νw′r′|Âi|µwr〉 = ∑
st

kw′
ν Uw′∗

tν (φtw′r′ , ẑiφswr)Uw
sµ

1
kw

µ
, (196)

which satisfy the Hermiticity relationship

〈νw′r′|Âi|µwr〉 = 〈µwr|B̂i|νw′r′〉∗, (197)

as required for a unitary irrep.
The above expressions simplify dramatically for the states {|νwr〉} of a multiplicity-free irrep w

for which the label ν takes a single value. The Sw matrices are then one-dimensional and given by
single real numbers, Sw = (kw)2 ≥ 0. Matrix elements between such multiplicity-free states are then
obtained directly from the Hermiticity requirement of Equation (197) as follows. First observe that

〈w′r′|Âi|wr〉 = (Φw′r, [Λ̂, ẑi]Ψwr) =
1

kw′ (Ωw′ −Ωw)(φw′r′ , ẑiφwr)kw. (198)

Equating this expression to its Hermitian adjoint

〈wr|B̂i|w′r′〉∗ =
1

kw (φwr, ∂iφw′r′)
∗kw′ =

1
kw (φw′r′ , ẑiφwr)kw′ , (199)

then gives ( kw′

kw

)2
= Ωw′ −Ωw (200)

and

〈w′r′|Âi|wr〉 = (Ωw′ −Ωw)
1
2 (φw′r′ ẑiφwr), (201)

〈wr|B̂i|w′r′〉 = (Ωw′ −Ωw)
1
2 (φw′r′ , ẑiφwr)

∗. (202)

Similarly, for a group element g ∈ G0, the matrix elements of a multiplicity-free representation
simplify to

〈w′r′|Û κ(g)|wr〉 = (Ωw′ −Ωw)
− 1

2 (φw′r′ , Γ̂(g)φwr). (203)

5. Dual VCS Representations of the sp(N,R) Lie Algebras

As an example of dual VCS representations, we consider the holomorphic representation with
lowest weight of an sp(N,R) Lie algebra. An example for a compact Lie algebra is considered in the
following section.

All unitary representations of sp(N,R) with lowest- or highest-weight states, including the
double-valued (metaplectic) projective representations, have holomorphic VCS realisations. The
construction of these VCS representations provides orthonormal basis wave functions for the
corresponding holomorphic representations of the Sp(N,R) Lie groups and expressions for the matrix
elements of their Lie algebras in these bases in terms of U(N) Clebsch-Gordan (also called Wigner)
coefficients and Racah coefficients [60–62]. The many holomorphic irreps of Sp(3,R) with lowest
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weights are of particular importance in nuclear physics as they arise in the microscopic theory of
nuclear collective dynamics.

5.1. Dual Representations of the sp(N,R) Lie Algebra on Fκ

For the symplectic groups, the submatrix z of Equation (69) is symmetric with elements zij = zji for
i, j = 1, . . . , N. With z · B̂ = 1

2 ∑ij zij B̂ij, the VCS representations of the sp(N,R) Lie algebra, obtained
from Equations (139)–(142) and (155)–(157), are given by

Γ̂(Bij) = ∇ij,

Γ̂(Cij) = Ĉij + (ẑ∇)ij,

Γ̂(Aij) = [Λ̂, ẑij],

Θ̂(Bij) = [∇ij, Λ̂],

Θ̂(Cij) = Ĉij + (ẑ∇)ij,

Θ̂(Aij) = ẑij,

(204)

where ∇ij = (1 + δi,j)
∂

∂zij
and Λ̂ is the U(N)-invariant operator

Λ̂ = 1
2 (Ĉ+ ẑ∇) · (Ĉ+ ẑ∇)− 1

4 ẑ∇ · ẑ∇− 1
4 (N + 1)ẑ · ∇, (205)

with (ẑ∇)ij = ∑k ẑik∇kj, and ẑ · ∇ = ∑i(ẑ∇)ii.
As in any VCS representation, the Γ̂ and Θ̂ operators are expressed in terms of a simpler Lie

algebra with elements
Ĉij = Ĉij + (ẑ∇)ij, ẑij, ∇ij, i, j = 1, . . . , N. (206)

Such a Lie algebra, known in nuclear physics as a U(N)-boson algebra [63], is a semi-direct sum of a
u(N) algebra and a Heisenberg-Weyl algebra with raising and lowering operators given, respectively,
by {ẑij} and {∇ij} and with commutation relations

[∇ij, ẑkl ] = (δi,kδj,l + δi,lδj,k) Î, (207)

[Ĉij, ẑkl ] = [(ẑ∇)ij, ẑkl ] = δj,k ẑil + δj,l ẑik, (208)

where Î is the identity operator.
It follows that the Hilbert space F κ for an irreducible unitary representation of a U(N)-boson

algebra is also a Hilbert space for dual VCS Γ̂ and Θ̂ representations of sp(N,R) from which unitary
irreps of sp(N,R) can be constructed.

5.2. Representations of the U(N)-boson Algebra

A Heisenberg-Weyl algebra has a unique unitary representation which can be combined with
those of a u(N) algebra to construct unitary representations of the U(N)-boson algebra given by their
semi-direct sum. Unitary irreps of the U(3)-boson algebra in an orthonormal U(3)-coupled basis, were
determined [64,65] for use in nuclear collective models. The representations of boson algebras with
symmetric matrices of raising and lowering operators {ẑij, i, j = 1, . . . , N} and {∇ij, i, j = 1, . . . , N}
with arbitrary N and with matrices of other symmetries, as needed for construction of holomorphic
representations of other Lie algebras, were subsequently constructed [54,66], by use of Capelli identities
[2,55–58], and expressed in terms of the so-called U(N)-reduced matrix elements of the generalised
Wigner-Eckart theorem [60,61].

For example, the 6 linearly-independent variables

{z̄ij = zij/
√

1 + δi,j, 0 ≤ i ≤ j ≤ 3}, (209)

which transform under U(3) as components of a U(3) {2, 0, 0} tensor, are regarded as the boson raising
operators for a Bargmann coherent-state representation of a 6-dimensional harmonic oscillator. Thus,
an orthonormal basis for the 6-dimensional harmonic oscillator is given by polynomials {χnq(z)}, that
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separate into U(3)-invariant subsets, each of which is characterised by a highest weight n ≡ {n1, n2, n3}
given by a triplet of even integers with

n1 ≥ n2 ≥ n3 ≥ 0. (210)

The U(3) irreps spanned by these subsets are those of Littlewood’s D3 series [67].
The U(3)-reduced matrix elements of the boson raising operators in this basis have been

determined [64,65] and are given explicitly by

(m‖ ˆ̄z‖n) =
(
(n1 + 4)(n1 − n2 + 2)(n1 − n3 + 3)

2(n1 − n2 + 3)(n1 − n3 + 4)

) 1
2

δm1,n1+2δm2,n2 δm3,n3

+

(
(n2 + 3)(n1 − n2)(n2 − n3 + 2)

2(n1 − n2 − 1)(n2 − n3 + 3)

) 1
2

δm1,n1 δm2,n2+2δm3,n3 (211)

+

(
(n3 + 2)(n2 − n3)(n1 − n3 + 1)

2(n1 − n3)(n2 − n3 − 1)

) 1
2

δm1,n1 δm2,n2 δm3,n3+2 .

Now, if the lowest-grade U(3) states of an Sp(3,R) irrep belong to a U(3) irrep {κ}, an orthonormal
basis for the corresponding irrep of the U(3)-boson algebra is given by the U(3)-coupled product states

φκnρwr(z) =
[
χn(z)⊗ |κ〉

]
ρwr, n ∈ D3, (212)

where ρ indexes the multiple occurences of a U(N) irrep w in the tensor product n ⊗ κ. The
corresponding reduced matrix elements of the boson raising operators in this (round bracket) basis are
then given [65] by

(φκmρ′w′‖ ˆ̄z‖φκnρw) = U(κ n w′∆11; w ρ m ρ′) (m‖ ˆ̄z‖n), (213)

where U(κ n w′∆11; w ρ m ρ′) is a known U(3) Racah recoupling coefficient [62,68]. The corresponding
reduced matrix elements for other U(N)-boson representations are similarly expressed in term of the
reduced boson matrix elements given in [66].

The matrix elements of the VCS Γ̂ and Θ̂ representations given by the U(N)-boson expansions of
Equation (204) are now obtained immediately from the observation that the U(N)-invariant operator
Λ̂ is diagonal in the {φκnρwr} basis given in Equation (212) with eigenvalues given by Λ̂φκnρwr =

Ωnwφκnρwr, where

Ωnw =
1
4

N

∑
i

[
2w2

i − ni(ni + N + 1) +
N

∑
j>i

(
2wi − 2wj − ni + nj

)]
. (214)

Thus, we obtain the matrix elements

(φκmρ′w′r, Γ̂(Aij)φκnρwr) =
(
Ωmw′ −Ωnw

)
(φκmρ′w′r, ẑijφκnρwr),

(φκnρw, Γ̂(Bij)φκmρ′w′r′) = (φκmρ′w′r, ẑijφκnρwr)
∗,

(215)

(φκmρ′w′r, Θ̂(Aij)φκnρwr) = (φκmρ′w′r, ẑijφκnρwr),

(φκnρw, Θ̂(Bij)φκmρ′w′r′) =
(
Ωmw′ −Ωnw

)
(φκmρ′w′r, ẑijφκnρwr)

∗,
(216)

of the sp(N,R) raising and lowering operators in the non-unitary representations given by the actions
of Γ̂ and Θ̂ on F κ in the above-defined U(N)-boson basis.
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5.3. Unitary Irreps of the sp(N,R) Lie Algebra

Matrix elements of a unitary irrep between states of multiplicity-free U(N) states, i.e., states for
which the multiplicity indices ρ and ρ′ are redundant, are obtained immediately from Equations (215)
and (216) and given by

〈κmw′r|Âij|κnwr〉 =
(
Ωmw′ −Ωnw

) 1
2 〈κmw′r|ẑij|κnwr〉, (217)

〈κnw|B̂ij|κmw′r′〉 =
(
Ωmw′ −Ωnw

) 1
2 〈κmw′r|ẑij|κnwr〉∗. (218)

More generally, they are given, in terms of the dual VCS representations by

〈νw′r′|Âij|µwr〉 = (Ψνw′r′ , Θ(Aij)Φµwr) = (Ψνw′r′ , ẑijΦµwr), (219)

〈µwr|B̂ij|νw′r′〉 = (Φµwr, Γ(Bij)Ψνw′r′) = (Φνwr,∇ijΨνw′r′). (220)

However, to make use of these matrix elements, one must determine the VCS wave functions

Ψνwr = ∑
s

φswrUw
sνkw

ν , (221)

Φµwr = ∑
t

φtwr
1

kw
µ

Uw∗
tµ , (222)

of Equations (186) and (187). This is achieved by solving the recursion relation (185) for the Sw matrices
and expressing them in the form

Sw
st = ∑

ν

Uw
sν(k

w
ν )

2Uw∗
tν . (223)

The matrix elements of a unitary irrep are then given by

〈νw′r′|Âij|µwr〉 = ∑
st

kw′
ν Uw′∗

tν (φtw′r′ , ẑijφswr)Uw
sµ

1
kw

µ
, (224)

〈µwr|B̂ij|νw′r′〉 = 〈νw′r′|Âij|µwr〉∗. (225)

6. Holomorphic VCS Representations of a Compact Lie Group

The above presentation of VCS theory has focussed on holomorphic representations with lowest
weights of simple Lie groups and their Lie algebras. The construction applies to both compact and
non-compact Lie groups. For a non-compact Lie group G0, a holomorphic representation is commonly
induced from a representation of a maximal compact subgroup K0. However, when G0 is compact, the
subgroup K0 is automatically compact; it is then only required that the homogeneous space K0\G0

be symmetric.
In fact, the Lie groups that have holomorphic representations frequently come in pairs, one of

which is compact and the other non-compact. The holomorphic representations of such pairs are
then induced from common compact subgroups. For example, a compact Sp(N) and a non-compact
Sp(N,R) group both have holomorphic representations induced from the same irrep of a common
U(N) subgroup. Similarly, SU(p + q) and SU(p, q) have holomorphic representations induced from
a representation of their common S[U(p) × U(q)] subgroup. However, when G0 is compact, it is
generally useful to induce its holomorphic representations from a highest-grade irrep of K0 ⊂ G0.

Outlining the essential steps of the construction of a holomorphic representation with highest
weight of a Lie group and its Lie algebra is useful at this stage because it provides a concise summary
of the essential methods employed in the VCS approach.
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6.1. The Basic Construction

The notations parallel those of Section 2: G0 is now a simple connected compact Lie group with a
subgroup K0; G and K are the complex extensions of G0 and K0; the Lie algebra g of G is a sum

g = n+ ⊕ k⊕ n−, (226)

in which k is the Lie algebra of K and n± are, respectively, Abelian Lie algebras of raising and lowering
operators having the property that [k, n±] ∈ n± and [n−, n+] ∈ k; Hκ is the Hilbert space for a unitary
irrep Û κ of G0 with highest-weight κ; Hκ

0 ⊂ Hκ is the highest-grade subspace of states in Hκ that
are annihilated by the raising operators of n+ and is the Hilbert space for a unitary irrep of K0 of
highest-weight κ given by the restriction of Û κ to K0 ⊂ G0; T̂κ denotes the extension to K of the irrep
Û κ of K0; X̂ denotes the representation Û κ of an element X ∈ g0 or by extension of X ∈ g. Thus the
factor space K0\G0 is again a symmetric space. Also, in parallel with Equations (9) and (10), elements
of G0 and K0 are expressed in the form

g(a, b, c, d) =

(
a b
c d

)
∈ G0, k(e, f ) =

(
e 0
0 f

)
∈ K0, (227)

and, as in Equations (11) and (12), elements of the subgroups of G generated by the subalgebras n±
are expressed in the form(

Ip z
0 Iq

)
= eZ(z), with Z(z) =

(
0 z
0 0

)
∈ n+, (228)(

Ip 0
x Iq

)
= eX(x), with X(x) =

(
0 0
x 0

)
∈ n−, (229)

where Ip and Iq are, respectively, Mpp and Mqq identity matrices.
The plan is now to construct Û κ as a holomorphic representation induced from a representation

σ̂κ of the subgroup K0 on the highest-grade subspace Hκ
0 ⊂ Hκ . A projection operator Π̂κ : Hκ → Hκ

0 is
defined in terms of an orthonormal basis {|κα〉} for Hκ

0 by Π̂κ = ∑α |κα〉〈κα|. Almost every element
g(a, b, c, d) ∈ G0 (elements with det(a) 6= 0) then has the Gauss factorization

g(a, b, c, d) =

(
Ip 0
x Iq

)(
a 0
0 d− cz

)(
Ip z
0 Iq

)
, (230)

with x = ca−1 and z = a−1b. The VCS wave function for a state |ψ〉 ∈ Hκ and a VCS representation Γ̂
isomorphic to Û κ are then defined by

Ψ(z) = Π̂κeẐ(z)|ψ〉, (231)

Γ̂(g)Ψ(z) = Π̂κeẐ(z)Û κ(g)|ψ〉, ∀ g ∈ G0. (232)

In the defining representation, Gauss factorisation gives(
Ip z
0 Iq

)(
a b
c d

)
=

(
Ip 0
x Iq

)(
a + zc 0

0 d− cy

)(
Ip y
0 Iq

)
(233)

with x = c(a + zc)−1 and y = (a + zc)−1(b + zd). It then follows, with g = g(a, b, c, d), that

Γ̂(g)Ψ(z) = Π̂κeẐ(z)Û κ(g)|ψ〉 = σ̂κ(k)Ψ(y), (234)
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with k = k(a + zc, d− cy), where Ψ is a polynomial in the elements of the matrix z in Equation (233)
restricted to a subset D that is invariant under the map

g(a, b, c, d) : D → D; z 7→ (a + zc)−1(b + zd), ∀ g(a, b, c, d) ∈ G0. (235)

6.2. Dual VCS Representations of the Lie Algebra g with Highest Weight

As shown in Section 4.3, a Lie algebra with holomorphic representations and complex extension
g = n+ ⊕ k ⊕ n− has a VCS expression in terms of the structure constants Cij

p and Dij
p , in the

commutation relations

[Bi, Cp] = ∑
j

Cij
p Bj, [Cp, Aj] = ∑

j
AiC

ij
p , [Bi, Aj] = ∑

p
Dij

p Cp, (236)

where {Ai} and {Bi} are related bases for the respective raising and lowering operator subalgebras
n±, such that the sum ∑i AiBi is K0 invariant, and {Cp} is a basis for k. The VCS representation Γ̂(X)

of an element X ∈ g, defined by

Γ̂(X)Π̂κe∑i zi Âi = Π̂κe∑i zi Âi X̂, (237)

is then given by

Γ̂(Ai) = ∂i, (238)

Γ̂(Cp) = Ĉp −∑
ij

Cij
p ẑj∂i, (239)

Γ̂(Bi) = −∑
j

Dij
p ẑj(Ĉp − 1

2 ∑
kl

Clk
p ẑk∂l) = [Λ̂, ẑi], (240)

where Ĉp = σ̂κ(Cp) is defined, in accordance with Equation (18), by σ̂κ(Cp)Π̂κ = Π̂κĈp, and Λ̂ is the
K-invariant operator

Λ̂ = −∑
j

Dij
p ẑj(Ĉp∂i − 1

4 ∑
kl

Clk
p ẑk∂l∂i). (241)

Let {|κα〉} denote an orthonormal basis for the representation σ̂κ of the subalgebra k0 ⊂ g0 on
the highest-grade subspace Hκ

0 ⊂ Hκ . And let {φn} denote a Bargmann basis of wave functions
φn(z) = ∏dimn−

i zni
i /
√

ni!. Then the product vector-valued wave functions

φκαn(z) = |κα〉φn(z) (242)

are an orthonormal basis for the Hilbert space F κ for a representation of the direct sum of k0 and the
Heisenberg-Weyl algebra generated by {zi} and {∂i}. However, to take advantage of the K0-invariance
of Λ̂, it is preferable to start with a K0-coupled basis for this representation. Such a basis can be
constructed because the variables {zi, i = 1, . . . , dim n−} transform as a basis for an irrep of K0 of
dimension dim n−. Let {φswr} denote such K0-coupled basis functions that are orthonormal with
respect to the Bargmann inner product(

φswr, φtw′r′
)
= δstδww′δrr′ , (243)

where w and r label basis states for an irreducible K0-invariant subspace of F κ highest weight w, and s
is a multiplicity index to distinguish irreducible K0 subspaces of common w. These wave functions are
naturally constructed as eigenfunctions of the Λ̂ operator;

Λ̂φswr = Ωswφswr (244)
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and, because Λ̂ is K0 invariant, its eigenvalues are independent of r.
We next seek VCS wave functions {Ψνwr} for an orthonormal basis {|νwr〉} for the Hilbert space

Hκ of the unitary irrep Û κ as linear combinations

Ψνwr = ∑
s

φswrKw
sν (245)

such that the expansion

Γ̂(X)Ψνwr = ∑
µw′s

Ψµw′s〈µw′s|X̂|νwr〉, ∀X ∈ g, (246)

gives matrix elements that satisfy the Hermiticity relationship

〈µwr|X̂†|νw′s〉 = 〈νw′s|X̂|µwr〉∗ (247)

required of a unitary representation. The required matrix elements will then be expressible in the form

〈νw′s|X̂|µwr〉 = (Φνw′s, Γ̂(X)Ψµwr), (248)

where {Φνw′s} is a bi-orthogonal dual basis that satisfies the equation

(Φµw′s, Ψνwr) = (Φνwr, Ψµw′s)
∗ = δµ,νδw′ ,wδs,r. (249)

A complementary dual VCS* representation Θ̂, defined by

(Ψµws, Θ̂(X)Φνw′t) = (Φµws, Γ̂(X)Ψνw′t), (250)

follows from the Hermiticity relation (247)

(Ψµwr, Θ̂(X†)Φνw′s) = (Φνw′s, Γ̂(X)Ψµwr)
∗ = (Ψµwr, Γ̂†(X)Φνw′s), (251)

and implies that
Θ̂(X†) = Γ̂†(X), (252)

where the Hermitian adjoint Γ̂† is defined with respect to the Bargmann round-bracket inner product,
and X† is the element of g represented by X̂† in a unitary representation. This simple relationship,
together with the corresponding relationships Â†

i = B̂i, Ĉ†
p = Ĉp, leads directly to the dual VCS*

representation

Θ̂(Bi) = zi, (253)

Θ̂(Cp) = Ĉp −∑
ij

Cij
p zj∂i, (254)

Θ̂(Ai) = [∂i, Λ̂]. (255)

The inner product for wave functions Φ and Φ′ of the VCS* representation Θ̂ is expressed by
(Φ, ŜΦ′) in terms of an operator Ŝ for which Ψνwr = ŜΦνwr. Also, because the representations are
constructed in a K0-coupled basis, the matrix of the operator Ŝ in the Bargmann basis {φswr} is block
diagonal with elements

(φswr, Ŝφtw′r′) = Sw
stδw,w′δr,r′ . (256)

The submatrices Sw are then obtained from the recursion relation,

∑
i
[Λ̂, zi]Ŝ∂i = Ŝ ∑

i
zi∂i, (257)
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derived from the intertwining relation

∑
i

Γ̂(Bi)ŜΓ̂(Ai) = ŜΘ̂(Bi)Γ̂(Ai). (258)

Once the Sw matrices have been determined, it is straightforward to derive the Kw matrices of
Equation (245) and thereby express the VCS wave functions {Ψνwr} as linear combinations of the
Bargmann functions {φswr} as follows. Observe that the operation Φνwr 7→ ŜwΦνwr can be expressed
in the integral form

ŜwΦνwr(x) =
∫

Sw(x, z∗)Φνwr(z) dv(z), (259)

where dv(z) is the Bargmann volume element. By setting

Sw(x, z∗) = ∑
µr

Ψµwr(x)Ψ†
µwr(z

∗), (260)

we then obtain the desired result

ŜwΦνwr(x) = ∑
µ

Ψµwr(x)(Ψµwr, Φνwr) = Ψνwr(x). (261)

The Kw matrices are then obtained from the matrix Sw with elements

Sw
st = (φswr, Ŝwφtwr) = ∑

µ

(φswr, Ψµwr)(Ψµwr, φtwr), (262)

which, with Equation (245), gives
Sw

st = ∑
µ

Kw
sµKw∗

tµ . (263)

The Sw matrices are manifestly Hermitian. Thus, they can be diagonalised and brought to the form

Sw
st = ∑

ν

Uw
sν

(
kw

ν

)2Uw∗
tν , (264)

where Uw is a unitary matrix and kw
ν is real. The orthonormal VCS wave functions are then given for

their respective Hilbert spaces by

Ψνwr = ∑
s

φswrUw
sνkw

ν , (265)

Φνwr = ∑
s

φswrUw
sν

1
kw

ν
, (266)

and the matrix elements of the Lie algebra g are given by

〈µwr|X̂|νw′r′〉 = ∑
st

1
kw

µ
Uw∗

tµ (φtwr, Γ̂(X)φswr)Uw
sνkw

ν . (267)

6.3. Application to SU(3)

A simple application of the above construction is to induce an SU(3) irrep from an irrep of its
subgroup K0 = S[U(1)×U(2)]. This subgroup is isomorphic to U(2) and realised as matrices of the
form (

a 0
0 d

)
, with a ∈ U(1), d ∈ U(2), a = det(d)∗. (268)
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Thus, if Eij is a 3× 3 matrix with entries

(Eij)kl = δi,kδj,l , (269)

the raising and lowering matrices for SU(3) are

A1 = E12, A2 = E13, B1 = E21, B2 = E31. (270)

For an SU(3) irrep, in which an element X in its Lie algebra is represented as an operator X̂, a
highest-weight state |λµ〉 is defined such that

Ê12|λµ〉 = Ê13|λµ〉 = Ê23|λµ〉 = 0, (271)

(Ê11 − Ê22)|λµ〉 = λ|λµ〉, (272)

(Ê22 − Ê33)|λµ〉 = µ|λµ〉. (273)

A first step in the construction of an su(3) irrep is to extend the highest-weight state to a set of
highest-grade states for a u(2) irrep. This is achieved by defining u(2) operators

Q̂ = 2Ê11 − Ê22 − Ê33 (274)

Ŝ+ = Ê23, Ŝ− = Ê32, Ŝ0 = 1
2 (Ê22 − Ê33) (275)

and orthonormal highest-grade basis states {|sm〉} that satisfy the equations

Âi|sm〉 = 0, i = 1, 2, (276)

Q̂|sm〉 = (2λ + µ)|sm〉, Ŝ0|sm〉 = m|sm〉, (277)

Ŝ±|sm〉 =
√
(s∓m)(s±m + 1) |s, m± 1〉, (278)

with s = µ/2.
Although it is not necessary, simplicity is gained by considering an SU(3) ⊂ U(3) irrep. This has

no impact on the results for SU(3) but it legitimises the expression of diagonal su(3) matrices such as
E11− E22 in terms of E11 and E22 as independent elements of the u(3) Lie algebra. It also has the benefit,
that it expresses representations of U(3) as induced from representations of its U(1)×U(2) subgroup.
The highest-grade states {|sm〉} are then also eigenstates of Ê11 and Ê22 + Ê33 with eigenvalues given
respectively by λ1 and λ2 +λ3. The highest weight (λµ) of an SU(3) ⊂ U(3) irrep is likewise expressed
in terms of the U(3) highest weight by

λ = λ1 − λ2, µ = λ2 − λ3. (279)

With the above-defined highest-grade states {|sm〉} and the projection operator Π(λµ) =

∑m |sm〉〈sm|, a state |ψ〉 in the Hilbert space H(λµ) for the corresponding SU(3) irrep has a VCS
wave function defined by

Ψ(z) = Π(λµ)eẐ(z)|ψ〉, Ẑ(z) = z2Ê12 + z3Ê13. (280)

The su(3) Lie algebra then has a VCS representation defined in the usual way by

Γ̂(X)Ψ(z) = Π(λµ)eẐ(z)X̂|ψ〉, X ∈ su(3), (281)
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and given by

Γ̂(E1k) = ∂k, k = 2, 3, (282)

Γ̂(S0) = Ŝ0 +
1
2
(
ẑ2∂2 − ẑ3∂3

)
, (283)

Γ̂(S+) = Ŝ+ + ẑ2∂3, (284)

Γ̂(S−) = Ŝ− + ẑ3∂2, (285)

Γ̂(Q) = (2λ + µ)− 3
(
ẑ2∂2 + ẑ3∂3

)
, (286)

Γ̂(Ek1) = [Λ̂, ẑk], k = 2, 3, (287)

where Λ̂ is the U(2)-invariant operator

Λ̂ = λ1

3

∑
k=2

ẑk∂k −
3

∑
k,l=2

Êkl ẑl∂k − 1
2

3

∑
k,l=2

ẑk ẑl∂l∂k, (288)

and Ŝ0, Ŝ±, Ê11 and Êkl denote the restrictions of the respective operators Ŝ0, Ŝ±, Ê11 and Êkl to
highest-grade states. From Equation (252), the dual VCS* representation of su(3) is given by

Θ̂(Ek1) = ẑk, k = 2, 3, (289)

Θ̂(S0) = Γ̂(S0), Θ̂(S±) = Γ̂(S±), Θ̂(Q) = Γ̂(Q), (290)

Θ̂(E1k) = [∂k, Λ̂], k = 2, 3. (291)

VCS wave functions, defined by Equation (280), are vector-valued functions of the variables
z = {z2, z3} of the form

φ(z) = ∑
m
|sm〉φm(z), (292)

and can be expanded in a basis of so-called U(2)-boson wave functions of this form as follows. Observe
that z2 and z3 transform as spin- 1

2 components of the 2-dimensional U(2) irrep {1, 0} and that an
orthonormal Bargmann basis for a {2j, 0} irrep is given by the spin-j wave functions (with 2j a
non-negative integer)

χjm(z) =
(z2)

j+m(z3)
j−m√

(j + m)!(j−m)!
, m = −j,−j + 1, . . . , j. (293)

VCS wave functions for a U(3) irrep are then expressed as finite linear combinations of the U(2)-coupled
wave functions

φjSM(z) =
[
χj(z)⊗ |s〉

]
SM. (294)

To determine the eigenvalues of the operator Λ̂ it is useful to express it in the more obviously
U(2)-invariant form

Λ̂ = (λ1 + 1)∑
k

ẑk∂k − 1
2 ∑

kl
(Êkl + ẑk∂l)(Êlk + ẑl∂k) +

1
2 ∑

kl
ÊklÊlk, (295)

with k and l taking values 2 and 3. Then, by use of the identities

1
2 ∑

kl
(Êkl + ẑk∂l)(Êlk + ẑl∂k) = Ŝ · Ŝ + 1

4 (λ2 + λ3 + ∑
k

ẑk∂k)
2, (296)

1
2 ∑

kl
ÊklÊlk = ŝ · ŝ + 1

4 (λ2 + λ3)
2, (297)

Λ̂ is expressed
Λ̂ = (2λ + µ + 1)∑

k
ẑk∂k − 1

4 ∑
kl

zk∂k ẑl∂l − Ŝ · Ŝ + ŝ · ŝ. (298)
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And, with the observation that

∑
k

ẑk∂kφjSM = 2jφjSM, (299)

the U2)-boson wave functions of Equation (294) are eigenfunctions of Λ̂ with M-independent
eigenvalues

ΩjS = (2λ + µ)j− S(S + 1) + s(s + 1)− j(j− 2). (300)

Matrix elements of the raising and lowering operators are now given in the U(2)-boson basis of
Equation (294) for the VCS representation by

(φj′S′M′ , Γ̂(Ek1)φjSM) = (Ωj′S′ −ΩjS)(φj′S′M′ , ẑkφjSM). (301)

(φjSM, Γ̂(E1k)φj′S′M′) = (φj′S′M, ẑkφjSM)∗, (302)

and for the dual VCS* representation by

(φj′S′M′ , Θ̂(Ek1)φjSM) = (φj′S′M′ , ẑkφjSM). (303)

(φjSM, Θ̂(E1k)φj′S′M′) = (Ωj′S′ −ΩjS)(φj′S′M, ẑkφjSM)∗. (304)

It is evident that these matrix elements do not satisfy the Hermiticity relationships of a unitary
representation. However, it is also observed that, in this SU(3) example, the states {φjSM} are uniquely
labelled by jSM quantum numbers without multiplicity indices. Thus, the VCS wave functions
{ΨjSM} are uniquely defined, to within normalisation factors. Starting with the VCS wave functions
{Ψ0sm = φ0sm} for the appropriately normalised highest-grade states for which j = 0, S = s = µ/2,
M = m, and Ω0s = 1, an orthonormal basis of VCS wave functions is then determined sequentially

ΨjSM = KjSφjSM, (305)

by setting
KjS

Kj′S′
= (Ωj′S′ −ΩjS)

− 1
2 ., for j′ = j + 1

2 and S′ = S± 1
2 (306)

for as long as (Ωj′S′ −ΩjS) > 0. The VCS representation in this basis then satisfies the Hermiticity
relations

Γ̂(Ek1)ΨjSM = ∑
j′S′M′

(Ωj′S′ −ΩjS)
1
2 Ψj′S′M′(φj′S′M′ , ẑkφjSM), (307)

Γ̂(E1k)Ψj′S′M′ = ∑
jSM

(Ωj′S′ −ΩjS)
1
2 ΨjSM(φjSM, ẑkφjSM)∗, (308)

of a unitary representation. The lowering sequence terminates and all {φj′S′M′} wave functions for
which (Ωj′S′ −ΩjS) ≤ 0 in Equation (306) are discarded. Thus, a finite-dimensional SU(3) irrep is
obtained with matrix elements

〈j′S′M′|Êk1|jSM〉 = 〈jSM|Ê1k|j′S′M′〉∗ = (Ωj′S′ −ΩjS)
1
2 (φj′S′M′ , ẑkφjSM). (309)

In such a multiplicity-free case, the one-dimensional KjS matrices are easily determined to be
given by

Kj,S =

√
λ!(λ + µ + 1)!

(λ + 1
2 µ− j− S)!(λ + 1

2 µ− j + S + 1)!
. (310)

Thus, with these KjS-matrix coefficients, the VCS wave functions have the explicit expressions

ΨjSM(z) = KjSφjSM(z) = KjS[φj(z)⊗ |s〉]SM, (311)
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their dual VCS* partners are

ΦjSM(z) =
1
KjS

φjSM(z) =
1
KjS

[φj(z)⊗ |s〉]SM, (312)

and the corresponding states of the Hilbert space H(λµ) are given by

|jSM〉 = 1
KjS

[φj(B̂)⊗ |s〉]SM. (313)

7. Concluding remarks

The VCS methods described in this paper have been shown to successfully induce holomorphic
representations with highest and/or lowest weights of any connected simple real Lie group G0 and its
Lie algebra from an irreducible unitary irrep of a compact subgroup K0 ⊂ G0 for which G0/K0 is a
symmetric space. The VCS constructions are not restricted to discrete series representations and may be
extended to reductive Lie groups. Examples of a group G0 that does not have a subgroup K0 for which
G0/K0 is a symmetric space are given by the odd orthogonal groups SO(2N + 1) for N > 2. However,
even for these there are extensions of the VCS construction of holomorphic representations [16].

In spite of the above-mentioned generality of the VCS construction, it should be recognized
that the explicit matrices of these representations are expressed not only in terms of the irreducible
representation of the subgroup K0 from which the representation of G0 is induced but also in terms of
the Clebsch-Gordan coupling and Racah decoupling coefficients for K0. This, of course, is true of any
inducing construction.

It should also be noted that, although the irreducible representations of all the Heisenberg-Weyl
groups that feature in the VCS construction are uniquely defined, by the Stone-Von Neumann
theorem [69,70], their construction in the needed K0-coupled basis can be challenging. However, as
indicated by LeBlanc [66], these representations can be inferred from the Capelli identities [2,55,56],
when the subgroup K0 is a unitary group. The derivation of these representations, when the variables
{zij} of the holomorphic inducing construction are either independent, symmetric zij = zji, or
antisymmetric zij = −zji, has recently been further developed [54] and shown to correspond to
the first [55], second [56], and third [57,58] Capelli identities, respectively. These representations
are needed, for example, for the holomorphic representations of U(p, q) induced from an irrep of
U(p)×U(q), of Sp(N,R) induced from a symmetric irrep of UN), and of SO∗(2N) induced from an
anti-symmetric representation of U(N), respectively.

We also remark in closing that the VCS inducing construction of irreducible representations is
by no means restricted to holomorphic representations. The essential requirement is the existence
of two subgroups of G, the complex extension of G0, such that a representation of one subgroup K0

uniquely characterizes the desired representation of G0 and the action of the other group extends the
Hilbert space of this representation of K0 to the Hilbert space of the irreducible representation of G0.
For example, irreps of SU(3) in an SO(3)-coupled basis have been induced from a highest-grade irrep
of an SU(2) subgroup in which the Hilbert space of highest-grade states is extended to the Hilbert
space of an irreducible SU(3) representation by the action of the SO(3) ⊂ SU(3) subgroup [19,20,40].
The subgroups SU(2) and SO(3) have also been used to construct the irreducible representations of
SO(5) in an SO(3) basis [22].

Acknowledgements: Instructive consultations with George Rosensteel are gratefully acknowledged.

Author Contributions: This research article is the result of a long collaboration of its two authors in developing
the mathematical methods needed in the solution of problems arising in nuclear physics. The first draft of the
paper was written by David Rowe.

Conflicts of Interest: The authors declare no conflict of interest.



Symmetry 2016, 8, 12 35 of 37

References

1. Schur, I. Uber eine Klasse von Matrizen, die sich einer gegebenen Matrix zuordnen lassen. Ph.D. Thesis,
Universität Berlin, Berlin, Germany, 1901.

2. Weyl, H. The classical groups, their invariants and representations, 2nd ed.; Princeton University Press:
Princeton, NJ, USA, 1946.

3. Howe, R. Remarks on classical invariant theory. Trans. Am. Math. Soc. 1989, 313, 539–570.
4. Howe, R. Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond. In The

Schur Lectures (1992); Piatestski-Shapiro, I., Gelbart, S., Eds.; American Mathematical Society: Providence,
RI, USA, 1995; pp. 3–182.

5. Helmers, K. Symplectic invariants and Flowers’ classification of shell model states. Nucl. Phys. 1961,
23, 594–611.

6. Howe, R. Dual pairs in physics: harmonic oscillators, photons, electrons, and singletons. Appl. Math. 1985,
21, 179–207.

7. Rowe, D.J.; Carvalho, M.J.; Repka, J. Dual pairing of symmetry groups and dynamical groups in physics.
Rev. Mod. Phys. 2012, 84, 711–757.

8. Rowe, D.J. Coherent state theory of the non-compact symplectic group. J. Math. Phys. 1984, 25, 2662–2671.
9. Rowe, D.J.; Rosensteel, G.; Carr, R. Analytical expressions for the matrix elements of the non-compact

symplectic algebra. J. Phys. A Math. Gen. 1984, 17, L399–L403.
10. Mackey, G. Induced Representations of Groups and Quantum Mechanics; Benjamin: New York, NY, USA, 1968.
11. Rowe, D.J.; Repka, J. Vector-coherent-state theory as a theory of induced representations. J. Math. Phys.

1991, 32, 2614–2634.
12. Rosensteel, G.; Rowe, D.J. Nuclear Sp(3,R) Model. Phys. Rev. Lett. 1977, 38, 10–14.
13. Rosensteel, G.; Rowe, D.J. On the algebraic formulation of collective models III: The symplectic shell model

of collective motion. Ann. Phys. 1980, 126, 343–370.
14. Rowe, D.J.; Wybourne, B.G.; Butler, P.H. Unitary representations, branching rules and matrix elements for

the non-compact symplectic groups. J. Phys. A Math. Gen. 1985, 18, 939–953.
15. Hecht, K.T.; Blanc, R.L.; Rowe, D.J. Canonical orthonormal Wigner supermultiplet basis. J. Phys. A Math.

Gen. 1987, 20, 257–275.
16. Rowe, D.J.; Blanc, R.L.; Hecht, K.T. Vector coherent state theory and its application to the orthogonal

groups. J. Math. Phys. 1988, 29, 287–304.
17. Le Blanc, R.; Rowe, D.J. Superfield and matrix realization of highest weight representations for osp(m/2n).

J. Math. Phys. 1990, 31, 14–36.
18. Le Blanc, R.; Rowe, D.J. The matrix representations of g2. II. Representations in an su(3) basis. J. Math.

Phys. 1988, 29, 767–776.
19. Rowe, D.J.; Le Blanc, R.; Repka, J. A rotor expansion of the su(3) Lie algebra. J. Phys. A Math. Gen. 1989,

22, L309–L316.
20. Rowe, D.J.; Vassanji, M.G.; Carvalho, M.J. The coupled-rotor-vibrator model. Nucl. Phys. A 1989,

504, 76–102.
21. Le Blanc, R.; Rowe, D.J. Highest-weight representations for gl(m/n) and gl(m+n). J. Math. Phys. 1989,

30, 1415–1432.
22. Turner, P.S.; Rowe, D.J.; Repka, J. Vector coherent state theory of the generic representations of so(5) in an

so(3) basis. J. Math. Phys. 2006, 47, 1–25.
23. Deenen, J.; Quesne, C. Partially coherent states of the real symplectic group. J. Math. Phys. 1984,

25, 2354–2366.
24. Rowe, D.J.; McCoy, A.E.; Caprio, M.A. The many-nucleon theory of nuclear collective structure and its

macroscopic limits: an algebraic perspective. Phys. Scr. 2016, 91, doi:10.1088/0031-8949/91/3/033003.
25. Thirulogasanthar, K. Vector coherent states with matrices. Ph.D. Thesis, Concordia University, Montreal,

QC, Canada, 2003.
26. Ali, S.T.; Engliš, M.; Gazeau, J. Vector-coherent states from Plancherel’s theorem, Clifford algebras and

matrix domains. J. Phys A Math. Gen. 2004, 37, 6007–6089.
27. Bagarello, F. Vector coherent states and intertwining operators. J. Phys A Math. Theor. 2009, 42,

doi:10.1088/1751-8113.



Symmetry 2016, 8, 12 36 of 37

28. Harish-Chandra. Representations of Semisimple Lie Groups, IV. Am. J. Math. 1955, 77, 743–777.
29. Harish-Chandra. Representations of Semisimple Lie Groups, V. Am. J. Math. 1956, 78, 1–41.
30. Harish-Chandra. Representations of Semisimple Lie Groups, VI. Am. J. Math. 1956, 78, 564–628.
31. Godement, R. Fonctions holomophes de carré sommable dans le demi-plan de Siegel. Séminaire Henri

Cartan 1957-1958, 10, 1–22.
32. Gelbart, S. Holomorphic discrete series for the real symplectic group. Invent. Math. 1973, 19, 49–58.
33. Kashiwara, M.; Vergne, M. On the Segal-Shale-Weil representations and harmonic polynomials. Invent.

Math. 1978, 44, 1–47.
34. Perelomov, A.M. Coherent States for Arbitrary Lie Group. Commun. Math. Phys. 1972, 26, 222–236.
35. Onofri, E. A note on coherent state representations of Lie groups. J. Math. Phys. 1975, 16, 1087–1089.
36. Perelomov, A. Generalized Coherent States and their Applications; Springer: Berlin, Germany, 1986.
37. Rowe, D.J. Resolution of missing label problems; a new perspective on K-matrix theory. J. Math. Phys.

1995, 36, 1520–1530.
38. Rowe, D.J.; Rosensteel, G.; Gilmore, R. Vector coherent state representation theory. J. Math. Phys. 1985,

26, 2787–2791.
39. Hecht, K.T. The Vector Coherent State Method and its Application to Problems of Higher Symmetries; Lecture

Notes in Physics; Springer-Verlag: Berlin/Heidelberg, Germany, 1987.
40. Rowe, D.J. Vector coherent state representations and their inner products. J. Phys A Math. Theor. 2012, 45,

doi:10.1088/1751-8113/45/24/244003.
41. Lisiecki, W. Coherent state representations. A survey. Rep. Math. Phys. 1995, 35, 327–358.
42. Kostant, B. Quantization and Unitary Representations. In Lectures in Modern Analysis and Applications III;

Springer: Berlin/Heidelberg, Germany, 1970; pp. 87–208.
43. Souriau, J.M. Structure des sytémes dynamiques; Dunod: Paris, France, 1970.
44. Kirillov, A.A. Unitary representations of nilpotent Lie groups. Usp. Mat. Nauk. 1962, 17, 57–110.
45. Kilillov, A.A. Elements of the Theory of Representations; Springer-Verlag: Berlin/Heidelberg, Germany, 1976.
46. Bartlett, S.D.; Rowe, D.J.; Repka, J. Vector coherent state representations, induced representations and

geometric quantization: I scalar coherent state representations. J. Phys. A Math. Gen. 2002, 35, 5599–5623.
47. Rowe, D.J.; Repka, J. Coherent state triplets and their inner product. J. Math. Phys. 2002, 43, 5400–5438.
48. Bargmann, V. On a Hilbert space of analytic functions and an associated integral transform Part I. Commun.

Pure Appl. Math. 1961, 14, 187–214.
49. Bott, R. Homogeneous vector bundles. Ann. Math. 1957, 66, 203–248.
50. Schmid, W. On a conjecture of Langlands. Ann. Math. 1971, 93, 1–42.
51. Knapp, A.W. Representation theory of semisimple groups; Princeton University Press: Princeton, NJ, USA,

1986.
52. Hua, L.K. Harmonic Analysis of Functions of Several Complelx Variables in the Classical Domains; American

Mathematical Society: Providence, RI, USA, 1963.
53. Rosensteel, G.; Rowe, D.J. The discrete series of Sp(n,R). Int. J. Theor. Phys. 1977, 16, 63–79.
54. Rowe, D.J. Application of the Capelli identities in physics and representation theory. J. Phys. AMath. Theor.

2015, 48, doi:10.1088/1751-8113/48/5/055203.
55. Capelli, A. Ueber die Zurückführung der Cayley’schen Operation Ω auf gewöhnliche Polar-Operationen.

Math. Ann. 1887, 29, 331–338.
56. Turnbull, H.W. Symmetric determinants and the Cayley and Capelli operators. Proc. Edinb. Math. Soc.

1948, 8, 76–86.
57. Howe, R.; Umeda, T. The Capelli identity, the double commutant theorem and multiplicity-free actions.

Math. Ann. 1991, 290, 565–619.
58. Kostant, B.; Sahi, S. The Capelli identity, tube domains and generalized Laplace transform. Adv. Math.

1991, 87, 71–92.
59. Sakurai, J.J. Modern Quantum Mechanics; Addison-Wesley: Boston, Massachusetts, USA, 1994.
60. Baird, G.; Biedenharn, L. On the Representations of the Semisimple Lie Groups. II. J. Math. Phys. 1963,

4, 1449–1466.
61. Hecht, K.T. SU(3) recoupling and fractional parentage in the 2s-1d shell. Nucl. Phys. 1965, 62, 1–36.
62. Draayer, J.P.; Akiyama, Y. Wigner and Racah coefficients for SU3. J. Math. Phys. 1973, 14, 1904–1912.



Symmetry 2016, 8, 12 37 of 37

63. Rosensteel, G.; Rowe, D.J. The u(3)-boson model of nuclear collective motion. Phys. Rev. Lett. 1981,
47, 223–226.

64. Quesne, C. Matrix elements of operators in symmetric U(6)⊃U(3)⊃U(2)⊃U(1) and
U(6)⊃SU(3)⊃SO(3)⊃SO(2) basis. J. Math. Phys. 1981, 22, 1482–1496.

65. Rosensteel, G.; Rowe, D.J. An analytical formula for u(3)-boson matrix elements. J. Math. Phys. 1983,
24, 2461–2463.

66. Le Blanc, R.; Rowe, D.J. Heisenberg-Weyl algebras of symmetric and anti-symmetric bosons. J. Phys A
Math. Theor. 1987, 20, L681–687.

67. Littlewood, D.E. The Theory of Group Characters and Matrix Representations of Groups, 2nd ed.; Oxford
University Press: Oxford, UK, 1950.

68. Akiyama, Y.; Draayer, J.P. A user’s guide to fortran programs for Wigner and Racah coefficients of SU3.
Comp. Phys. Commun. 1973, 5, 405–415.

69. Stone, M.H. On one-parameter unitary groups in Hilbert space. Ann. Math. 1932, 33, 643–648.
70. von Neumann, J. Uber Einen Satz Herrn M. H. Stone. Ann. Math. 1932, 33, 567–573.

c© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons by Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	VCS Construction of Holomorphic Discrete-series Representations
	Holomorphic VCS Representations of the Group G0
	Holomorphic Representation of a Lie Algebra g
	The Inner Product for Discrete-series Representations

	A G0=Sp(N,R) Example
	A Defining Representation of Sp(N,R)
	VCS Representations of the Sp(N,R) Lie Group
	Representations of the Sp(N,R) Lie Algebra
	Inner Products for the Holomorphic Discrete Series Representations of Sp(N,R)

	Dual VCS Holomorphic Representations
	Dual VCS Wave Functions
	Inner Products and Dual VCS Representations
	Dual representations of the Lie algebra g
	Non-unitary Representations on F
	Orthonormal VCS Wave Functions
	Matrix Elements of the Group G0 and the Lie Algebra g

	Dual VCS Representations of the sp(N,R) Lie Algebras
	Dual Representations of the sp(N,R) Lie Algebra on F
	Representations of the U(N)-boson Algebra
	Unitary Irreps of the sp(N,R) Lie Algebra

	Holomorphic VCS Representations of a Compact Lie Group
	The Basic Construction
	Dual VCS Representations of the Lie Algebra g with Highest Weight
	Application to SU(3)

	Concluding remarks

